首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomato and pepper are widely grown in Oman for local consumption. A countrywide survey was conducted during 2010–2011 to collect samples and assess the diversity of begomoviruses associated with leaf curl disease of tomato and pepper. A virus previously only identified on the Indian subcontinent, chili leaf curl virus (ChLCV), was found associated with tomato and pepper diseases in all vegetable grown areas of Oman. Some of the infected plant samples were also found to contain a betasatellite. A total of 19 potentially full-length begomovirus and eight betasatellite clones were sequenced. The begomovirus clones showed >96% nucleotide sequence identity, showing them to represent a single species. Comparisons to sequences available in the databases showed the highest levels of nucleotide sequence identity (88.0–91.1%) to isolates of the “Pakistan” strain of ChLCV (ChLCV-PK), indicating the virus from Oman to be a distinct strain, for which the name Oman strain (ChLCV-OM) is proposed. An analysis for recombination showed ChLCV-OM likely to have originated by recombination between ChLCV-PK (the major parent), pepper leaf curl Lahore virus and a third strain of ChLCV. The betasatellite sequences obtained were shown to have high levels of identity to isolates of tomato leaf curl betasatellite (ToLCB) previous shown to be present in Oman. For the disease in tomato Koch's postulates were satisfied by Agrobacterium-mediated inoculation of virus and betasatellites clones. This showed the symptoms induced by the virus in the presence of the betasatellite to be enhanced, although viral DNA levels were not affected. ChLCV-OM is the fourth begomovirus identified in tomato in Oman and the first in Capsicum. The significance of these findings is discussed.  相似文献   

2.
Okra leaf curl disease (OLCD) is an important viral disease of okra in tropical and subtropical areas. The disease is caused by begomovirus-satellite complexes. A begomovirus and associated betasatellite and alphasatellite were identified in symptomatic okra plants from Barka, in the Al-Batinah region of Oman. Analysis of the begomovirus sequences showed them to represent a new begomovirus most closely related to cotton leaf curl Gezira virus (CLCuGeV), a begomovirus of African origin. The sequences showed less than 85 % nucleotide sequence identity to CLCuGeV isolates. The name okra leaf curl Oman virus (OLCOMV) is proposed for the new virus. Further analysis revealed that the OLCOMV is a recombinant begomovirus that evolved by the recombination of CLCuGeV isolates with tomato yellow leaf curl virus-Oman (TYLCV-OM). An alpha- and a betasatellite were also identified from the same plant sample, which were also unique when compared to sequences available in the databases. However, although the betasatellite appeared to be of African origin, the alphasatellite was most closely related to alphasatellites originating from South Asia. This is the first report of a begomovirus-satellite complex infecting okra in Oman.  相似文献   

3.
Three new begomovirus isolates and one betasatellite were obtained from a tomato plant exhibiting leaf curl symptom in Laguna, the Philippines. Typical begomovirus DNA components representing the three isolates (PH01, PH02 and PH03) were cloned, and their full-length sequences were determined to be 2754 to 2746 nucleotides. The genome organizations of these isolates were similar to those of other Old World monopartite begomoviruses. The sequence data indicated that PH01 and PH02 were variants of strain B of the species Tomato leaf curl Philippines virus, while PH03 was a variant of strain A of the species Tomato leaf curl Philippines virus. These isolates were designated ToLCPV-B[PH:Lag1:06], ToLCPV-B[PH:Lag2:06], and ToLCPV-A[PH:Lag3:06], respectively. Phylogenetic analysis revealed that the present isolates form a separate monophyletic cluster with indigenous begomoviruses reported earlier in the Philippines. A betasatellite isolated from same sample belongs to the betasatellite species Tomato leaf curl Philippines betasatellite and designated Tomato leaf curl Philippines betasatellite-[Philippines:Laguna1:2006], ToLCPHB-[PH:Lag1:06]. When co-inoculated with this betasatellite, tomato leaf curl Philippines virus induced severe symptoms in N. benthamiana and Solanum lycopersicum plants. Using a PVX-mediated transient assay, we found that the C4 and C2 proteins of tomato leaf curl Philippines virus and the βC1 protein of ToLCPHB-[PH:Lag1:06] function as a suppressor of RNA silencing.  相似文献   

