首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saturable, specific [3H]strychnine binding can be demonstrated in homogenates of bovine retina. Scatchard plots revealed only one set of binding sites with a dissociation constant (Kd) of about 60 nM and a maximal number of binding sites of about 1.5 pmol/mg protein. The structural specificity of [3H]strychnine binding sites in bovine retina parallels the properties found for [3H]strychnine binding sites in the spinal cord of several vertebrates. Thus, the data do not give any evidence that specific [3H]strychnine binding in bovine retina labels taurine rather than glycine receptors and favors glycine rather than taurine as inhibitory neurotransmitter in bovine retina. The subcellular distribution of specific [3H]strychnine binding in bovine retina parallels that of sodium-dependent, high-affinity uptake of glycine and taurine. All 3 parameters are mainly found in the P2 fractions of bovine retina homogenates, containing conventional synaptosomes, most abundant in the inner plexiform layer, but can also be found in the P1 fractions, containing large synaptosomes from the photoreceptor cell layer.  相似文献   

2.
Glycine acts as an inhibitory transmitter in the lower brain stem and spinal cord of vertebrate species, while very few data are yet available to support a similar role in invertebrate nervous systems. Here we report the identification and characterization of glycine receptors in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa) by biochemical and behavioural studies. Saturation experiments revealed the occurrence of one population of binding sites of nanomolar affinity (KD = 33 nm) and low capacity (Bmax = 79 fmol/mg protein) for [(3)H]strychnine. The addition of glycine or taurine (0.1 microm-1 mm) produced a dose-dependent inhibition of [(3)H]strychnine binding. Beta-alanine (0.1-1 mm) did not significantly affect [(3)H]strychnine binding. The pharmacological properties of these receptors compare with those of vertebrate glycine receptors. Stimulation of Hydra polyps by reduced glutathione resulted in a significant increase in the duration of mouth opening in the presence of glycine, taurine or beta-alanine. The enhancement of the response was related both to amino acid (10-100 microm) and to glutathione concentration (1-10 microm). The effects of glycine or its agonists were suppressed by strychnine (1-10 microm). D-serine, a glycine agonist at the vertebrate NMDA receptor, produced opposite effects to those of glycine. The effects of d-serine were suppressed by 5,7-dichlorokynurenic acid but not by strychnine. In vitro, [(3)H]strychnine binding was not displaced by d-serine. These results indicate a dual action of glycine in Hydra tissues. The hypothesis that NMDA receptors may also be present in this elementary nervous system is proposed.  相似文献   

3.
Glycine levels and receptor binding were measured in the medulla and spinal cord of 2-month, 10-month, and 24-month-old Fischer 344 rats. The behavioral response to the administration of the glycine antagonist, strychnine, was also evaluated in 2- and 24-month-old animals to investigate the relevance of these parameters to the susceptibility to seizures. Significant reductions in glycine in both the spinal cord and medulla occurred from 2 to 24 months of age. The glycine precursors, serine and threonine, were decreased only in the spinal cord. [3H]Strychnine binding was also decreased by 38% and 34% in the medulla and spinal cord, respectively, of 24-month-old rats compared to 2-month-olds. [3H]GABA binding was similarly reduced while no age-related changes in [3H]diazepam binding in the spinal cord were detected. Comparison of 2- and 24-month-old animals after systemic injection of 1.75 mg/kg strychnine showed that senescent animals have a higher incidence of seizures and mortality compared to young animals. Decreases in glycinergic neurotransmission may lower strychnine seizure threshold in the aged animal.  相似文献   

4.
Solubilization of the glycine receptor from rat spinal cord   总被引:8,自引:0,他引:8  
Glycine receptors, as detected by glycine-displaceable [3H]strychnine binding, were solubilized from a membrane fraction of rat spinal cord by the non-ionic detergent Triton X-100. The solubilized material retained its high affinity for [3H]strychnine and exhibited the typical pharmacological properties of the membrane-bound glycine receptor. On sucrose density gradients, the solubilized receptor had a sedimentation coefficient of 8.3 +/- 0.4 S. Gel exclusion chromatography on Sepharose 6 B in the presence of phosphatidylcholine gave a Stokes radius of 7.3 +/- 0.3 nm.  相似文献   

