首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desbois C  Villanueva L 《Neuroscience》2001,102(4):885-898
We have used several anatomical tracing techniques to study the organization of the lateral ventromedial thalamic nucleus in the rat, a region that is selectively activated by cutaneous nociceptive inputs from any part of the body. The lateral ventromedial thalamic projections are organized as a widespread dense band covering mainly layer I of the dorsolateral anterior-most aspect of the cortex. This band diminishes progressively as one moves caudally, disappearing completely at 1mm caudal to bregma level. These widespread projections contrast with the circumscribed projections to the deep layers of the primary somatosensory and insular cortices from the adjacent ventral posteromedial and ventroposterior parvicellular thalamic regions, respectively. Injections into the lateral part of the ventromedial thalamic nucleus of an anterograde/retrograde tracer showed that the cortical layer I areas showing the densest projections from this thalamic region also contain the greatest number of retrogradely labeled cells in cortical layers V and VI. The same injections retrogradely labeled numerous cells which were confined to the dorsal subnucleus reticularis dorsalis in an area that contains a concentration of neurons with widespread nociceptive convergence. Finally, the lateral part of the ventromedial thalamic nucleus was also differentially labeled following a topical application of tetramethylrhodamine-labeled dextran on the dorsolateral anterior cortex. These findings suggest that lateral ventromedial thalamic neurons could be part of a spino-reticulo-thalamo-cortical network that allows signals of pain from any part of the body surface to spread across widespread cortical areas.  相似文献   

2.
 We investigated the interrelationship between the supplementary motor area (SMA) thalamocortical projection neurons and the pallidothalamic and cerebellothalamic territories in the monkey (Macaca fuscata) using a combination of three tracers in a triple labeling paradigm. Thalamic labeling was analyzed following injections of the anterograde tracers, biotinylated dextran amine (BDA) into the internal segment of the globus pallidus (GPi) and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the contralateral cerebellar interpositus and dentate nuclei. In addition, the retrograde tracer cholera toxin subunit B (CTB) was injected into the physiologically identified hand/arm representation of SMA. The tissue was processed sequentially using different chromogens in order to visualize all three tracers in a single section. We found that the SMA thalamocortical neurons occupied a wide band extending from the ventral anterior nucleus pars principalis (VApc) through the ventral lateral nucleus pars oralis (VLo) and the ventral lateral nucleus pars medialis (VLm) and into to the ventral lateral nucleus pars caudalis (VLc) including a portion of ventral posterior lateral nucleus pars oralis (VPLo) and nucleus X. The heaviest CTB labeling was found in VLo with dense plexuses of BDA labeled pallidothalamic fibers and swellings often observed superimposed upon retrogradely labeled CTB cells. In addition, dense foci of cerebellothalamic WGA-HRP anterograde label were observed coinciding with the occasional retrogradely CTB labeled neurons in VLc and transitional zones between VApc, VLo and VPLo. Our light microscopic results suggest that the SMA receives thalamic inputs with afferents largely derived from GPi and minor inputs originating from the cerebellum. Accepted: 29 June 1998  相似文献   

3.
We investigated the interrelationship between the supplementary motor area (SMA) thalamocortical projection neurons and the pallidothalamic and cerebellothalamic territories in the monkey (Macaca fuscata) using a combination of three tracers in a triple labeling paradigm. Thalamic labeling was analyzed following injections of the anterograde tracers, biotinylated dextran amine (BDA) into the internal segment of the globus pallidus (GPi) and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the contralateral cerebellar interpositus and dentate nuclei. In addition, the retrograde tracer cholera toxin subunit B (CTB) was injected into the physiologically identified hand/arm representation of SMA. The tissue was processed sequentially using different chromogens in order to visualize all three tracers in a single section. We found that the SMA thalamocortical neurons occupied a wide band extending from the ventral anterior nucleus pars principalis (VApc) through the ventral lateral nucleus pars oralis (VLo) and the ventral lateral nucleus pars medialis (VLm) and into to the ventral lateral nucleus pars caudalis (VLc) including a portion of ventral posterior lateral nucleus pars oralis (VPLo) and nucleus X. The heaviest CTB labeling was found in VLo with dense plexuses of BDA labeled pallidothalamic fibers and swellings often observed superimposed upon retrogradely labeled CTB cells. In addition, dense foci of cerebellothalamic WGA-HRP anterograde label were observed coinciding with the occasional retrogradely CTB labeled neurons in VLc and transitional zones between VApc, VLo and VPLo. Our light microscopic results suggest that the SMA receives thalamic inputs with afferents largely derived from GPi and minor inputs originating from the cerebellum.  相似文献   

