首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of neutralising antibodies to the viral surface glycoprotein, haemagglutinin (HA) is considered the cornerstone of current seasonal and pandemic influenza vaccines. Mapping of neutralising epitopes using monoclonal antibodies (mAbs) helps define mechanisms of antigenic drift, neutralising escape and facilitates pre-pandemic vaccine design. In the present study we reverse engineered the antigenic structure of the HAs of two highly pathogenic H5N1 vaccine strains representative of currently circulating clade 1 and 2.2 H5N1 viruses. The HA sequence of the A/Vietnam/1194/04 clade 1 virus was progressively mutated into the HA sequence of the clade 2.2 virus, A/Bar-headed Goose/Qinghai/1A/05. Fine mapping of clade-specific neutralising epitopes was performed by examining the cross-reactivity of mAbs raised against the native HA of each parent virus. The reactivity across all clade specific mAbs centred around a constellation of mutations at positions 140, 145, 171 and 172, all of which are proximal to the receptor binding site on the membrane distal globular head of the HA. Overlapping cross-reactivity of these antigenic sites suggests that these amino acid positions relate to the antigenic evolution of the H5 clade 1 and 2.2 viruses. This finding may prove useful for the design of vaccines with broader neutralising cross-reactivity against the different H5 HA sublineages currently in circulation. These findings provide important information about the amino acid changes involved in the cross-clade evolution of H5N1 viruses and their potential for human to human transmission; and facilitates a greater understanding of the pandemic potential of H5N1 isolates.  相似文献   

2.
In 2009, a swine-origin influenza A virus – A(H1N1)pdm09 – emerged and has became a pandemic strain circulating worldwide. The hemagglutinin (HA) of influenza virus is a potential target for the development of anti-viral therapeutic agents. Here, we generated mAbs by immunization of baculovirus-insect expressing trimeric recombinant HA of the A(H1N1)pdm09 strain. Results indicated that the mAbs recognized two novel neutralizing and protective epitopes-“STAS” and “FRSK” which located near Cb and Ca1 antigenic regions respectively and were conserved in almost 2009–2016 influenza H1N1 stains. The mAb 12E11 demonstrated higher protective efficacy than mAb 8B10 in mice challenge assay. Both mAb pretreatments significantly reduced virus titers and pro-inflammatory cytokines in mice lung postinfection (p < 0.01), and showed prophylactic and therapeutic efficacies even 48 h postinfection (p < 0.05). Combination therapy using the mAbs with oseltamivir pre- and post-treatment showed synergistic therapeutic effect in mice model (p < 0.01). Further investigation for clinical application in humans is warranted.  相似文献   

3.
A vaccine against the novel pandemic influenza virus (2009 H1N1) is available, but several problems in preparation of vaccines against the new emerging influenza viruses need to be overcome. DNA vaccines represent a novel and powerful alternative to conventional vaccine approaches. To evaluate the ability of a DNA vaccine encoding the hemagglutinin (HA) of 2009 H1N1 to generate humoral responses and protective immunity, BALB/c mice were immunized with various doses of 2009 H1N1 HA-encoding plasmid and anti-HA total IgG, hemagglutination inhibition antibodies and neutralizing antibodies were assayed. The total IgG titers against HA correlated positively with the doses of DNA vaccine, but immunization with either a low dose (10 μg) or a higher dose (25-200 μg) of HA plasmid resulted in similar titers of hemagglutination inhibition and neutralizing antibodies, following a single booster. Further, 10 μg plasmid conferred effective protection against lethal virus challenge. These results suggested that the DNA vaccine encoding the HA of 2009 H1N1 virus is highly effective for inducing neutralizing antibodies and protective immunity. DNA vaccines are a promising new strategy for the rapid development of efficient vaccines to control new emerging pandemic influenza viruses.  相似文献   