5.
W F White 《Brain research》1985,329(1-2):1-6
There is a marked deficit in the binding of the glycine receptor antagonist strychnine to the CNS of the mutant mouse spastic. The characteristics and pharmacology of [3H]strychnine binding to washed homogenates of spastic and littermate control spinal cord and brainstem were investigated to determine the nature of this defect. The maximal binding of [3H]strychnine to spastic homogenates is approximately 20% the value obtained from littermate control homogenates; the affinity of [3H]strychnine binding is approximately 25% lower than littermate control values. The pharmacology of [3H]strychnine binding has the same rank order of potency in spastic and littermate control mice; however, there are small differences in the potency of several compounds in spastic vs littermate control animals. These results indicate that the glycine receptor alteration seen in the spastic mutant mouse is primarily due to a decrease in receptor number. They also suggest that the pharmacological characteristics of the glycine receptor in spastic are different from littermate control. The data do not permit a distinction between whether the strychnine binding sites found in spastic represent the same population seen in littermate control animals or are a subpopulation that is spared by the mutation.  相似文献   

6.
Cultures of rat brain stem and spinal cord were used to visualize binding sites for [3H]glycine, [3H]β-alanine and their antagonist [3H]strychnine by light microscopic autoradiography. In spinal cord cultures, all radio-ligands were bound mainly to large neurones, probably motoneurones whereas in brain stem cultures, both medium-sized and large neurones were labelled. In contrast, glial cells did not show binding sites for any of the compounds studied, suggesting that glial elements may not possess receptors for glycine and β-alanine.  相似文献   

7.
The actions of glycine, GABA, alpha-alanine, beta-alanine and taurine were studied by intracellular recordings from lumbar motoneurons of the isolated spinal cord of the frog. All amino acids tested produced a reduction in the amplitude of postsynaptic potentials, a blockade of the antidromic action potential and an increase of membrane conductance. Furthermore, membrane polarizations occurred, which were always in the same direction as the IPSP. All these effects indicate a postsynaptic inhibitory action of these amino acids. When the relative strength of different amino acids was compared, taurine had the strongest inhibitory potency, followed by beta-alanine, alpha-alanine, GABA and glycine. Topically applied strychnine and picrotoxin induced different changes of post-synaptic potentials, indicating that distinct inhibitory systems might be influenced by these two convulsants. Interactions with amino acids showed that picrotoxin seletively diminished the postsymaptic actions of GABA, while strychnine reduced the effects of taurine, glycine, alpha- and beta-alanine. But differences in the susceptibility of these amino acid actions to strychnine could be detected: the action of taurine was more sensitively blocked by strychnine compared with glycine, alpha- and beta-alanine. With regard to these results the importance of taurine and GABA as transmitters of postsynaptic inhibition on motoneurons in the spinal cord of the frog is discussed.  相似文献   

8.
The release of glycine from slices of the brain stem and binding of strychnine to brain stem membranes were characterized in adult and developing mice. Spontaneous glycine efflux was markedly facilitated by homoexchange with exogenous glycine and moderately by heteroexchange with taurine. Potassium stimulation released more glycine from brain stem slices from adult than from 7-day-old mice. Potassium-stimulated glycine release was also potentiated by glycine and by the novel anticonvulsant taurine derivatives. One population of strychnine-binding sites was found in both mature and immature brain stem. The number of binding sites increased with age, whereas the affinity of the sites for strychnine remained the same. The glycine inhibition was stronger in adult than in developing mice. In the presence of taurine the affinity for strychnine decreased without any change in the maximal binding capacity, suggesting a competitive type of inhibition. The binding constant and maximal binding capacity of strychnine increased in the presence of NaCl (200 mM) both in adult and 7-day-old mice. The calculated IC50 values for displacement of strychnine binding by glycine, taurine and β-alanine were higher in the presence than in the absence of sodium. The results show that the evoked release of glycine and the number of binding sites of strychnine increase during postnatal development in the mouse but that their characteristics do not change.  相似文献   

