首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP(3))-activated Ca(2+) stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP(3)-independent transduction pathway.  相似文献   

2.
Activation of group I metabotropic glutamate receptors (mGluRs) leads to a concerted modulation of spike afterpotentials in guinea pig hippocampal neurons including a suppression of both medium and slow afterhyperpolarizations (AHPs). Suppression of AHPs may be long-lasting, in that it persists after washout of the agonist. Here, we show that persistent AHP suppression differs from short-term, transient suppression in that distinct and additional signaling processes are required to render the suppression persistent. Persistent AHP suppression followed DHPG application for 30 min, but not DHPG application for 5 min. Persistent AHP suppression was temperature dependent, occurring at 30–31°C, but not at 25–26°C. Preincubation of slices in inhibitors of protein synthesis (cycloheximide or anisomycin) prevented the persistent suppression of AHPs by DHPG. Similarly, preincubation of slices in an inhibitor of p38 MAP kinase (SB 203580) prevented persistent AHP suppression. In contrast, a blocker of p42/44 MAP kinase activation (PD 98059) had no effect on persistent AHP suppression. Additionally, we show that the mGluR5 antagonist MPEP, but not the mGluR1 antagonist LY 367385, prevented DHPG-induced persistent AHP suppression. Thus persistent AHP suppression by DHPG in hippocampal neurons requires activation of mGluR5. In addition, activation of p38 MAP kinase signaling and protein synthesis are required to impart persistence to the DHPG-activated AHP suppression.  相似文献   

3.
4.
Previous studies have demonstrated that human astrocytes express mRNA and receptor protein for group I and II metabotropic glutamate receptors (mGluRs). Whether these receptors can influence the inflammatory and immune response and can modulate the capacity of astrocytes to produce inflammatory cytokines is still unclear. Inflammatory cytokines can be produced by activated glial cells and play a critical role in several neurological disorders. Astrocyte-enriched human cell cultures growing in a serum-free chemically defined medium were used to study the regulation of IL (interleukin)-1β and IL-6 in response to mGluR activation. Astrocytes cultured in the absence or in the presence of epidermal growth factor (EGF), did not secrete significant IL-1β and IL-6, as determined by specific enzyme-linked immunosorbent assay (ELISA). Activation of mGluRs using (S)-3,5-dihydroxyphenylglycine (DHPG; selective group I agonist) or DCG-IV (selective group II agonist) did not affect the production of interleukins under both growth conditions. On exposure to IL-1β high levels of IL-6 were detected. Activation of mGluR3 with DCG-IV (but not of mGluR5 with DHPG) enhanced, in the presence of IL-1β, the release of IL-6 in a dose dependent manner in astrocytes cultured under conditions (+EGF) in which the mGluR expression is known to be upregulated. The effect of mGluR3 activation on IL-1β stimulated release of IL-6 was prevented by selective group II mGluR antagonists. The capacity of mGluR3 to modulate the release of IL-6 in the presence of IL-1β supports the possible involvement of this receptor subtype in the regulation of the inflammatory and immune response under pathological conditions associated with glial cell activation.  相似文献   

5.
6.
Anneser JM  Chahli C  Borasio GD 《Neuroscience》2006,141(4):1879-1886
Conflicting results have been reported concerning the toxicity of cerebrospinal fluid from patients with amyotrophic lateral sclerosis (ALS-CSF) when added to neuronal cultures. The possible toxic factor(s) and the exact mode of action (e.g. requirement of glial cells) have not been identified so far. Glutamate is a potential candidate for this toxic effect, since antagonists of ionotropic glutamate receptors have been shown to attenuate ALS-CSF toxicity. We studied the effects of ALS-CSF on mixed and motoneuron-enriched chick embryonic spinal cord cultures. We found a toxic action of ALS-CSF in both culture types which could not be attenuated by 5 kDa-filtration or 15 min 90 degrees C heating. Nevertheless, the metabotropic glutamate receptor (mGluR) group I antagonist 1-aminoindan-1,5-dicarboxylic acid, but also the group I agonist (s)-3,5-dihydroxyphenylglycine (DHPG) exerted protective effects against ALS-CSF toxicity. In this experimental setting, DHPG may functionally act via a receptor blockade due to sustained activation. No protective effect was seen with the mGluR group III inhibitor (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG). Addition of DHPG did not increase the protective action of the AMPA inhibitor 6-chloro-4-hydroxyquinoline-2-carboxylic acid (6-CKU). Addition of l-glutamate did not mimic these toxic ALS-CSF effects in motoneuron-enriched cultures. Our experiments demonstrate that ALS-CSF toxicity is mediated by a small heat-resistant molecule which may act directly on neurons. Since blockade of group I mGluRs exerts a protective effect, the possibility of targeting these mGluRs pharmacologically in motoneuron disease should be kept in mind.  相似文献   