4.
The emergence of highly pathogenic avian influenza A virus (HPAIV) subtype H5N1 in 1997 has since resulted in large outbreaks in poultry and in transmission from poultry to humans, mostly in southeast Asia, but also in several European countries. Effective diagnosis and control measures are essential for the management of HPAIV infections. To develop a rapid diagnostic test, a panel of murine monoclonal antibodies (mAbs) against influenza virus A subtype H5 was generated. Eleven mAbs were produced and characterised according to their reactivity by indirect and sandwich ELISA and western blotting against different H5 subtypes representing past and viruses currently circulating. Ten out of 11 mAbs reacted strongly with the haemagglutinin (HA) protein of H5 viruses, whereas one mAb reacted with the M1 protein. Targeted HA protein epitopes seemed to be conformational. One hybridoma clone binds to a linear epitope of the M1 protein. One specific mAb reacts with HPAIV H5 in the immunofluorescence test, and two antibodies neutralised H5 viruses. On the basis of the results, the set of seven mAbs is appropriate for developing diagnostic tests. With the generated mAbs, a sandwich ELISA was developed recognising all H5N1 strains tested but no other influenza viruses. With this ELISA, as little as 0.005 HA units or 0.1 ng/ml H5N1 was detected, surpassing other ELISA tests. The novel reagents have the potential to improve significantly available rapid antigen detection systems.  相似文献   

5.
Zhou JJ  Tian J  Fang DY  Liang Y  Yan HJ  Zhou JM  Gao HL  Fu CY  Liu Y  Ni HZ  Ke CW  Jiang LF 《Acta virologica》2011,55(3):195-202
In order to further predict the epidemic trend and develop vaccines for 2009 H1N1 virus, we monitored its epitopes and molecular pathogenic characteristics during the epidemic process. We also analyzed the similarity of antigenic and genetic characteristics among the novel 2009 H1N1, representative seasonal H1N1 strains, and vaccine strains. 2009 H1N1 isolates had high similarity of hemagglutinin (HA) antigenic sites with H1N1 viruses isolated before 1940 and up to 80.0% similarity with 1918 H1N1. The elderly people born before 1940 have relatively low 2009 H1N1 infection rate, which might be responsible for their previous infection with either 1918 H1N1 virus or an early progeny. Compared to seasonal H1N1 vaccine strains from 1999 to 2010, the HA, neuraminidase (NA), and nucleoprotein (NP) proteins of the isolates had highly conserved CTL epitopes (60.5-65.8%, 69.6-82.6%, and 76.7%, respectively). The seriousness and mortality rate of 2009 H1N1 infections were similar to seasonal influenza, which may be related to the molecular characteristics of low toxicity of 2009 H1N1 and cross-T-cell immunity, due to vaccination or exposure to seasonal H1N1 virus. Some strains of 2009 H1N1 acquired mutations at antigenic and glycosylation sites. It is of particular interest that Haishu/SWL110/10 and Beijing/SE2649/09, isolated after November 2009, gained a new glycosylation site at the position 179 of HA protein, near the RBD. Thus, in the future, vaccination with glycosylated 2009 H1N1 virus may prevent the seasonal epidemic caused by strains with glycosylation site mutation near the receptor binding domain (RBD).  相似文献   

6.
Fifteen strains of mAb specific for HA of the A/Hong Kong/482/97 (H5N1) influenza virus were generated. The HA antigenic sites of the human A/Hong Kong/482/97 (H5N1) influenza virus were defined by using yeast cell surface‐displaying system and anti‐H5 HA mAb. Evolution analysis of H5 HA identified residues that exhibit diversifying selection in the antigenic sites and demonstrated surprising differences between residue variation of H5 HA and H3 HA. A conserved neutralizing epitope in the H5 HA protein recognized by mAb H5M9 was found using viruses isolated from 1997–2006. Seven single amino acid substitutions were introduced into the HA antigenic sites, respectively, and the alteration of antigenicity was assessed. The structure obtained by homology‐modeling and molecular dynamic methods showed that a subtle substitution at residue 124 propagates throughout its nearby loop (152–159). We discuss how the structural changes caused by point mutation might explain the altered antigenicity of the HA protein. The results demonstrate the existence of immunodominant positions in the H5 HA protein, alteration of these residues might improve the immunogenicity of vaccine strains.  相似文献   