9.
Glycine receptors are ligand-gated ion channel proteins mediating synaptic inhibition in the spinal cord, retina and brain of vertebrates. We have cloned and functionally characterized two glycine receptor alpha-subunits from the perch (Roccus americana) retina. Based on sequence homology with the mammalian counterparts, we termed these subunits alpha 1 and alpha 3. RT-PCR revealed the presence of both subunits in retina and brain, whereas alpha1 was predominant in spinal cord. A short splice variant of alpha1 was detected in the brain but not in the retina. Functional expression of the perch subunits in HEK-293 cells yielded robust glycine-gated currents sensitive to strychnine. The perch receptors displayed a high efficacy for taurine and GABA and thus differ from the mammalian counterparts. Because the retina is a rich source for taurine, this finding could be of physiological importance. The structural features of the ligand binding domain strongly support the notion of increased glycine/GABA discrimination in higher vertebrates.  相似文献   

10.
In the present study we analyze whether glycine satisfies some electrophysiological and biochemical criteria to consider it as a putative transmitter in the rat cerebral cortex. Intracellular recordings from rat sensory-motor cortex showed that in 15-20% of the tested neurons glycine hyperpolarized the cell membrane, decreased the firing rate and flattened the evoked EPSP-IPSP sequence by increasing the membrane conductance. The iontophoretic application of strychnine antagonized the block of 'spontaneous' firing and the membrane hyperpolarization induced by glycine. Moreover, in a group of neurons, strychnine decreased the amplitude and duration of the IPSP and brought back the membrane potential to resting values. Previously accumulated [3H]glycine and endogenous glycine were released from cortical synaptosomal preparations by depolarizing stimuli in a Ca2+-dependent way. The release pattern of glycine was qualitatively similar in cortical and in spinal synaptosomes. [14C]Glycine was rapidly synthetized from [14C]serine in cortical synaptosomal preparations, and the newly formed [14C]glycine was released by depolarizing stimuli in a Ca2+-dependent way. It is concluded that glycine, which is generally considered as an inhibitory neurotransmitter in the spinal cord, medulla and pons, may also have a transmitter role in a discrete number of cortical neurons of some mammalian species.U  相似文献   

11.
R A Davidoff  R Adair 《Brain research》1976,118(3):403-415
Slices of frog cerebrum, optic tectum, medulla and spinal cord rapidly accumulate [3H]GABA and [3H]glycine from the surrounding medium so that after 10 min tissue:medium ratios as high as 113 for GABA (optic tectum) and 18.5 for glycine (medulla) may be achieved. Kinetic analysis revealed two distinct saturable uptake systems for each amino acid in the 4 CNS areas. The high affinity systems (apparent Km: 9-22 muM for GABA; 5-35 muM for glycine) required sodium ions in the medium and were relatively substrate specific. Significant release of [3H]GABA and [3H]glycine, but not of L-[3H]leucine, was evoked by exposure to medium containing potassium ions in a concentration of 40 mM. The process of release was calcium-dependent. The importance of these results with regard to the roles of GABA and glycine as neurotransmitters in both spinal and supraspinal levels of the amphibian neuraxis is discussed.  相似文献   

12.
The superfused in vitro frog spinal cord preparation was used to investigate the effects of pentylenetetrazol (PTZ) on the spinal cord. PTZ depressed monosynaptic, but augmented polysynaptic reflexes, and decreased primary afferent deplorization. Concurrently, in Ringer's solution containing sufficient magnesium or cobalt ions to block synaptic transmission, PTZ antagonized the hyperpolarizing effects on motoneurons and the depolarizing effects on primary afferent fibers of the inhibitory amino acids GABA, beta-alanine, taurine, and glycine. PTZ did not affect responses to the excitatory amino acids glutamic acid and aspartic acid. Furthermore, PTZ did not alter high affinity uptake by cord slices, K+ -evoked release of [3H]GABA from them, or the spinal concentration of GABA. These data suggest that PTZ may produce its excitatory effects by postsynaptic blockade of inhibitory processes mediated by GABA (and possibly by other amino acids).  相似文献   