4.
The purpose of the present study was to examine whether zinc-positive and zinc-negative hippocampal neurons in rats differed with respect to their projections to the septum. By combining retrograde axonal transport of the fluorescent tracer Fluoro-Gold with histochemical demonstration of zinc selenide complexes in zinc-containing neurons after intraperitoneal injection of sodium selenite, we were able to visualize the distribution of retrogradely Fluoro-Gold labeled neurons and zinc-containing neurons in the same sections. After unilateral injection of Fluoro-Gold into the rat septum a few retrogradely labeled cells were observed in layer IV of the ipsilateral medial entorhinal area, and numerous labeled cells were observed mainly in the superficial layers of the ipsilateral subicular areas and throughout the CA1 and CA3 pyramidal cell layers, as well as in the contralateral CA3 pyramidal cell layer. Zinc-containing neurons were observed in layers IV–VI of the medial entorhinal area, layers II and III of the parasubiculum, layers II, III and V of presubiculum, and in the superficial CA1 and deep CA3 pyramidal cell layers. Cells double-labeled with Fluoro-Gold and zinc selenide complexes were primarily located in distal (relative to the area dentata) parts of the superficial CA1 pyramidal cell layer and distal parts of the deep CA3 pyramidal cell layer and in layers II and III of presubiculum. Only a very few double-labeled cells were seen in the contralateral CA3. The result demonstrates that the hippocampo-septal projection of rats is a mixture of zinc-positive and zinc-negative fibers. Where-as zinc-negative fibers originate from neurons throughout the hippocampal and retrohippocampal areas, zinc-positive fibers originate from distinct subgroups of zinc-containing cells in different areas and layers.  相似文献   

5.
Summary The spatial organization and laminar distribution of projections from the olfactory bulb and the anterior (PPCa) and posterior (PPCp) divisions of the prepiriform cortex to the entorhinal cortex were studied with anterograde (3H-leucine) and retrograde (WGA-HRP) tracing techniques. After 3H-leucine injections into the olfactory bulb transported labeling was seen over the lateral entorhinal area, except its most medial part, and over the rostral part of the medial entorhinal area. The labeling covers exclusively layer Ia. The lateral and medial entorhinal areas are also reached by fibers from the prepiriform cortex. The projection to the medial entorhinal area has not been described previously. Following injections of 3H-leucine into the PPCa transported labeling is present over the entire expanse of the entorhinal cortex and is located over layer Ib with the greatest density in its superficial part. Injections of 3H-leucine into the PPCp give rise to transported labeling over much of the entorhinal cortex. No labeling was found over the most medial parts of the medial subdivision (VMEA) of the lateral entorhinal area and the medial entorhinal area. Labeling occupies layer Ib, especially its middle part, and layers II and III. Both PPCa and PPCp appear to project most heavily to the dorsal (DLEA) and ventral (VLEA) subdivisions of the lateral entorhinal area. From the retrograde experiments it can be inferred that cells of layers II and III of the PPCa project predominantly to the DLEA, whereas those of the PPCp project predominantly to the VLEA. The MEA receives its heaviest projection from layer II of both PPCa and PPCp. In control experiments with 3H-leucine injections into the endopiriform nucleus it was found that this nucleus projects to the entire expanse of the entorhinal cortex. The fibers distribute to all layers with the exception of layer Ia.Abbreviations AI agranular insular cortex - AL lateral nucleus of the amygdala - BL basolateral nucleus of the amygdala - BM basomedial nucleus of the amygdala - C claustrum - CoA cortical nucleus of the amygdala - DLEA dorsal division of the lateral entorhinal cortex - END endopiriform nucleus - H hippocampus - I granular insular cortex - lot lateral olfactory tractus - MCL mitral cell layer of the olfactory bulb - MEA medial entorhinal area - OB olfactory bulb - PPCa anterior part of the prepiriform nucleus - PPCp posterior part of the prepiriform nucleus - VLEA ventral division of the lateral entorhinal cortex - VMEA ventromedial division of the lateral entorhinal cortex - 35 area 35 of the perirhinal cortex - 36 area 36 of the perirhinal cortex  相似文献   