7.
Metabotropic glutamate receptors (mGluRs) modulate neuronal function via different transduction mechanisms that are either dependent or independent on G-protein function. Here we investigated, using whole cell patch-clamp recordings in combination with fluorimetric measurements of intracellular calcium concentration ([Ca(2+)](i)), the metabolic pathways involved in the responses induced by group I mGluRs in dopamine neurons of the rat midbrain. The inward current and the [Ca(2+)](i) increase caused by the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG, 100 microM) were permanently activated and subsequently abolished in cells loaded with the nonhydrolizable GTP-analogue GTP-gamma-S (600 microM). In addition, when GDP-beta-S (600 microM) was dialyzed into the cells to produce the blockade of the G proteins, the DHPG-dependent responses were reduced. When the tissue was bathed with the phospholipase C inhibitor 1-[6[[(17 beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]exyl]-1H-pyrrole-2,5-dione (10 microM), the DHPG-induced calcium transients slightly diminished but the associated inward currents were not affected. Interestingly, a substantial depression of the DHPG-induced inward current and transient increase of [Ca(2+)](i) was caused by the protein tyrosine kinase inhibitors tyrphostin B52 (40 microM) and 4',5,7-trihydroxyisoflavone (genistein; 40 microM), whereas genistein's inactive analogue 4',5,7-trihydroxyisoflavone-7-glucoside (40 microM) was ineffective. The blockade of the Src family of tyrosine kinase by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (20 microM), mitogen-activated protein kinase by 2'-amino-3' methoxyflavone (50 microM), and protein kinase C by staurosporine (1 microM) had no effect on the cellular responses caused by DHPG. The mGluR5-selective antagonist 2-methyl-6-(phenylethynyl)-pyridine (10--100 microM) did not affect the actions of DHPG. Thus our results indicate that the responses, mainly mediated by mGluRs1 in dopamine neurons, are activated by intracellular mechanisms coupled to G proteins and regulated by tyrosine kinases.  相似文献   

8.
Purpose/aim: Glutamate is one of the signaling molecules responsible for transmission in the central nervous system. Periodontal ligament (PDL) cells were recently reported to express metabotropic glutamate receptors (mGluRs). However, the functions of mGluR signaling in PDL cells or PDL-related cells remain largely unknown. The aim of this study was to investigate the expression and function of mGluRs in PDL-related cells. Materials and methods: OCCM-30 cells, immortalized murine cementoblasts, were stimulated with l-glutamate or mGluRs antagonists. The cells’ proliferative response was evaluated using a colorimetric assay and gene expression was assessed using real-time polymerase chain reaction. The nuclear translocation of cyclin D1 was evaluated by immunohistochemistry. Results: l-Glutamate promoted the proliferation of OCCM-30 cells, which expressed mGluR1, but not mGluR5. Dihydroxyphenylglycine (DHPG), an agonist of group I mGluRs (mGluR1 and mGluR5), also promoted cell proliferation, and this was inhibited by LY456236, an mGluR1 antagonist. DHPG increased the expression of cyclin D1, a key regulator of cell proliferation, and its nuclear translocation. DHPG also increased the expression of Bcl2A1, an antiapoptotic oncogene and simultaneously reduced the expression of Bax, a pro-apoptotic marker. Furthermore, the DHPG-induced proliferation of OCCM-30 cells was reduced by pretreatment with SB203580, SP600125, and PD98059, inhibitors of p38, JNK, and ERK1/2, respectively. Conclusions: These findings indicate that activation of mGluR1 expressed by OCCM-30 cells induces cell proliferation in a manner that is dependent on mitogen-activated protein kinase pathways and that cyclin D1 and Bcl2A1/Bax may be involved. Our results provide useful information for elucidating the mechanisms underlying cementum homeostasis and regeneration.  相似文献   