4.
Tomato leaf curl Gujarat virus (ToLCGV) has been identified as one of the most destructive pathogens causing tomato leaf curl disease (ToLCD) in India. In the tomato growing regions of Dhanbad and Ramgarh, plants bearing severe symptoms of ToLCD such as leaf curling, leaf crinkling, yellowing and leaf rolling was observed in the farmer fields. The association of begomovirus in these samples was confirmed by PCR and the causal viruses were identified as the isolates of ToLCGV. However, association of cognate DNA B component could not be ascertained from these samples. Indeed, like other Old World begomoviruses, the present ToLCGV isolates were found to be associated with a particular betasatellite, Tomato yellow leaf curl Thailand betasatellite (TYLCTHB). Although DNA A of both ToLCGV isolates could alone infect tomato inducing systemic symptoms, the difference in virulence was observed. Co-inoculation of TYLCTHB reduced the incubation period without influencing the accumulation of helper virus DNA and hence, differential pathogenesis among ToLCGV isolates was governed by the helper component rather than betasatellite. ToLCGV infection with DNA B increases the accumulation of DNA A component of Dhanbad isolate but not of Ramgarh isolate. Results indicated that the begomovirus identified from Ramgarh sample was a mild strain of ToLCGV.  相似文献   

5.
Ageratum conyzoides (goat weed) is a widespread uncultivated species in Cameroon that exhibits leaf curl disease (LCD) symptoms suggestive of begomovirus infection. In Asia, different begomovirus-satellite complexes have been identified in A. conyzoides. The objective of this study was to determine the identity of the suspect begomoviruses and their associated satellites in A. conyzoides in Cameroon. The results indicated that all three symptomatic A. conyzoides plants examined were infected with a new begomovirus species, herein named Ageratum leaf curl Cameroon virus (ALCCMV). The ALCCMV genome sequences shared their highest identity, at 84.3-88.5%, with a group of tomato-infecting begomoviruses from West Africa. In addition, a betasatellite and an alphasatellite were cloned from the same symptomatic A. conyzoides plants. The betasatellite sequences shared limited sequence identity at 37% or less with the betasatellite Cotton leaf curl Gezira betasatellite, and the new betasatellite species is herein named Ageratum leaf curl Cameroon betasatellite (ALCCMB). The alphasatellite shared 80% nt identity with Tomato leaf curl Cameroon alphasatellite (ToLCCMA), and the new alphasatellite species is herein named Ageratum leaf curl Cameroon alphasatellite (ALCCMA). In addition, two fragments containing begomovirus-alphasatellite sequences were cloned from sample AGLI4, and they were related to the defecting interfering molecule (Y14167) associated with Ageratum yellow vein virus from Asia. These results suggest that the begomoviral-satellite complexes infecting A. conyzoides in Cameroon may be as complex or more so, to species and strains reported thus far from Asia.  相似文献   

6.
Tomato leaf curl is a serious malady in the state of Maharashtra, India, causing nearly 100 % yield loss. An extensive survey was done in the affected fields of tomato in the year 2008, and members of three species of begomoviruses were identified as causing the disease. More than 60 % of the samples from diseased plants were infected with tomato leaf curl Gujarat virus (ToLCGuV). Isolates collected from these fields differed from the Varanasi isolate of ToLCGuV in not having a DNA B component. Instead, they were like typical Old World monopartite begomoviruses in that they were associated with only one betasatellite, tomato yellow leaf curl Thailand betasatellite (TYLCTHB). ToLCGuV alone is readily infectious, expressing systemic symptoms in Nicotiana benthamiana and tomato. Co-inoculation of ToLCGuV with TYLCTHB, increased symptom severity and reduced the incubation time required for symptom expression. ToLCGuV successfully interacted with heterologous DNA B component of ToLCNDV [IN:Pun:JID:08], and co-inoculation of these two resulted in yellow mottling symptoms that were typical of DNA B.  相似文献   