6.
The projections from the perirhinal cortex, entorhinal cortex, parasubiculum, and presubiculum to the thalamus were examined using both anterograde and retrograde tracers. Attention focused on the routes taken by these projections, which were delineated by combining surgical tract section with the placement of a tracer. Projections to the anterior thalamic nuclei almost exclusively used the fornix. These relatively light projections, which arose from all areas of the entorhinal cortex, from the presubiculum, parasubiculum, and area 35 of the perirhinal cortex, terminated mainly in the anterior ventral nucleus. In contrast, the projections to the lateral dorsal nucleus from the entorhinal cortex, presubiculum and parasubiculum were denser than those to the anterior thalamic nuclei. The projections to the lateral dorsal nucleus used two routes. While nearly all of the projections from the subicular complex used the fornix, many of the entorhinal cortex projections passed caudally in the temporopulvinar bundle to reach the lateral dorsal nucleus. The perirhinal cortex, as well as the entorhinal cortex, also projects to nucleus medialis dorsalis. These projections exclusively used the external capsule and thence the inferior thalamic peduncle. Other temporal-thalamic projections included those to the medial pulvinar, via the temporopulvinar bundle, from the perirhinal and entorhinal cortices, and those to the paraventricular nucleus from the entorhinal cortex. By identifying these routes, it is possible to appreciate how different lesions might disconnect temporal–diencephalic pathways and so contribute to memory disorders.  相似文献   

7.
The entorhinal cortex in the Madagascan lesser hedgehog tenrec is thought to be part of the three-layered subrhinal paleocortex (PCx) but cyto- and chemoarchitectural studies have failed so far to identify the area. To reach this goal tracer injections were made into the tenrec's hippocampus. Retrogradely labeled cells were found in dorsal portion of the posterior PCx, the adjacent rhinal cortex (RCx) and the so-called area XCx. The main paleocortical portion in the ventral PCx, however, remained unlabeled with the exception of a caudal region possibly equivalent to the amygdalo-piriform transition area. The labeled neurons showed a bilaminar distribution with the cells in the layer 2A giving rise to fibers to predominantly the dentate area and the cells in the layer 3A mainly projecting to the cornu ammonis and the subiculum. The latter regions, in addition, gave rise to a feedback projection to the layer 3B of especially the caudal RCx and the XCx. The analysis of the terminal projections, however, was hampered by the fact, that under certain conditions retrogradely transported biotinylated dextran was also transported in anterograde direction via collaterals of the entorhino-dentate fibers. The findings are compared with equivalent regions in more differentiated mammals particularly with regard to the perirhinal area showing little if any connections with the dentate gyrus.  相似文献   

8.
The relationship between the visual cortex and the striatum (ST) of the cat is poorly understood. The present experiments were an attempt to determine if regions along the lateral suprasylvian cortex (LS), known to send dense visual projections to the superior colliculus (SC), also project to the striatum and, if so, to determine whether corticostriatal and corticotectal axons arise from the same neurons. Injections of the anterograde tracer, biocytin, into the posterior portion of the lateral suprasylvian cortex resulted in dense label in both ST and SC. In ST, labeled fibers and terminals were found predominantly in the caudal part of the head of the ipsilateral caudate nucleus and the caudal portion of the ipsilateral putamen. These injections also resulted in label in the superficial and deep laminae of SC. After paired injections of retrogradely transported fluorescent dyes (dextran tetramethylrhodamine and dextran fluorescein) into ST and SC, numerous labeled LS neurons were observed in layer V and modest numbers in layer III: the corticostriatal neurons were found in layers III and V whereas corticotectal neurons were seen only in layer V. Although labeled neurons from each injection were intermingled in layer V, very few of them were double-labeled. These data suggest that while ST and SC receive substantial visual inputs from the same cortical area, the nature of the information they receive may be quite different.  相似文献   