13.
Ammonium salts of some anions decrease the potency of glycine in inhibiting [3H]strychnine binding associated with synaptic glycine receptors. A correspondence exists between the ability of the ammonium salts of anions to increase the IC50 of glycine in inhibiting the [3H]strychnine binding, their capacity to reduce the [3H] strychnine binding itself, and their capacity to reverse inhibitory postsynaptic potentials. The decrease of [3H]strychnine binding in the presence of chloride is abolished by sodium, while the decrease of the potency of glycine in inhibiting [3H]strychnine is not. Binding of [3H]strychnine is influenced by monovalent cations in a biphasic fashion. Concentrations of Li+, K+, and Na+ up to 150 mM decrease [3H]strychnine binding, while higher concentrations of the cations increase [3H]strychnine binding. Inhibition by glycine of [3H]strychnine binding is enhanced by low concentrations of these cations.  相似文献   

14.
The binding of [3H]androgens and estrogens, and the metabolism of [3H]androgens, were studied in the spinal cord of the adult rat. High-affinity, specific binding sites for [3H]testosterone and [3H]estradiol were detected in cytosol fractions from the spinal cords of castrate animals. Equilibrium dissociation constants for reaction of these sites with their respective ligands were similar to those of androgen and estrogen receptors from other regions of the central nervous system. Nuclear binding of [3H]estradiol was observed in the spinal cord 1 h after intravenous administration of the isotope. Likewise, exchange assay demonstrated the presence of high-affinity androgen binding sites in spinal cord nuclei from orchidectomized, testosterone propionate treated animals. 5 alpha-Reductase activity in homogenates of the spinal cord was relatively high, approximately 3 times that in the pooled hypothalamus, preoptic area, septum and amygdala. However, in contrast to the latter brain regions, estrogen formation was not detectable in spinal cord tissue. No sex differences were observed in the metabolism of [3H]testosterone by spinal cord homogenates. These results confirm the presence of androgen and estrogen receptors in the rat spinal cord. The lack of detectable aromatase activity in the spinal cord is consistent with the hypothesis that the effects of circulating testosterone on spinal reflex function are mediated primarily through the androgen receptor system.  相似文献   

15.
Glycine receptors have been localized by autoradiography in the rat central nervous system (CNS) using [3H]strychnine. The gross distribution of receptors is in excellent accord with the distribution determined by filtration binding assays. Specifically, the density of glycine receptors is greatest in the gray matter of the spinal cord and decreases progressively in regions more rostral in the neuraxis. Glycine receptors were found to be associated with both sensory and motor systems in the CNS. Moreover, there is a striking correlation between areas of high strychnine binding site density and areas in which glycine has been found to be electrophysiologically active. Finally, the anatomic localization of strychnine binding sites may help explain many of the signs and symptoms of strychnine ingestion. For example, individuals consuming subconvulsive doses of strychnine frequently experience altered cutaneous and auditory sensation. We have localized strychnine receptors in areas of the acoustic system known to influence discriminative aspects of audition and in areas of the spinal cord and trigeminal nuclei which modulate discriminative aspects of cutaneous sensation. The alteration of visceral functions (e.g., blood pressure and respiratory rate) associated with strychnine ingestion may be accounted for in a similar manner.  相似文献   

16.
[3H]-taurine binding to membranes from different regions from rat brain was studied. Binding to membranes from cerebral cortex and its subcellular fractions, hypothalamus, olfactory bulb and cerebellum was measured. Binding to membranes from dorsal root ganglion was also determined. Na+-dependent taurine binding was consistently observed in all the membranes except those from dorsal root ganglion. A KD = 4.06 μM was obtained for binding to membranes from cerebral cortex. Na+-dependent taurine binding was displaced by 20 μM strychnine or bicuculline. Na+-independent taurine binding with properties corresponding to a postsynaptic interaction could not be detected in any of the regions studied. The possibility of Na+-dependent taurine binding, representing binding to uptake sites or to postsynaptic receptors for GABA and glycine, is discussed.  相似文献   