7.
Leaf curl disease of chilli (LCDC) is a major constraint in production of chilli in the Indian subcontinent. The objective of this study was to identify the begomovirus species occurring in chilli in Sri Lanka, where the LCDC was initially recorded in 1938. The virus samples were collected from the North Central Province, the major chilli growing region in Sri Lanka with a history of epidemic prevalence of LCDC. The virus could be readily transmitted by Bemisia tabaci to chilli, tomato and tobacco, where vein clearing followed by leaf curl developed. The genome analysis of two isolates obtained from two distantly located fields showing 100 % LCDC, revealed that the DNA-A genome (2754 nucleotides) shared 89.5 % sequence identity with each other and 68.80–84.40 % sequence identity with the other begomoviruses occurring in the Indian subcontinent. The closest identity (84.40 %) of the virus isolates was with Tomato leaf curl Sri Lanka virus (ToLCLKV). The results support that a new begomovirus species is affecting chilli in Sri Lanka and the name Chilli leaf curl Sri Lanka virus (ChiLCSLV) is proposed. Recombination analysis indicated that ChiLCSLV was a recombinant virus potentially originated from the begomoviruses prevailing in southern India and Sri Lanka. The genome of betasatellite associated with the two isolates consisted of 1366 and 1371 nucleotides and shared 95.2 % sequence identity with each other and 41.50–73.70 % sequence identity with the other betasatellite species. The results suggest that a new begomovirus betasatellite, Chilli leaf curl Sri Lanka betasatellite is associated with LCDC in Sri Lanka. This study demonstrates a new species of begomovirus and betasatellite complex is occurring in chilli in Sri Lanka and further shows that diverse begomovirus species are affecting chilli production in the Indian subcontinent.  相似文献   

8.
Tomato leaf curl disease (ToLCD) has emerged as a major constraint on tomato production in some parts of West Africa. In this study, begomoviruses associated with ToLCD in Togo and Nigeria were characterized, as well as a betasatellite associated with the disease in Togo. The genome organization of both viruses is typical of Old World monopartite begomoviruses. Sequence analysis revealed that the begomovirus from Togo is a variant of tomato leaf curl Kumasi virus (ToLCKuV) from Ghana, and it is designated ToLCKuV-[Togo:Pagouda:2006] (ToLCKuV-[TG:Pag:06]). The begomovirus from Nigeria has a recombinant genome, composed of sequences of ToLCKuV (major parent) and a cotton leaf curl Gezira virus (CLCuGV)-like virus, and possesses an unusual non-reiterated replication-associated protein (Rep) binding site. Moreover, because the sequence has <89% identity with those of previously characterized begomoviruses, it is a new species and is designated tomato leaf curl Nigeria virus-[Nigeria:Odogbo:2006] (ToLCNGV-[NG:Odo:06]). The cloned DNAs of ToLCKuV-TG and ToLCNGV were infectious and induced leaf curl symptoms in tomato plants, but ToLCNGV was comparatively more virulent. Both viruses also induced stunted growth and leaf curl symptoms in other solanaceous species (various Nicotiana spp. and Datura stramonium), whereas ToLCNGV but not ToLCKuV-TG induced symptoms in common bean plants. The betasatellite associated with ToLCD in Togo is genetically distinct (i.e., <78% nucleotide sequence identity with previously identified betasatellites) and is designated tomato leaf curl Togo betasatellite-[Togo:Pagouda:2006] (ToLCTGB-[TG:Pag:06]). Replication and systemic spread of ToLCTGB in tomato was mediated by ToLCKuV-TG and ToLCNGV; however, the betasatellite had no effect on disease symptoms induced by either begomovirus. In contrast, ToLCTGB increased symptom severity induced by both viruses in Nicotiana spp. and D. stramonium. Thus, although ToLCTGB increased symptom severity in a host-dependent manner, it does not appear to play a role in ToLCD and may have been present with ToLCKuV-TG as a reassortant.  相似文献   