7.
Monoclonal antibodies (mAbs) against secreted hemagglutinin (H) protein of rinderpest virus (RPV) expressed by a recombinant baculovirus were generated to characterize the antigenic sites on H protein and regions of functional significance. Three of the mAbs displayed hemagglutination inhibition activity and these mAbs were unable to neutralize virus infectivity. Western immunoblot analysis of overlapping deletion mutants indicated that three mAbs recognize antigenic regions at the extreme carboxy terminus (between amino acids 569 and 609) and the fourth mAb between amino acids 512 and 568. Using synthetic peptides, aa 569-577 and 575-583 were identified as the epitopes for E2G4 and D2F4, respectively. The epitopic domains of A12A9 and E2B6 mAbs were mapped to regions encompassing aa 527-554 and 588-609. Two epitopes spanning the extreme carboxy terminal region of aa 573 to 587 and 588 to 609 were shown to be immunodominant employing a competitive ELISA with polyclonal sera form vaccinated cattle. The D2F4 mAb which recognizes a unique epitope on RPV-H is not present on the closely related peste des petits ruminant virus HN protein and this mAb could serve as a tool in the seromonitoring program after rinderpest vaccination.  相似文献   

8.
The 2009 pandemic H1N1 (pH1N1) influenza virus carried a swine-origin hemagglutinin (HA) that was closely related to the HAs of pre-1947 H1N1 viruses but highly divergent from the HAs of recently circulating H1N1 strains. Consequently, prior exposure to pH1N1-like viruses was mostly limited to individuals over the age of about 60 years. We related age and associated differences in immune history to the B cell response to an inactivated monovalent pH1N1 vaccine given intramuscularly to subjects in three age cohorts: 18 to 32 years, 60 to 69 years, and ≥70 years. The day 0 pH1N1-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers were generally higher in the older cohorts, consistent with greater prevaccination exposure to pH1N1-like viruses. Most subjects in each cohort responded well to vaccination, with early formation of circulating virus-specific antibody (Ab)-secreting cells and ≥4-fold increases in HAI and MN titers. However, the response was strongest in the 18- to 32-year cohort. Circulating levels of HA stalk-reactive Abs were increased after vaccination, especially in the 18- to 32-year cohort, raising the possibility of elevated levels of cross-reactive neutralizing Abs. In the young cohort, an increase in MN activity against the seasonal influenza virus A/Brisbane/59/07 after vaccination was generally associated with an increase in the anti-Brisbane/59/07 HAI titer, suggesting an effect mediated primarily by HA head-reactive rather than stalk-reactive Abs. Our findings support recent proposals that immunization with a relatively novel HA favors the induction of Abs against conserved epitopes. They also emphasize the need to clarify how the level of circulating stalk-reactive Abs relates to resistance to influenza.  相似文献   

9.
Highly pathogenic avian influenza H5N1 viruses are capable of causing poultry epidemics and human mortality. Vaccines that induce protective neutralizing antibodies can prevent outbreaks and decrease the potential for influenza A pandemics. Identifying unique H5N1 virus-specific HLA class II-restricted epitopes is essential for monitoring cellular strain-specific immunity. Our results indicate that 80% of the 30 study participants who were inoculated with an H5N1 vaccine produced neutralizing antibodies. We used intracellular cytokine staining (ICS) to screen and identify six DR1501-restricted H5N1 virus epitopes: H5HA(148-162), H5HA(155-169), H5HA(253-267), H5HA(260-274), H5HA(267-281) and H5HA(309-323.) Tetramer staining results confirmed that two immunodominant epitopes were DR1501-restricted: H5HA(155-169) and H5HA(267-281). Both are located at the HA surface and are highly conserved in currently circulating H5N1 clades. These results suggest that a combination of ICS and tetramer staining can be used as a T-cell epitope-mapping platform, and the identified epitopes may serve as markers for monitoring vaccine efficacy.  相似文献   