17.
Binding properties of [3H]-etorphine and [3H]-ethylketocyclazocine have been studied in the lumbo-sacral spinal cord of guinea-pig which does not contain mu or delta binding sites. [3H]-etorphine binds to a single class of high affinity sites, whereas [3H]-ethylketocyclazocine interacts with a high and a low affinity component. Using a discriminative procedure, 5 microM (D-Ala2, D-Leu5) enkephalin (DAL), the high affinity component of [3H]-ethylketocyclazocine can be resolved in two classes of sites, (D-Ala2, D-Leu5) enkephalin sensitive sites (DALS sites) and (D-Ala2, D-Leu5) enkephalin insensitive sites (DALI sites). In these conditions, there is a total loss of [3H]-etorphine sites, whose binding capacity and properties strictly correspond to the DALS sites labelled by [3H]-ethylketocyclazocine. Pharmacological investigations indicate that DALI sites for which dynorphin (1 leads to 17) is the best ligand, can be related to kappa sites previously described in guinea-pig brain, whereas DALS sites for which (Arg6, Phe7) Met-enkephalin possesses a good affinity, closely correspond to benzomorphan sites recently characterized in rat brain and spinal cord. [3H]-ethylketocyclazocine interacts additionally with "non opiate" low affinity sites, for which only benzomorphan drugs exhibit a good affinity, whereas morphine, naloxone, phencyclidine or endogenous opioid peptides do not present any affinity for them. On the basis of these data, a new subdivision of "kappa" sites is discussed.  相似文献   

18.
High affinity gamma-aminobutyric acid, benzodiazepine, strychnine (glycine), dopamine, spirodecanone, alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic and muscarinic cholinergic binding sites were localized by semiquantitative autoradiography in rat and, in some instances, in monkey and human retinae using [3H]muscimol, [3H]flunitrazepam, [3H]strychnine, [3H]spiperone, [3H]prazosin, [3H]para-aminoclonidine, [3H]dihydroalprenolol and [3H]quinuclidinyl benzylate, respectively. In nearly every case, the inner plexiform layer (IP) contained a high receptor density. The distribution of alpha 1 sites was unusual in that binding was concentrated in the outer plexiform layer (OP). Dopaminergic and, to a lesser extent, beta-adrenergic binding was diffusely distributed in the outer nuclear layer, the OP, the inner nuclear layer and the IP. The ganglion cell layer displayed significant benzodiazepine binding. The intraretinal distribution of pre- and postsynaptic markers of these neurotransmitters is discussed.  相似文献   

19.
A study was made of [3H]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [3H]glycine at the low concentration used. Glial cells also took up [3H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [3H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [3H]GABA uptake (Ki over 600 microM vs the Kt of about 20 microM) and that GABA is an even weaker inhibitor of [3H]glycine uptake. These observations indicated that glycine and GABA do not share the same carrier. Quantitative electron microscopic autoradiography showed that the uptake of the two amino acids, in terms of the unit area of labelled Golgi axon terminals, was not additive. In contrast, their uptake in terms of unit protein was strictly additive. These observations, the first relating to unit volume and the latter to the total volume of Golgi terminals, are consistent with the view that there are two biochemically separate populations of Golgi neurons, one transporting glycine the other GABA. Saturable [3H]strychnine binding was detected in the preparations of glomerulus particles, but in comparison with those from the spinal cord the affinity was lower and [3H]strychnine was not displaced by glycine. Available information on glycine receptors, however, suggest that this should not exclude the possibility of strychnine resistant glycine receptors in the rat cerebellum.  相似文献   

20.
A study was made of [3H]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [3H]glycine at the low concentration used. Glial cells also took up [3H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [3H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [3H]GABA uptake (Ki over 600 μM vs theKt of about 20 μM) and that GABA is an even weaker inhibitor of [3H]glycine uptake. These observations indicated that glycine and GABA do not share the same carrier. Quantitative electron microscopic autoradiography showed that the uptake of the two amino acids, in terms of the unit area of labelled Golgi axon terminals, was not additive. In contrast, their uptake in terms of unit protein was strictly additive. These observations, the first relating to unit volume and the latter to the total volume of Golgi terminals, are consistent with the view that there are two biochemically separate populations of Golgi neurons, one transporting glycine the other GABA. Saturable [3H]strychnine binding was detected in the preparations of glomerulus particles, but in comparison with those from the spinal cord the affinity was lower and [3H]strychnine was not displaced by glycine. Available information on glycine receptors, however, suggest that this should not exclude the possibility of strychnine resistant glycine receptors in the rat cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号