9.
The sources and distribution of subcortical afferents to the anterior neocortex were investigated in the rat using the horseradish peroxidase technique. Injections into the prefrontal cortex labelled, in addition to the mediodorsal thalamic nucleus, neurons in a total of fifteen subcortical nuclei, distributed in the basal telencephalon, claustrum, amygdala, thalamus, subthalamus, hypothalamus, mesencephalon and pons. Of these, the projections from the zona incerta, the lateroposterior thalamic nucleus, and the parabrachial region of the caudal mesencephalon to the prefrontal cortex have not previously been described.Different parts of the mediodorsal thalamic nucleus project to different areas of the frontal cortex. Thus, horseradish peroxidase injections in the most ventral pregenual part of the medial cortex labelled predominantly neurons in the medial anterior and dorsomedial posterior parts of the mediodorsal nucleus; injections into the more dorsal pregenual area labelled only neurons in the lateral and ventral parts of the nucleus; injections placed supragenually labelled neurons in the dorsolateral posterior part of the nucleus; and injections into the dorsal bank of the anterior rhinal sulcus labelled neurons in the centromedial part of the nucleus.Several other subcortical nuclei had projections overlapping with that of the mediodorsal thalamic nucleus. Five different types of such overlap were distinguished: (1) cell groups labelled after horseradish peroxidase injections into one of the subfields of the projection area of the mediodorsal nucleus (defined as the prefrontal cortex), but not outside this area (parataenial nucleus of the thalamus); (2) cell groups labelled both after injection into a subfield of the projection area of the mediodorsal nucleus and after injections in a restricted area outside this area (anteromedial, ventral and laterposterior thalamic nuclei); (3) cell groups labelled after injections into all subfields of the mediodorsal nucleus projection area, but not outside this area (ventral tegmental area, basolateral nucleus of amygdala); (4) cell groups labelled after injections into any area of the anterior neocortex, including the mediodorsal nucleus projection area (parabrachial neurons of the posterior mesencephalon); (5) cell groups labelled after all neocortical injections investigated (claustrum, magnocellular nuclei of the basal forebrain, lateral hypothalamus, zona incerta, intralaminar thalamic nuclei, nuclei raphe dorsalis and centralis superior, and locus coeruleus).We can draw the following conclusions from these and related findings. First, because of the apparent overlap of projections of the mediodorsal, the anteromedial and ventral thalamic nuclei in the rat, parts of the prefrontal cortex can also be called ‘cingulate’ and ‘premotor’. Second, on the basis of projections from parts of the mediodorsal nucleus, the prefrontal cortex of the rat can be subdivided into areas corresponding to those in other species. Third, the neocortex receives afferents from a large number of subcortical cell groups outside the thalamus, distributed from the telencephalon to the pons; however, the prefrontal cortex seems to be the only neocortical area innervated by the ventral tegmental area and amygdala. Finally, neither the prefrontal cortex nor the mediodorsal thalamic nucleus receives afferents from regions directly involved in sensory and motor functions.  相似文献   

10.
A disynaptic projection from the spinal cord to the striatum was observed in the rat light and electron microscopically. An anterograde tracer, wheat germ agglutinin conjugated to horseradish peroxidase was injected into the ventral gray matter of the upper cervical spinal cord, and a retrograde tracer, biotinylated dextran amine was injected into the striatum of a rat. Then the parafascicular nucleus was examined. Some anterogradely labeled axon terminals originating in the spinal cord were observed to synapse with retrogradely labeled dendrites of parafascicular nucleus neurons which sent axons to the striatum. We concluded that information from the spinal cord was transmitted to the striatum, being relayed by parafascicular nucleus neurons.  相似文献   

11.
陶发胜  高蓉  李云庆 《解剖学报》2000,31(2):108-112,I002
目的 观察臂旁核(PBN)内向丘脑腹后内侧核(VPM)投射神经元和三叉神经脊束核尾侧亚核(Vc向旁核投射纤维和终末的分布,以及两者之间的突触联系。方法 HRP逆行追踪与生物素警聚糖胺(BDA)顺行追踪相结合的双标技术,标记结果分别在光镜或电镜下观察。结果 将HRP注入VPM后,在光镜下可见HRP逆标神经元主要位于同侧的臂旁外侧核,Kolliker-Fuss(KF)核和臂旁内侧核。将BDA注入Vc后  相似文献   