10.
Nine monoclonal antibodies (mAbs) against avian influenza virus (AI) H5 subtype from mice immunized with inactivated virus H5N1 (A/Turkey/ON/6213/66) were produced. Upon testing, the results indicated that the binding epitopes of eight out of the nine mAbs were conformational, while one mAb (#7) reacted with denatured H5N1 only. Two mAbs #10 and #11 reacted with all of the thirteen H5 strains tested indicating that the binding epitopes of these mAbs were conserved among these H5 subtypes.Possible applications of these mAbs in rapid tests for H5 antigen were explored. Double antibody sandwich (DAS) ELISAs were developed using two selected mAbs #10 and #11. This DAS ELISA detects specific H5 viruses and is able to identify all thirteen H5 strains tested. Three mAbs showed reactivity with AI H5 antigen for both immunofluorescence (IF) and immunohistochemistry. A cELISA used to screen chickens that had been infected with an H5 virus was developed with mAb #9 and recombinant H5 antigen. The sera from chickens that have been infected with an H5N1 virus were examined using the cELISA. 80% of the sera from H5 infected chickens showed a positive H5 specific antibody response at 7 days post-infection (dpi) and remained positive until the end of the experiment on day 30 (>40% inhibition). This panel of the AI H5 specific mAbs is valuable for the development of various immunoassays.  相似文献   

11.
目的 探讨新型甲型流感病毒(2009H1N1)血凝素(HA)DNA疫苗诱导小鼠产生中和抗体特性.方法 构建2009H1N1或1918甲型流感病毒(1918H1N1)HA蛋白表达质粒2009HA和1918HA,采用25μg或200μg剂量2009HA质粒免疫小鼠,以2009HA或1918HA蛋白为包被抗原,测定小鼠血清中2009HA抗体总量或交叉反应抗体含量,分别用2009H1N1和1918H1N1两种假病毒(pp)测定抗体中和活性.结果 25 μg或200μg的2009HA质粒加强免疫小鼠后,4~16周内两组小鼠血清中2009HA总抗体水平以及对2009H1N1pp的中和抗体滴度相似(P>0.05),都含有与1918HA蛋白交叉反应抗体,对1918H1N1pp的交叉中和抗体滴度相似(P>0.05).结论 小剂量2009HA质粒DNA疫苗能够诱导小鼠产生持久的高水平中和抗体,对于预防新现流感病毒具有潜在应用价值.  相似文献   

12.
BackgroundInfluenza strain A/California/07/2009 H1N1 (H1N1-09) reemerged in 2013/2014 as the predominant cause of illness. We sought to determine if antigenic drift may have contributed to the decreased responses to influenza vaccine.MethodsFifty adults who received trivalent inactivated influenza vaccine (IIV3) and 56 children who received live attenuated quadrivalent influenza vaccine (LAIV4) had hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies measured in plasma against H1N1-09 and H1N1 2013/2014 (H1N1-14) influenza. Partial sequencing of the hemagglutinin gene (nt 280–780) was performed on 38 clinical isolates and the vaccine prototype.ResultsIn IIV3 recipients, HAI and MN titers against H1N1-14 were significantly lower than against H1N1-09 (p < 0.0001 and 0.04, respectively). In LAIV4 recipients, only MN titers were significantly lower (p = 0.02) for H1N1-09 compared with H1N1-14. A combined analysis showed significantly lower HAI and MN titers for H1N1-14 compared with H1N1-09 (p = 0. 016 and 0.008, respectively). All 38 clinical isolates encoded the HA gene K166Q non-synonymous substitution; other non-synonymous substitutions were observed in <10% of the clinical isolates.Conclusions2013/2014 IIV3 and LAIV4 recipients had consistently lower MN antibody titers against H1N1-14 compared with H1N1-09. The HA K166Q mutation, located in a neutralizing epitope, probably contributed to these findings.  相似文献   