9.
The Begomovirus genus of the family Geminiviridae comprises the largest group of geminiviruses. The list of begomoviruses is continuously increasing as a result of improvement in the methods for identification. Ornamental rose plants (Rosa chinensis) with highly stunted growth and leaf curling were found in Faisalabad, Pakistan. Plants were analyzed for begomovirus infection, through rolling circle amplification and PCR methods. Based on complete genome sequence homologies with other begomoviruses, a new begomovirus species infecting the rose plants was discovered. In this paper, we propose a new species name, Rose leaf curl virus (RoLCuV), for the virus. RoLCuV showed close identity (83 %) with Tomato leaf curl Pakistan virus, while associated betasatellite showed 96 % identity with Digera arvensis yellow vein betasatellite (DiAYVB), justifying a new isolate for the betasatellite. Recombination analysis of newly identified begomovirus revealed it as a recombinant of tomato leaf curl Pakistan virus from its coat protein region. The infectious molecules for virus/satellite were prepared and inoculated through Agrobacterium tumefaciens to N. benthamiana plants. RoLCuV alone was unable to induce any level of symptoms on N. benthamiana plants, but co-inoculation with cognate betasatellite produced infection symptoms. Further investigation to understand the trans-replication ability of betasatellites revealed their flexibility to interact with Rose leaf curl virus.  相似文献   

10.
Croton yellow vein mosaic virus (CYVMV) is a widely occurring begomovirus in Croton bonplandianum, a common weed in the Indian subcontinent. In this study, CYVMV (genus Begomovirus, family Geminiviridae) was transmitted by whiteflies (Bemisia tabaci) to as many as 35 plant species belonging to 11 families, including many vegetables, tobacco varieties, ornamentals and weeds. CYVMV produced bright yellow vein symptoms in croton, whereas in all the other host species, the virus produced leaf curl symptoms. CYVMV produced leaf curl in 13 tobacco species and 22 cultivars of Nicotiana tabacum and resembled tobacco leaf curl virus (TobLCV) in host reactions. However, CYVMV was distinguished from TobLCV in four differential hosts, Ageratum conyzoides, C. bonplandianum, Euphorbia geniculata and Sonchus bracyotis. The complete genome sequences of four isolates originating from northern, eastern and southern India revealed that a single species of DNA-A and a betasatellite, croton yellow vein mosaic betasatellite (CroYVMB) were associated with the yellow vein mosaic disease of croton. The sequence identity among the isolates of CYVMV DNA-A and CroYVMB occurring in diverse plant species was 91.8-97.9 % and 83.3-100 %, respectively. The CYVMV DNA-A and CroYVMB generated through rolling-circle amplification of the cloned DNAs produced typical symptoms of yellow vein mosaic and leaf curling in croton and tomato, respectively. The progeny virus from both the croton and tomato plants was transmitted successfully by B. tabaci. The present study establishes the etiology of yellow vein mosaic disease of C. bonplandianum and provides molecular evidence that a weed-infecting monopartite begomovirus causes leaf curl in tomato.  相似文献   