12.
The present studies used anatomical tract-tracing techniques to delineate the organization of pathways linking the medial preoptic area and the ventral medulla, two key regions involved in neuroendocrine, autonomic and sensory regulation. Wheatgerm agglutinin-horseradish peroxidase injections into the ventromedial medulla retrogradely labeled a large number of neurons in the medial preoptic area, including both the median and medial preoptic nuclei. The termination pattern of preoptic projections to the medulla was mapped using the anterograde tracers Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine. Tracer injections into the preoptic area produced a dense plexus of labeled fibers and terminals in the ventromedial and ventrolateral pons and medulla. Within the caudal pons/rostral medulla, medial preoptic projections terminated heavily in the nucleus raphe magnus; strong anterograde labeling was also present in the pontine reticular field. At mid-medullary levels, labeled fibers focally targeted the nucleus paragigantocellularis, in addition to the heavy fiber labeling present in the midline raphe nuclei. By contrast, very little labeling was observed in the caudal third of the medulla. Experiments were also conducted to map the distribution of ventral pontine and medullary neurons that project to the medial preoptic area. Wheatgerm agglutinin-horseradish peroxidase injections in the preoptic area retrogradely labeled a significant population of neurons in the ventromedial and ventrolateral medulla. Ascending projections from the medulla to the preoptic area were organized along rostral-caudal, medial-lateral gradients. In the caudal pons/rostral medulla, retrogradely labeled cells were aggregated along the midline raphe nuclei; no retrograde labeling was present laterally at this level. By contrast, in the caudal half of the medulla, cells retrogradely labeled from the medial preoptic area were concentrated as a discrete zone dorsal to the lateral reticular nucleus; labeled cells were not present in the ventromedial medulla at this level. The present findings suggest that the medial preoptic area and ventral midline raphe nuclei share reciprocal connections that are organized in a highly symmetrical fashion. By contrast, preoptic-lateral medullary pathways are not reciprocal. These preoptic-brainstem circuits may participate in antinociceptive, autonomic and reproductive behaviors.  相似文献   

13.
Projections from the thalamic gustatory nucleus, i.e. the parvicellular part of the posteromedial ventral thalamic nucleus (VPMpc) to the forebrain regions were studied in the rat by the tract-tracing methods with anterograde tracer (biotinylated dextran amine, BDA) and anterograde/retrograde tracer (wheat-germ agglutinin-horseradish peroxidase, WGA-HRP). After BDA injection into the VPMpc, terminal labeling was observed in the insular cortex, amygdaloid complex, and fundus striati. The terminal labeling in the amygdaloid complex was distributed in dorsolateral area of the rostral part of the lateral amygdaloid nucleus and the rostral part of the lateral subdivision of the central amygdaloid nucleus. The terminal labeling in the central amygdaloid nucleus extended to the fundus striati. The retrograde tracing study with WGA-HRP revealed that the projection fibers from the VPMpc to the amygdaloid complex originated from the medial part of the VPMpc and also from the thalamic area medial to the VPMpc. In the rats injected with Fluoro-Gold and WGA-HRP, respectively into the insular cortex and amygdaloid complex, no double-labeled neuronal cell bodies were found in the VPMpc, although neurons labeled singly with Fluoro-Gold were intermingled with those singly labeled with WGA-HRP in the medial part of the VPMpc. The results indicated that VPMpc neurons projecting to the amygdaloid complex constituted a population different from VPMpc neurons projecting to the insular cortex.  相似文献   

14.
Iontophoretic injections of the fluorescent retrograde tract tracer, Fluoro-gold, into the entopeduncular nucleus of the rat (homologous to the internal segment of the primate globus pallidus) resulted in a substantial number of retrogradely labeled neurons in the ipsilateral globus pallidus (homologous to the external segment of the primate globus pallidus). In experiments confirming this projection, iontophoretic injections of the anterograde tract tracer, Phaseolus vulgaris-leucoagglutinin, in the globus pallidus resulted in dense fiber and terminal labeling in the ipsilateral entopeduncular nucleus. This projection is topographically organized in rostral-caudal, medial-lateral and dorsal-ventral orientations.  相似文献   