13.
A novel influenza A/H1N1 virus, emerging from Mexico and the United States in the spring of 2009, caused the pandemic human infection of 2009-2010. The haemagglutinin (HA) glycoprotein is the major surface antigen of influenza A virus and plays an important role in viral infection. In this study, three hybridoma cell lines secreting specific monoclonal antibodies (Mabs) against the HA protein of pandemic influenza A/H1N1 2009 virus were generated with the recombinant plasmid pCAGGS-HA as an immunogen. Using Pepscan analysis, the binding sites of these Mabs were identified in a linear region of the HA protein. Further, refined mapping was conducted using truncated peptides expressed as GST-fusion proteins in E. coli. We found that the 250VPRYA254 motif was the minimal determinant of the linear epitope that could be recognized by the Mabs. Alignment with sequences from the databases showed that the amino acid residues of this epitope were highly conserved among all pandemic A/H1N1 2009 viruses as well as the classical swine H1N1 viruses isolated to date. These results provide additional insights into the antigenic structure of the HA protein and virus-antibody interactions at the amino acid level, which may assist in the development of specific diagnostic methods for influenza viruses.  相似文献   

14.
Pandemic influenza A (H1N1) 2009 virus (H1N1pdm09) was a novel tri-assortment virus that emerged in Mexico and North America in 2009 and caused the first influenza pandemic in the 21st century. This study investigated the prevalence pattern and molecular characteristics of H1N1pdm09 in three continuous years from April 2009 to March 2012 in populations of Tianjin, Northeast China. Totally, 3,068 influenza viruses (25.4 %) were detected from 12,089 respiratory specimens. Among them, 41.4 % (1,269/3,068) were H1N1pdm09 positive. 15.1 % (192/1,269) severe respiratory infection cases were H1N1pdm09 positive. H1N1pdm09 was the predominant prevalence subtype in October 2009–March 2010 (69.1 %, 930/1,346) and October 2010–March 2011 (42.1 %, 220/523). Eight isolated H1N1pdm09 viruses from severe infection/death cases in three different years were selected to sequence the whole genome through splicing the sequences following 46 PCRs. HA sequences of seven H1N1pdm09 isolates from mild infection cases were detected. Phylogenetic analysis showed that HA, NA, M, NP and NS genes of H1N1pdm09 viruses gathered together with swine influenza A (H1N1), whereas PB2 and PA genes originated from avian influenza virus, and PB1 gene originated from human seasonal influenza virus. Identity analysis indicated that all the genes were highly conserved. Compared with vaccine strain A/California/07/2009(H1N1), the maximal mutation gene was HA (0.7–2.6 %), then NA (0.6–1.7 %), last one was M (mutation rate 0–0.6 %). More site substitutions were observed in 2011 isolates than in 2009 and 2010 isolates of HA (p = 0.002), NA (p = 0.003) and PA (p = 0.001) proteins. The amino acid substitution rates were varied among eight gene segments, ranging from 7.39 × 10?4 for PB2 to 7.40 × 10?3 for NA. The higher d N / d S rates were observed in HA, PA and NS segments in H1N1pdm09 in Tianjin. Three HA amino acid site substitutions occurred at the HA receptor-binding sites and antigenic determinant, including S179N and K180T (located at antigenic site Sa) in A/Tianjinhedong/SWL44/2011(H1) and A/Tianjinjinnan/SWL41/2011(H1), and D239N (located at antigenic site Ca) in A/Tianjinninghe/SWL49/2009(H1). Antigenic drift may have occurred in H1N1pdm09 with time. No oseltamivir-resistance site substitution was observed at 275 and 295 sites. Amino acid residue site at 31 in M2 protein was N in all 8 isolates, which suggested that H1N1pdm09 was resistant to amantadine.  相似文献   