11.
Summary. Cotton leaf curl disease (CLCuD) causing viruses belong to the Begomovirus genus of the family Geminiviridae. Most begomoviruses are bipartite with two molecules of circular single stranded DNA (A and B) encapsidated in icosahedral geminate particles. However, the begomoviruses associated with CLCuD have DNA- instead of DNA-B. In this communication we report the complete genomic sequence of DNA-A component of two CLCuD-causing begomoviruses, cotton leaf curl Kokhran virus-Dabawali (CLCuKV-Dab), tomato leaf curl Bangalore virus-Cotton [Fatehabad] (ToLCBV-Cotton [Fat]) and partial sequences of two other isolates cotton leaf curl Rajasthan virus-Bangalore (CLCuRV-Ban) and cotton leaf curl Kokhran virus-Ganganagar (CLCuKV-Gang). A phylogenetic analysis of these isolates along with other related begomoviruses showed that ToLCBV-Cotton [Fat] isolate was closest to the tomato leaf curl Bangalore virus-5 (ToLCBV-Ban5) where as CLCuKV-Dab isolate was close to the cotton leaf curl Kokhran virus-Faisalabad1 (CLCuKV-Fai1), cotton leaf curl Kokhran virus-72b (CLCuKV-72b) and cotton leaf curl Kokhran virus-806b (CLCuKV-806b) isolates from Pakistan. The phylogenetic analysis further showed that the ToLCBV-Cotton [Fat] and CLCuKV-Dab isolates along with CLCuKV-Fai1, CLCuKV-72b and CLCuKV-806b are closer to the ToLCBV, tomato leaf curl Gujarat virus (ToLCGV), tomato leaf curl Gujarat virus-Varanasi (ToLCGV-Var) and tomato leaf curl Sri Lanka virus (ToLCSLV) isolates, where as cotton leaf curl Alabad virus-804a (CLCuAV-804a), cotton leaf curl Multhan virus (CLCuMV) cluster with the isolates from cotton leaf curl Rajasthan virus (CLCuRV) and okra yellow vein mosaic virus (OYVMV). These results demonstrate the extensive variability observed in this group of viruses. The AC4 ORF is the least conserved among these viruses. In order to further asses the variability in the CLCuD-causing begomoviruses, the region showing minimum similarity in the DNA-A sequence was first determined by a comparison of segments of different lengths of the aligned sequences. The results indicated that region 2411–424 (771nt) was the least conserved. A phylogenetic tree constructed using the sequences of all the CLCuD causing begomoviruses, corresponding to the least conserved region showed that they form two distinct clusters.  相似文献   

12.
The genome of a tomato-infecting begomovirus from Ranchi, India, was cloned, sequenced and analysed. The viral genome shared 88.3% sequence identity with an isolate belonging to the species Tobacco curly shoot virus (TbCSV), and this virus should therefore be considered a member of a new species, tentatively named Tomato leaf curl Ranchi virus (ToLCRnV). The DNA-?? molecule, which had 74.5% sequence identity with tomato leaf curl Bangladesh betasatellite (ToLCBDB), is named tomato leaf curl Ranchi betasatellite (ToLCRnB). Phylogenetic analysis revealed that ToLCRnV is related to tomato leaf curl Bangladesh virus (ToLCBDV), tobacco curly shoot virus (TbCSV) and tomato leaf curl Gujarat virus (ToLCGV). An infectivity study with ToLCRnV established the monopartite nature of the viral genome, whereas inoculation with ToLCRnB resulted in increased symptom severity. ToLCRnV could transreplicate DNA-B of tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl New Delhi virus (ToLCNDV), both in N. benthamiana and tomato, although DNA-B accumulation of was less than with the wild-type combinations. ToLCRnB could be efficiently replicated by DNA-A of both ToLCNDV and ToLCGV. A leaf disk assay suggests that DNA-A could transreplicate the homologous DNA-B and DNA-?? more efficiently than the heterologous one.  相似文献   

13.
Park J  Lee H  Kim MK  Kwak HR  Auh CK  Lee KY  Kim S  Choi HS  Lee S 《Virus research》2011,159(2):124-131
New strains of Tobacco leaf curl virus (TbLCV) were isolated from tomato plants in four different local communities of Korea, and hence were designated TbLCV-Kr. Phylogenetic analysis of the sequences of the whole genome and of individual ORFs of these viruses indicated that they are closely related to the Tobacco leaf curl Japan virus (TbLCJV) cluster, which includes Honeysuckle yellow vein virus (HYVV), Honeysuckle yellow vein mosaic virus (HYVMV), and TbLCJV isolates. Four putative recombination events were recognized within these virus sequences, suggesting that the sequence variations observed in these viruses may be attributable to intraspecific and interspecific recombination events involving some TbLCV-Kr isolates, Papaya leaf curl virus (PaLCV), and a local isolate of Tomato yellow leaf curl virus (TYLCV).  相似文献   