9.
10.
Park YK  Galik J  Ryu PD  Randic M 《Neuroscience letters》2004,361(1-3):220-224
The activation of group I metabotropic glutamate receptors (mGluRs) produces a long-term potentiation of sensory transmission in the substantia gelatinosa (SG) region of the spinal cord (Prog. Brain Res. 129 (2000) 115). The mechanism(s) responsible for the induction of this potentiation is not known. Using rat spinal cord slice preparation and patch-clamp recordings, here we show, that the activation of the group I mGluRs by (S)-3,5-dihydroxyphenylglycine (DHPG, 1 microM), the mGluR1/5 agonist, increased the frequency of both activity-dependent spontaneous EPSCs, and activity-independent miniature EPSCs (mEPSCs). However, DHPG did not affect amplitude of mEPSCs. The effects of DHPG were not seen in the presence of the preferential mGluR1 antagonist CPCCOEt (10 microM). On the other hand, 2-methyl-6-(phenylethynyl)-pyridine (10 microM), a selective mGluR5 antagonist, blocked the DHPG facilitation present during the wash-out of the drug. This novel facilitating effect of the group I mGluR activation on glutamate release is the first report of a direct facilitatory action of both mGluR1 and mGluR5 subtypes on sensory transmission in the spinal cord SG region. These results indicate the potential contribution of synaptic activation of these facilitatory autoreceptors in plasticity of primary afferent neurotransmission.  相似文献   

11.
目的:研究代谢型谷氨酸受体(mGluRs)激动剂引起大鼠向对侧旋转时介导的受体亚型。方法:大鼠纹状体内微量注射mGluRs激动剂或拮抗剂,观察大鼠的意识、行为变化,并于给药后6h测定旋转活动。结果:mGluRs非亚型特异的激动剂tACPD(500、1000nmol)纹状体内注射引起大鼠向对侧旋转,mGluRs的非竞争性拮抗剂L-AP3、竞争性拮抗剂MCPG及抑制细胞内钙释放的胆罗啉均可减轻tACPD引起的旋转。I组mGluRs的特异性激动剂DHPG(500nmol)纹状体内注射也引起大鼠向对侧旋转,MCPG及mGluR1的拮抗剂LY367385及mGluR5的拮抗剂MPEP均可拮抗DHPG引起的旋转。预先腹腔注射利血平(5mg/kg)可阻断DHPG的作用。结论:I组mGluRs激动引起大鼠向对侧旋转,此作用可能与细胞内钙释放有关及依赖于多巴胺的存在。  相似文献   

12.
Wang Q  Chang L  Rowan MJ  Anwyl R 《Neuroscience》2007,144(1):110-118
The mechanisms of mGluR-LTD were studied in the dentate gyrus in vitro. The most effective protocol for inducing mGluR-LTD in 6-8 week animals was brief high frequency stimulation (HFS) applied in the presence of the NMDAR antagonist AP5. Evidence for HFS inducing LTD via activation of perisynaptically located mGluRs was established, as an inhibitor of glutamate transporter potentiated HFS-LTD. HFS-LTD was mainly mediated by activation of mGluR5, although a partial involvement of mGluR1 was found. (RS)-3,5-Dihydroxyphenylglycine (DHPG) also induced LTD, but in an age dependent manner, being large in 2 week animals but absent in 6-8 week animals. DHPG-LTD in the dentate gyrus also had a much slower rise time than that in CA1, and unlike CA1, the expression/maintenance of mGluR-LTD was not inhibited by mGluR antagonists. The use of pharmacological inhibitors showed that the induction of HFS-LTD was partially dependent upon activation of L-type Ca channels, release of Ca from ryanodine receptor-sensitive intracellular Ca stores, and the kinases p38 mitogen-activated protein kinase (MAPK), protein kinase C (PKC), but not c-Jun N-terminal kinase or COX-2. Evidence for the involvement of tumor necrosis factor-receptor 1 (TNF-R1) in the induction of mGluR-LTD was presented in the present study, with both HFS-mGluR-LTD and DHPG-LTD being absent in mutant mice null for TNF-R1.  相似文献   