15.
This study reports the genetic characterization of a highly pathogenic avian influenza virus subtype H5N1 isolated from a moribund domestic duck in central Vietnam during 2012. In the moribund duck’s flock, within 6 days after vaccination with a commercial H5N1 vaccine (Re-5) to 59-day-old birds, 120 out of 2,000 ducks died. Genetic analysis revealed a substantial number of mutations in the HA gene of the isolate in comparison with the vaccine strains, Re-1 and Re-5. Similar mutations were also found in selected Vietnamese H5N1 strains isolated since 2009. Mutations in the HA gene involved positions at antigenic sites associated with antibody binding and also neutralizing epitopes, with some of the mutations resulting in the modification of N-linked glycosylation of the HA. Those mutations may be related to the escape of virus from antibody binding and the infection of poultry, interpretations which may be confirmed through a reverse genetics approach. The virus also carried an amino acid substitution in the M2, which conferred a reduced susceptibility to amantadine, but no neuraminidase inhibitor resistance markers were found in the viral NA gene. Additional information including vaccination history in the farm and the surrounding area is needed to fully understand the background of this outbreak. Such understanding and expanded monitoring of the H5N1 influenza viruses circulating in Vietnam is an urgent need to provide updated information to improve effective vaccine strain selection and vaccination protocols, aiding disease control, and biosecurity to prevent H5N1 infection in both poultry and humans.  相似文献   

16.
抗H9亚型禽流感病毒血凝素单克隆抗体的制备及初步鉴定   总被引:5,自引:3,他引:5  
目的 :制备抗禽流感病毒 (AIV)H9亚型血凝素蛋白的单克隆抗体 (mAb)。方法 :以AIVH9亚型油乳剂灭活疫苗作为免疫原 ,免疫 8wk龄BALB/c小鼠。采用淋巴细胞杂交瘤技术制备抗AIVH9亚型血凝素蛋白的mAb ;采用ELISA和血凝抑制试验(HI)检测腹水mAb的效价 ;采用ELISA、HI、免疫荧光染色 (IF)及Westernblot鉴定mAb的特异性。结果 :获得 3株可稳定分泌特异性mAb的杂交瘤细胞株 2A3、2H1和 1C8,其腹水mAb的ELISA效价依次为 1× 10 7、1× 10 5和 5× 10 6,血凝抑制效价为 1× 2 8~ 1× 2 13 ;3株mAb的Ig亚类均为IgG1。以mAb 2H1进行Westernblot的结果显示 ,该mAb能与AIV的Mr 为 75 0 0 0的蛋白条带起反应 ,表明其是针对AIVH9亚型血凝素蛋白的mAb。与 32株AIVH9亚型国内分离株进行血凝抑制试验表明 ,mAb 2H1具有良好的广谱性。结论 :成功地制备了抗AIVH9亚型血凝素蛋白的mAb ,为AIV的抗原性分析、血清学诊断、疫苗质量的监测及流行病学调查等奠定了基础  相似文献   

17.
Huang H  Dan H  Zhou Y  Yu Z  Fan H  Tong T  Jin M  Chen H 《Molecular immunology》2007,44(5):1052-1055
BALB/c mice were immunized with formalin-treated influenza A/CK/Hubei/327/2004 virus. Six monoclonal antibodies specific to HA were selected, designed 1H8, 1D11, 2B7, 2C9, 2H4 and 4C9, respectively. The six Mabs probed linear epitopes by western blot assays. In ELISA additivity assays, the low additivity indexes (< or =28.3) of each pair Mabs indicated that the epitopes recognized by the six Mabs were located on the globular head of HA1. The neutralization activity of anti-HA1 Mabs and chicken polyclonal sera to various AIV H5N1 strains from different hosts was followed by virus neutralization with MDCK cells. All Mabs except 2C9 and chicken polyclonal serum showed highest neutralizing activity to lowly virulent A/Duck/XF/XFY/2004 from different phylogenetic lineage, and lowest neutralization efficiency to highly virulent A/CK/XF/XFJ/2004. For the other two highly virulent viruses, 1D11, 2H4, 4C9 and chicken polyclonal sera had higher neutralization to A/Goose/ZF/ZFE/2004 than A/CK/Hubei/327/2004, and 1H8 and 2B7 had considerable level of neutralizing efficiency to them. These findings suggested that the neutralizing antibodies showed lower neutralization efficiency to highly virulent virus strains than lowly virulent virus strains and strong cross-neutralizing reaction between virus strains located in different phylogenetic lineages. Moreover, the neutralizing Mabs could more efficiently neutralize AIV H5N1 strains from the natural hosts generally, such as waterfowl.  相似文献   