14.
Bi H  Zhang P 《Archives of virology》2012,157(3):441-454
Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.  相似文献   

15.
Tomato yellow leaf curl (TYLC) and tomato leaf curl (ToLC) diseases are serious constraints to tomato production in Mali and other countries in West Africa. In 2003 and 2004, samples of tomato showing virus-like symptoms were collected during a survey of tomato virus diseases in Mali. Three predominant symptom phenotypes were observed: (1) TYLC/ToLC (stunted upright growth and upcurled leaves with interveinal yellowing and vein purpling), (2) yellow leaf crumple and (3) broccoli or bonsai (severe stunting and distorted growth). Squash blot (SB) hybridization with a general begomovirus probe and/or SB/PCR analyses revealed begomovirus infection in plants with each of these symptom phenotypes and no evidence of phytoplasma infection. Sequence analysis of PCR-amplified begomovirus fragments revealed two putative new begomovirus species associated with the TYLC/ToLC and yellow leaf crumple symptom phenotypes, respectively. Full-length clones of these begomoviruses were obtained using PCR and overlapping primers. When introduced into N. benthamiana and tomato plants, these clones induced upward leaf curling and crumpling (the TYLC/ToLC-associated begomovirus) or downward leaf curl/yellow mottle (yellow leaf crumple-associated begomovirus) symptoms. Thus, these begomoviruses were named tomato leaf curl Mali virus (ToLCMLV) and tomato yellow leaf crumple virus (ToYLCrV). The genome organization of both viruses was similar to those of other monopartite begomoviruses. ToLCMLV and ToYLCrV were most closely related to each other and to tobacco leaf curl Zimbabwe virus (TbLCZV-[ZW]) and tomato curly stunt virus from South Africa (ToCSV-ZA). Thus, these likely represent tomato-infecting begomoviruses that evolved from indigenous begomoviruses on the African continent. Mixed infections of ToLCMLV and ToYLCrV in N. benthamiana and tomato plants resulted in more severe symptoms than in plants infected with either virus alone, suggesting a synergistic interaction. Agroinoculation experiments indicated that both viruses induced symptomatic infections in tomato and tobacco, whereas neither virus induced disease symptoms in pepper, common bean, small sugar pumpkin, African eggplant, or Arabidopsis. Virus-specific PCR primers were developed for detection of ToLCMLV and ToYLCrV and will be used to further investigate the distribution and host range of these viruses.  相似文献   

16.
Xanthium strumarium is a common weed that often shows symptoms typical of begomovirus infection, such as leaf curling and vein thickening. The virus complex isolated from the weed consisted of two begomoviruses along with a betasatellite and an alphasatellite. The first begomovirus was shown to be an isolate of Cotton leaf curl Burewala virus, a new recombinant begomovirus species that is associated with resistance breaking in previously resistant cotton varieties in Pakistan, whereas the second was shown to be an isolate of Tomato leaf curl Gujarat virus (ToLCGV), a begomovirus previously reported to be bipartite. However, there was no evidence for the presence of the second genomic component, DNA B, of ToLCGV in X. strumarium. The betasatellite was shown to be an isolate of Tomato yellow leaf curl Thailand betasatellite, the first time this satellite has been identified in Pakistan. The alphasatellite associated with infection of X. strumarium was shown to be a species recently identified in potato and various weeds; Potato leaf curl alphasatellite. Although each component has been identified previously, this is the first time they have been identified in a single host. These findings reinforce the hypothesis that weeds are reservoirs of crop-infecting begomoviruses that may contribute to virus diversity by virtue of harboring multiple viruses and virus associated components, which may lead to interspecific recombination and component exchange.  相似文献   

17.
Betasatellites are commonly associated with tomato leaf curl disease caused by begomoviruses in India. This study demonstrates the role of a betasatellite in the pathogenesis of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus affecting tomato in India. For infection, accumulation, systemic movement and disease induction by ToLCNDV, co-infection by the associated betasatellite was not essential, as the DNA A alone of ToLCNDV could infect tomato and Nicotiana benthamiana and induce mild symptoms, but DNA B or Cotton leaf curl Multan betasatellite (CLCuMB) was required for development of typical leaf curl symptoms. The symptoms were most severe in plants infected with all three components, indicating a role of the betasatellite in the pathogenesis of ToLCNDV. The plants infected with ToLCNDV DNA A alone had limited accumulation of viral DNA, which increased by many times in plants co-infected with DNA B or/and betasatellite. However, the plants infected with all three components accumulated 20 times less betasatellite DNA than the plants infected with DNA A and betasatellite. The increase in the amount of viral DNAs was also reflected in the commensurate increase in symptom severity and transmissibility by whitefly, Bemisia tabaci.  相似文献   