13.
The metabotropic glutamate receptors (mGluRs) have been implicated in cognition, memory, and some neurodegenerative disorders, including the Alzheimer's disease (AD). To understand how the dysfunction of mGluRs contributes to the pathophysiology of AD, we examined the beta-amyloid peptide (Abeta)-induced alterations in the physiological functions of mGluRs in prefrontal cortical pyramidal neurons. Two potential targets of mGluR signaling involved in cognition, the GABAergic system and the N-methyl-d-aspartate (NMDA) receptor, were examined. Activation of group I mGluRs with (S)-3,5-dihydroxyphenylglycine (DHPG) significantly increased the spontaneous inhibitory postsynaptic current (sIPSC) amplitude, and this effect was protein kinase C (PKC) sensitive. Treatment with Abeta abolished the DHPG-induced enhancement of sIPSC amplitude. On the other hand, activation of group II mGluRs with (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) significantly increased the NMDA receptor (NMDAR)-mediated currents via a PKC-dependent mechanism, and Abeta treatment also diminished the APDC-induced potentiation of NMDAR currents. In Abeta-treated slices, both DHPG and APDC failed to activate PKC. These results indicate that the mGluR regulation of GABA transmission and NMDAR currents is impaired by Abeta treatment probably due to the Abeta-mediated interference of mGluR activation of PKC. This study provides a framework within which the role of mGluRs in normal cognitive functions and AD can be better understood.  相似文献   

14.
The nucleus tractus solitarius (NTS) is essential for coordinating baroreflex control of blood pressure. The baroreceptor sensory fibers make glutamatergic synapses onto second-order NTS neurons. Glutamate spillover activates Group II and III presynaptic metabotropic glutamate receptors (mGluRs) on the baroreceptor central terminals to inhibit synaptic transmission, but the role of postsynaptic mGluRs is less understood. We used whole cell patch-clamping in anatomically identified second-order baroreceptor neurons in a brain stem slice to test whether Group I, II, and III mGluRs had postsynaptic effects at this first central synapse in the baroreceptor afferent pathway. The Group I agonist DHPG induced a depolarization and spiking that was mimicked by endogenous glutamate. Group I mGluR blockade prevented the depolarization and slightly hyperpolarized the neurons, suggesting a small tonic Group I mGluR activation. The DHPG-induced inward current consisted of voltage-dependent and -independent components; the former was blocked by TEA and the latter was blocked by replacing extracellular NaCl with LiCl or Tris-HCl. The DHPG current was potentiated in a Ca2+-free external solution and was diminished by intracellular dialysis with BAPTA and by perfusion with Na+-Ca2+ exchanger blockers, KB-R7943 or 3',4'-dichlorobenzamil. Intracellular dialysis with GDPbetaS or heparin and perfusion with the PLC inhibitor U-73122 or the Ca2+-calmodulin inhibitor W-7 significantly decreased the DHPG current. The data suggest that Group I mGluRs on baroreceptor neurons are functional; are activated by endogenous glutamate; and activate a Na+-Ca2+ exchanger through G-protein, PLC, IP3, and Ca2+-calmodulin mechanisms to excite the cell, thus providing postsynaptic mechanisms to enhance or prolong baroreceptor signal transmission.  相似文献   