15.
Doxorubicin, a fluorescent cytotoxic antibiotic, was found to be both a retrograde neuron pathway tracer and neurotoxin to cells retrogradely labeled with it. Doxorubicin was injected into rat caudate-putamen and within 4 h the nuclei in the ipsilateral substantia nigra zona compacta (SNc) and ventral tegmental area (VTA) were stained with red fluorescent doxorubicin. After 2 weeks, portions, but not all of the ipsilateral SNc and VTA were depleted of neurons. Retrograde neurotoxicity was obvious following injections of 20%, 10%, 6%, 5% or 4% doxorubicin but not after 1% or 2%. Five months following doxorubicin treatment, the ipsilateral SNc and VTA were shrunken, distorted and nearly absent; the injected caudate was shrunken and replaced by ventricle. The ipsilateral thalamic parafasicular center median nucleus, a complex nucleus also known to project to the caudate, was depleted of large neurons 2 weeks following caudate injection. Doxorubicin can be transported over relatively long distances; lumbar spinal cord injections labeled cortical pyramidal neurons 3 days later. Doxorubicin's unique pathway-specific neurotoxicity may be useful in future neuroscientific studies.  相似文献   

16.
Physiological evidence indicates that vestibular signals modulate the activity of motoneurons innervating the masseter muscle. Recently, experiments using transynaptic retrograde transport of pseudorabies virus provided anatomical evidence that many neurons concentrated in the dorsomedial part of the parvicellular division of the medial vestibular nucleus (MVePC) and the caudal prepositus hypoglossi (PH) provide inputs to motoneurons innervating the lower third of the superficial layer of the masseter muscle. However, it was not clear whether this vestibulo-trigeminal projection was monosynaptic or polysynaptic. The present study sought to determine whether neurons in the MVePC or PH project directly to motoneurons controlling the masseter muscle in rats. For this purpose, an anterograde tracer (biotinylated dextran amine, BDA) was injected into vestibular nuclei (mainly MVePC) or PH and a retrograde tracer (the β-subunit of cholera toxin, b-CT) was injected into the masseter muscle ipsilateral or contralateral to the BDA injection site. Following injections of BDA into the vestibular nuclei or PH, anterogradely labeled axon terminals were observed bilaterally in the motor trigeminal nucleus (Mo5), particularly in the ventral, medial, and lateral portions of the nucleus; projections to dorsal Mo5 were sparse. In addition, retrogradely labeled motoneurons were located in the ventral and lateral portions of the ipsilateral Mo5. Moreover, anterogradely labeled terminals were observed to be in close proximity to motoneurons in the Mo5 that were retrogradely labeled from b-CT injections into the masseter muscle. This study provides direct evidence that a monosynaptic pathway exists between the MVePC and PH and masseter motoneurons.  相似文献   

17.
We have studied GABAergic projections from the thalamic reticular nucleus to the anterior thalamic nuclei of the rat by combining retrograde labelling with horseradish peroxidase and GABA-immunohistochentistry. Small iontophoretic injections of the tracer into subnuclei of the anterior thalamic nuclear complex resulted in retrograde labelling of cells in the rostrodorsal pole of the ipsilateral thalamic reticular nucleus. All of these cells were also GABA-positive. The projections were topographically organized. Neurons located in the most dorsal part of the rostral reticular nucleus projected to the dorsal half of both the posterior subdivision and the medial subdivision of the anteroventral thalamic nucleus, and to the rostral portion of the anterodorsal thalamic nucleus. Immediately ventral to this group of neurons, but still within the dorsal portion of the reticular nucleus, a second group of neurons, extending from the dorsolateral to the dorsomedial edge of the nucleus, projected to the ventral parts of the posterior and medial subdivisions of the anteroventral nucleus. Following injection of tracer into the dorsal part of the rostral anteroventral nucleus, retrograde labelled GABA-containing cell bodies were also found in the ipsilateral anterodorsal nucleus.  相似文献   