18.
Begomovirus isolates ToF3B2 and ToF3B17 and betasatellite isolate SatBToF3 were obtained from the same infected tomato plant showing begomovirus disease symptoms in Fontem, Cameroon. The full-length nucleotide sequences of ToF3B2, ToF3B17 and SatBToF3 were cloned and sequenced and were determined to be 2,797 nt, 2,794 and 1,373 nt long respectively. When compared with other begomovirus and betasatellite sequences, ToF3B2 was 93.5 % identical to Tomato leaf curl Togo virus, ToF3B17 was 95 % identical to Tomato leaf curl Cameroon virus and SatBToF3 was 92 % identical to Ageratum leaf curl Cameroon betasatellite (ALCCMB), respectively. The identification of ALCCMB in Ageratum and now in tomato strongly suggests Ageratum may be an alternative host to these viruses and that ALCCMB is non host specific and may cause severe diseases when transmitted to other crops.  相似文献   

19.
Tomato leaf curl viruses cause major crop loss hindering tomato cultivation worldwide. The ‘Old World’ begomoviruses are often associated with circular ssDNA satellite molecules called betasatellites. In the present study, replication compatibility of five different betasatellites with three distinct Indian tomato-infecting begomoviruses representing each of a monopartite, a mono-bipartite and a bipartite begomoviruses was studied. All the betasatellites could be trans-replicated by the begomoviruses in Nicotiana benthamiana plants, however, not uniformly in tomato. Tomato leaf curl Joydebpur betasatellite—Magrahat could not induce symptom with any of these begomoviruses in tomato, whereas only Tomato leaf curl Gujarat virus could trans-replicate Radish leaf curl betasatellite in this plant species. However, none of the betasatellites were found to complement the movement function of a bipartite begomovirus in tomato. Unlike tomato, the trans-replication/maintenance of betasatellites by these begomoviruses in N. benthamiana could be due to its compromised host defence machinery. Co-infection of betasatellites with these viruses did not enhance the helper virus accumulation, but the incubation period was reduced. The possible factors involved in this host-driven adaptability of betasatellites were also discussed.  相似文献   

20.
The complete nucleotide sequence was determined for a begomovirus isolated from tomato exhibiting leaf curling and yellowing symptoms in Tochigi Prefecture in Japan. The genome organization of this virus was similar to those of other Old World monopartite begomoviruses. Neither a DNA betasatellite nor a DNA-B component was detected. It had the highest total nucleotide sequence identity (99%) with tomato yellow leaf curl virus-Israel[Japan:Tosa:2005] (TYLCV-IL[JR:Tos:05]) and TYLCV-Israel[Japan:Haruno:2005] (TYLCV-IL[JR:Han:05]). Its coat protein V1 also showed an identical amino acid sequence with those of TYLCV-IL[JR:Tos:05] and TYLCV-IL[JR:Han:05]. Thus, the begomovirus was determined to be an isolate of TYLCV-IL designated as TYLCV-Israel[Japan:Tochigi:2007] (TYLCV-IL[JR:Toc:07]). We investigated the interaction of TYLCV-IL[JR:Toc:07] with two known satellites associated with tomato yellow dwarf disease in Japan, tobacco leaf curl Japan betasatellite [Japan:Ibaraki:2006] and honeysuckle yellow vein mosaic betasatellite [Japan:Nara:2006], as well as with tomato leaf curl Philippines betasatellite [Philippines:Laguna1:2008], in tomato and Nicotiana benthamiana plants. TYLCV-IL[JR:Toc:07] trans-replicated these betasatellites, inducing more severe tomato yellow leaf curl disease-related symptoms than TYLCV-IL[JR:Toc:07] alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号