15.
Group 1 metabotropic glutamate receptors (mGluRs) are expressed in peripheral and central neural tissues and involved in peripheral and central sensitization in various pain models. However, there are limited reports that activation of peripheral group I mGluRs could evoke pain. Furthermore, any behavioral evidences could not be found out, showing what kind of afferent fibers are involved in peripheral mGluRs-mediated hyperalgesia. This study was undertaken to clarify whether peripherally injected group I mGluRs agonists could induce pain-related behaviors and capsaicin-sensitive afferent fibers might be involved in the hyperalgesia. To assess pain sensitivity, mechanical threshold for paw withdrawal response (PWT) was measured and number of spontaneous flinching behavior was counted. Intraplantar injection of group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG) and mGluR5 agonist, (RS)-2-chloro-5-hydroxyphenyglycine (CHPG) immediately induced pain-like behaviors, such as decrease of PWT and increased number of flinchings. These agonists-induced pain-like behaviors were blocked by group I mGluRs antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) and mGluR5 antagonist, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Perineural pretreatment of 1% capsaicin solution significantly reduced pain-related behaviors induced by DHPG and CHPG, proposing that capsaicin-sensitive primary afferent fibers could be responsible for the hyperalgesia induced by activation of peripheral group I mGluRs. This study presents the first behavioral evidence that peripheral group I mGluRs activation could induce spontaneous as well as mechanical hyperalgesia and capsaicin-sensitive afferent fiber could be implicated the group I mGluR mediated hyperalgesia.  相似文献   

16.
The modulation of neuronal excitability by group I metabotropic glutamate receptors (mGluRs) was studied in isolated lamprey spinal cord. At resting potential, application of the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) slightly depolarized the cells. However, at depolarized membrane potentials, this agonist induced repetitive firing. When Na+ channels were blocked by TTX, DHPG induced a slight depolarization at rest that increased in amplitude as the neurons were held at more depolarized membrane potentials. In voltage-clamp conditions, DHPG application induced an inward current associated with a decrease in membrane conductance when cells were held at -40 mV. At resting membrane potential, no significant change in the current was induced by DHPG, although a decrease in membrane conductance was seen. The conductance blocked by DHPG corresponded to a leak current, since DHPG had no effect on the voltage-gated current elicited by a voltage step from -60 to -40 mV, when leak currents were subtracted. The leak current blocked by DHPG is mediated by fluxes of both K+ and Na+. The subtype of group I mGluR mediating the block of the leak current was characterized using specific antagonists for mGluR1 and mGluR5. The inhibition of the leak current was blocked by the mGluR1 antagonist LY 367385 but not by the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The DHPG-induced blockage of the leak current required phospholipase C (PLC)-activation and release of Ca2+ from internal stores as the effect of DHPG was suppressed by the PLC-blocker U-73122 and after depletion of intracellular Ca2+ pools by thapsigargin. Our results thus show that mGluR1 activation depolarizes spinal neurons by inhibiting a leak current. This will boost membrane depolarization and result in an increase in the excitability of spinal cord neurons, which could contribute to the modulation of the activity of the spinal locomotor network.  相似文献   

17.
Transient activation of group I metabotropic glutamate receptors (mGluRs) with the selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) produces persistent prolongation of epileptiform bursts in guinea pig hippocampal slices, the maintenance of which can be reversibly suppressed with group I mGluR antagonists. To determine the relative roles of mGluR1 and mGluR5 in these group I mGluR-dependent induction and maintenance processes, subtype-selective antagonists were utilized. In the presence of picrotoxin, DHPG (50 microM, 20-45 min) converted interictal bursts into 1- to 3-s discharges that persisted for hours following washout of the mGluR agonist. 2-methyl-6-(phenylethynyl)-pyridine (MPEP, an mGluR5 antagonist; 25 microM) and (+)-2-methyl-4-carboxyphenylglycine (LY367385, an mGluR1 antagonist; 20-25 microM) each significantly suppressed the ongoing expression of the mGluR-induced prolonged bursts. However, LY367385 was more effective, reducing the burst prolongation by nearly 90%; MPEP only produced a 64% reduction in burst prolongation. Nevertheless, MPEP was more effective at preventing the induction of the burst prolongation; all 10 slices tested failed to express prolonged bursts both during and after co-application of DHPG with MPEP. Co-application of DHPG with LY367385, in contrast, resulted in significant burst prolongation (in 68% of slices tested) that was revealed on washout of the two agents. These results suggest that while both receptor subtypes participate in both the induction and maintenance of mGluR-mediated burst prolongation, mGluR1 activation plays a greater role in sustaining the expression of prolonged bursts, whereas mGluR5 activation may be a more critical contributor to the induction process underlying this type of epileptogenesis.  相似文献   