18.
Topographical arrangements of thalamostriatal projection neurons was examined in the rat by the retrograde tract-tracing method. After injecting Fluoro-Gold (FG) and/or cholera toxin beta-subunit (CTB) in different regions of the caudate-putamen (CPu), distribution of retrogradely labeled neurons was observed in the thalamus. The main findings were as follows: (1) Retrogradely labeled neurons were seen in the midline-intralaminar thalamic nuclei in all rats examined in the present study.Neurons in the ventral lateral and posterior thalamic nuclear groups were also labeled in the rats which were injected with the tracer into the dorsal part of Cpu, but not in the rats which were injected with the tracer into the nucleus accumbens (Acb) and its adjavent regions in the ventromedial part of the Cpu. (2) Topographical organization was observed in the projections from the midline-intralaminar thalamic nuclei to the CPu. After the tracer injection into the dorsal part of the CPu or the ventral part of the CPu (including the Acb), labeled neurons in the midline-intralaminar thalamic nuclei were distributed predominantly in the lateral part of the intralaminar nuclei or the midline nuclei, respectively. On the other hand, after the tracer injection into the medial or the lateral part of the CPu, labeled neurons in the midline-intralaminar nuclei were distributed mainly in the dorsal or the ventral part of these nuclei, respectively. (3) Topographical organization was also observed in the thalamostriatal projections from the ventral and Pos. After the tracer injection into the rostral part of the CPu, labeled neurons were distributed mainly in the rostral part of the ventral nuclear group. On the other hand, after the tracer injection into the caudal part of the CPu, labeled neurons were distributed mainly in the caudal part of the ventral nuclear group, as well as in the posterior nuclear group.  相似文献   

19.
Termination and cells of origin of the ascending intranuclear fibers in the spinal trigeminal nucleus were studied with the anterograde and retrograde horseradish peroxidase (HRP) techniques in the cat.HRP injections into the nucleus caudalis labeled many axons ascending ipsilaterally within the trigeminal spinal nucleus. These fibers gave off collaterals to the nucleus interpolaris and oralis, and the ventral part of the principal sensory nucleus. HRP injections into the principal sensory nucleus labeled ipsilaterally many small neurons in the caudal portion of the nucleus interpolaris and in laminae III and IV of the nucleus caudalis. A few neurons were labeled in laminae I and V.  相似文献   

20.
Cobos A  Lima D  Almeida A  Tavares I 《Neuroscience》2003,120(2):485-498
The ventrolateral medulla (VLM) modulates autonomic functions, motor reactions and pain responses. The lateralmost part of the caudal VLM (VLMlat) was recently shown to be the VLM area responsible for pain modulation. In the present study, the brain sources of VLMlat afferent fibers were determined by tract-tracing techniques. Following injection of cholera toxin subunit B into the VLMlat, retrogradely labeled neurons in the forebrain occurred at the somatosensory, insular, motor, limbic and infralimbic cortices, and at the central amygdaloid nucleus. Retrogradely labeled neurons in diencephalic regions were observed in the lateral hypothalamus, posterior hypothalamus and paraventricular nucleus. In the brainstem, retrograde labeling occurred at the periaqueductal gray, red nucleus, parabrachial area, nucleus raphe magnus, nucleus tractus solitarii, lateral reticular nucleus and dorsal and ventral medullary reticular formation. In the cerebellum, retrogradely labeled neurons occurred at the lateral nucleus. Following injections of the anterograde tracer biotinylated dextran amine (BDA) into the lateral hypothalamus or paraventricular nucleus, anterogradely labeled fibers were mainly observed in the VLMlat. Injections of BDA into the periaqueductal gray, red nucleus or lateral nucleus of the cerebellum resulted in anterograde labeling in the VLMlat and lateral reticular nucleus.The present study gives an account of the brain regions putatively involved in triggering the modulatory actions elicited from the VLMlat. These include areas committed to somatosensory processing, autonomic control, somatic and visceral motor activity and affective reactions. The findings suggest that the VLMlat may play a major homeostatic role in the integration of nociception with other brain functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号