18.
目的 分析2010—2016年唐山市甲型H1N1流感病毒血凝素(hemagglutinin,HA)基因序列进化特征.方法 选取唐山市3家哨点医院流感样病例分离到的24株甲型H1N1病毒,通过RT-PCR和测序方法获得HA基因的全长序列,运用分子生物学软件和统计学软件对序列进行拼接、比对和分析.结果 同源进化分析显示,24株甲型H1N1流感病毒HA基因与疫苗株A/California/7/2009的核苷酸和氨基酸的同源性分别为97.0%~99.0%和97.0%~98.5%.进化分析显示,2010—2016年唐山地区流行的甲型H1N1流感病毒属于1、7、6三个基因分支,其中6分支毒株分为6C、6B、6B.1和6B.2亚支.氨基酸位点分析显示,不同毒株与疫苗株比较存在8~16处氨基酸位点改变,其中7个变异涉及3个抗原表位:H138Q/Y和S203T突变位于Ca区,N125S、K153E、S162N、K163T/Q突变位于Sa区,S185T突变位于Sb区同时也位于受体结合部位;2015—2016流行季6B.1分支毒株抗原位点S162N突变增加了新的潜在糖基化位点.结论 与疫苗株比较,随着时间推移唐山地区甲型H1N1流感病毒发生了抗原漂变,未来仍应关注6B分支流行株的变化.  相似文献   

19.
The immune system responds to influenza infection by producing neutralizing antibodies to the viral surface protein, hemagglutinin (HA), which regularly changes its antigenic structure. Antibodies that target the highly conserved stem region of HA neutralize diverse influenza viruses and can be elicited through vaccination in animals and humans. Efforts to develop universal influenza vaccines have focused on strategies to elicit such antibodies; however, the concern has been raised that previous influenza immunity may abrogate the induction of such broadly protective antibodies. We show here that prime-boost immunization can induce broadly neutralizing antibody responses in influenza-immune mice and ferrets that were previously infected or vaccinated. HA stem-directed antibodies were elicited in mice primed with a DNA vaccine and boosted with inactivated vaccine from H1N1 A/New Caledonia/20/1999 (1999 NC) HA regardless of preexposure. Similarly, gene-based vaccination with replication-defective adenovirus 28 (rAd28) and 5 (rAd5) vectors encoding 1999 NC HA elicited stem-directed neutralizing antibodies and conferred protection against unmatched 1934 and 2007 H1N1 virus challenge in influenza-immune ferrets. Indeed, previous exposure to certain strains could enhance immunogenicity: The strongest HA stem-directed immune response was observed in ferrets previously infected with a divergent 1934 H1N1 virus. These findings suggest that broadly neutralizing antibodies against the conserved stem region of HA can be elicited through vaccination despite previous influenza exposure, which supports the feasibility of developing stem-directed universal influenza vaccines for humans.  相似文献   

20.
Summary.  We analyzed the characteristics of seven monoclonal antibodies (mAbs) raised against purified HE (hemagglutinin-esterase) glycoprotein of the murine coronavirus DVIM (diarrhea virus of infant mice). Immunocrossreaction of these mAbs with JHM and/or MHV-S suggest that antigenic epitopes of HE of DVIM are similar to those of JHM and/or MHV-S. Four mAbs (1b4, 3a28, 4c19, 10b7), designated as group A mAbs, strongly inhibited both HA and AE activities. On the other hand, three mAbs (5a3, 6a6, 13a4), referred to as group B, had a comparatively weak HA inhibition activity. These results indicate that the antigenic epitopes of this glycoprotein can be classified into at least two groups and that the functional sites of HA and AE activities are similar but not identical. Neutralizing activity was shown in group A mAbs exclusively, suggesting that the ratio of HA and/or AE activities may play important roles in the cell fusion activity of DVIM-infected cells. Received February 11, 1998 Accepted May 14, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号