18.
Group I metabotropic glutamate receptors (mGluRs) are expressed in cells in the superficial layers of the rat superior colliculus (SSC) and SSC afferents. The purpose of this study was to investigate the physiological effect of Group I mGluR activation on visual responses of SSC neurones using both in vivo and in vitro techniques. In the in vivo preparation, agonists and antagonists were applied by iontophoresis and single neurone activity was recorded extracellularly in anaesthetised rats. Application of the Group I agonist ( S )-3,5-dihydroxyphenylglycine (DHPG) resulted in a reversible inhibition of the visual response. The effect of DHPG could be blocked by concurrent application of the Group I (mGluR1/mGluR5) antagonist ( S )-4-carboxyphenylglycine (4CPG) or mGluR1 antagonist (+)-2-methyl-4-carboxyphenylglycine (LY367385). Application of 4CPG alone resulted in a facilitation of the visual response and this effect was not changed when the visual stimulus contrast was varied. Response habituation was observed when visual stimuli were presented at 0.5 s intervals, but this was not affected by DHPG or 4CPG. In slices of the superior colliculus, stimulation of the optic tract resulted in a field EPSP recorded from the SSC whose duration was increased in the presence of the GABA antagonists picrotoxin and CGP55845. Application of DHPG (5-100 μM) reduced the field EPSP, and this effect could be reversed by the mGluR1 antagonist LY367385 (200 μM), but not by the mGluR5 antagonist MPEP (5 μM). These data show that activation of mGluR1, but probably not mGluR5, can modulate visual responses of SSC neurones in vivo , and that this could be via presynaptic inhibition of glutamate release from either retinal or, possibly, cortical afferents.  相似文献   

19.
In the main olfactory bulb, several populations of granule cells (GCs) can be distinguished based on the soma location either superficially, interspersed with mitral cells within the mitral cell layer (MCL), or deeper, within the GC layer (GCL). Little is known about the physiological properties of superficial GCs (sGCs) versus deep GCs (dGCs). Here, we used patch-clamp recording methods to explore the role of Group I metabotropic glutamate receptors (mGluRs) in regulating the activity of GCs in slices from wildtype and mGluR-/- mutant mice. In wildtype mice, bath application of the selective Group I mGluR agonist DHPG depolarized and increased the firing rate of both GC subtypes. In the presence of blockers of fast synaptic transmission (APV, CNQX, gabazine), DHPG directly depolarized both GC subtypes, although the two GC subtypes responded differentially to DHPG in mGluR1-/- and mGluR5-/- mice. DHPG depolarized sGCs in slices from mGluR5-/- mice, although it had no effect on sGCs in slices from mGluR1-/- mice. By contrast, DHPG depolarized dGCs in slices from mGluR1-/- mice but had no effect on dGCs in slices from mGluR5-/- mice. Previous studies showed that mitral cells express mGluR1 but not mGluR5. The present results therefore suggest that sGCs are more similar to mitral cells than dGCs in terms of mGluR expression.  相似文献   

20.
Removal of neurotransmitter from the extracellular space is crucial for normal functioning of the central nervous system. In this study, we have used high-affinity metabotropic glutamate receptors (mGluRs) expressed by hippocampal CA1 pyramidal cells to test how far bath-applied glutamate penetrates into slice tissue before being removed by uptake mechanisms. Activation of group I mGluRs by 100 microM DHPG produced an inward current of -48+/-10pA (I(mGluR)), which was blocked by application of group I mGluR antagonists. In contrast, bath application of 100 microM glutamate in the presence of a ionotropic glutamate receptor antagonist and TTX did not activate I(mGluR) in CA1 cells patch-clamped at a depth of approximately 30 microm. Similarly, sole inhibition of glutamate transporters by the broad-spectrum glutamate transporter antagonist TBOA did not induce I(mGluR) under the same conditions. Only if glutamate was co-applied with TBOA an I(mGluR) of -39+/-8pA was recorded which was also blocked by group I antagonists. The data suggest that TBOA-sensitive uptake mechanisms are able to maintain a steep concentration gradient of glutamate to such a degree that a CA1 neuron at a depth of 30 microm is exposed to low extracellular glutamate levels that are not sufficient to induce a detectable activation of group I mGluRs (< 2 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号