首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The long-term consequences of acute stress on [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding, a marker for protein kinase C (PKC) activity, were investigated. In the first experiment, exposure to acute restraint and intermittent tail-shock increased [3H]PDBu binding in the amygdala but not in the hippocampus or cerebral cortex. The increase was persistent, lasting at least 24 h after stressor cessation. In the second experiment, it was determined that the stress-induced increase in binding in the amygdala was dependent on NMDA receptor activation; rats injected with a competitive NMDA receptor antagonist prior to the stressor did not exhibit the increased binding in the amygdala 24 h later. In the third experiment, re-exposure to the stressful context 96 h after stressor cessation reactivated the stress-induced increase the binding of [3H]PDBu in the amygdala. Re-exposure to the context also increased binding in the thalamus and area CA1 of the hippocampus. [3H]PDBu binds preferentially to PKC in the membrane and, therefore, these results suggest that stress induces the translocation of PKC from its resting compartments in the cytosol to the membrane. Its dependence on NMDA receptor activation implicates isoforms of PKC that are sensitive to intracellular calcium, such as PKCγ. The results further suggest that a ‘psychological' manipulation, viz. context re-exposure, can reactivate the persistent increase in [3H]PDBu binding in the amygdala. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

2.
Oh S  Jang CG  Ma T  Ho IK 《Brain research》1999,850(1-2):158-165
Effects of protein kinase C (PKC) activation on the function of the GABA/benzodiazepine receptor-chloride complex were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam and [35S]TBPS in rat brain slices. The density of [3H]muscimol binding was highest in cerebellar granular layers and high in both the frontal cortex and thalamus, but binding levels in the hippocampus were low. After activation of PKC by 100 nM phorbol-12,13-dibutyrate (PDBu), [3H]muscimol binding was decreased in the frontal cortex, striatum and thalamus, but binding levels were not changed in the hippocampus or cerebellum. The density of [3H]flunitrazepam binding was high in the cortex, hippocampus and molecular layers of cerebellum but was low in thalamus. PDBu increased the [3H]flunitrazepam binding only in the striatum and in part of the cortex and thalamus after activation of PKC. After activation of PKC by PDBu, [35S]TBPS binding was increased in most areas, but binding levels were not changed in the brainstem or cerebellum. The receptor binding was markedly decreased in almost all areas by the addition of 2.5 mM Mg2+. Elevated [35S]TBPS binding produced by PDBu was significantly inhibited by the addition of Mg2+. These results suggest that the activation of PKC potentiates benzodiazepine and TBPS binding, but decreases muscimol binding in a region-specific manner in the rat brain.  相似文献   

3.
Summary Chronological changes of protein kinase C (PKC) activity were measured using in vitro [3H]phorbol 12,13-dibutyrate (PDBu) autoradiography to investigate the postischemic alteration of this second messenger system in the rat brain. Transient ischemia was induced by the occlusion of the middle cerebral artery (MCA) for 90 min and such occlusion followed by various recirculation periods of up to 4 weeks. After 90 min of ischemia followed by 3 hours of recirculation, [3H]PDBu binding sites were found to be significantly decreased in the cerebral cortex and lateral segment of the caudate putamen, both supplied by the occluded MCA; thereafter, the binding sites decreased progressively in those ischemic foci. On the contrary, there was no alteration on day 1, but 3 days after ischemic insult, a significant decrease of [3H]PDBu binding sites was first detected in the ipsilateral thalamus and the substantia nigra, which both areas had not been directly affected by the original ischemic insult. This postischemic delayed phenomenon observed in the thalamus and the substantia nigra developed concurrently with45Ca accumulation, which was detected there in our previous study. These results suggest that alteration of second messenger (PKC) pathways may be involved not only in the ischemic foci, but also in neuronal degeneration of the exo-focal remote areas in relation to the disruption of intracellular calcium homeostasis which plays a key role in the pathogenesis of postischemic neuronal damage and that marked alteration of intracellular signal transduction may precede the neuronal damage in the exo-focal postischemic brain areas.  相似文献   

4.
Using phorbol 12,13-dibutyrate (PDBu) autoradiography, we investigated the effect of hypothermia on protein kinase C (PKC) activation in rat brain 2 h after focal ischemia. In normothermia, a significant increase of PDBu binding was observed in ischemic brain. Hypothermia suppressed the increase of PDBu binding in degree and extent. These observations suggest that intraischemic hypothermia attenuates the activation of PKC, and this may in part be participate in the protective effect of hypothermia.  相似文献   

5.
Alterations of the second-messenger systems, adenylate cyclase (AC) and protein kinase C (PKC), and local cerebral blood flow (lCBF) were evaluated during experimental cerebral ischemia in gerbils employing a quantitative autoradiographic method, which permitted these three parameters to be measured in the same brain. Ischemia was induced by occlusion of the right common carotid artery for 6 h. Animals attaining more than 5 in their ischemic scores were utilized for further experiments. At the end of ischemia, lCBF was measured by the [14C]iodoantipyrine method. The AC and PKC activities were estimated by the autoradiographic technique developed in our laboratory using [3H]forskolin (FK) and [3H]phorbol-12,13-dibutyrate (PDBu), respectively. The lCBF fell below 10 ml/100 g/min in most cerebral regions on the ligated side. The greatest reduction in FK binding was noted in the olfactory tubercle, caudate-putamen, and globus pallidus, followed by the hippocampus and cerebral cortices. The FK binding tended to be low at lCBF less than 20 ml/100 g/min in the cerebral cortices. However, the PDBu binding was relatively well preserved in each cerebral structure, and no significant correlation between lCBF and PDBu binding was noted in the cerebral cortices. The AC system may thus be vulnerable to ischemic insult over extensive brain regions, while the PKC system may be relatively resistant to ischemia.  相似文献   

6.
The benzodiazepine antagonist Ro 15-1788 was labelled with [11C] and examined for possible use as ligand for PET scan studies on benzodiazepine receptors in the brain of cynomolgus monkeys and human subjects. [11C] Ro 15-1788 allowed the in vivo visualization of benzodiazepine receptor binding in cerebral and cerebellar cortical areas as well as in basal brain nuclei in PET scan images. [11C] Ro 15-1788 exhibited a high ratio of specific benzodiazepine receptor binding (cerebral cortex) to non-specific binding (pons) and the kinetics of binding should be satisfactory for quantitative clinical PET scan studies using [11C]. The in vivo binding of [11C] Ro 15-1788 in the cerebral cortex of cynomolgus monkeys and healthy human subjects was reduced by approximately 90% within 10 min after the intravenous injection of a high dose of unlabelled Ro 15-1788 (0.5 mg/kg i.v.). Different areas of the healthy human brain showed an approximately 10-fold variation in maximal [11C] Ro 15-1788 binding that corresponded to the previously known distribution of benzodiazepine receptors in these regions. The highest degree of binding was obtained in the medial occipital cerebral cortex followed by frontal cortex, cerebellum, thalamus, striatum and pons. Two psychiatric patients with anxiety syndromes who had been treated for a long time with high doses of benzodiazepines had roughly the same degree of maximal [11C] Ro 15-1788 binding in brain regions as the healthy subjects but the rate of decline of [11C] Ro 15-1788 in the brain was higher. This indicates that there is measurable competition between [11C] Ro 15-1788 binding and clinical benzodiazepine concentrations in the body fluids of psychiatric patients. The results demonstrate that [11C] Ro 15-1788 should be a valuable tool for quantitative analyses of benzodiazepine receptor characteristics and receptor occupancy in the brain of patients with neuropsychiatric disorders.  相似文献   

7.
Tritiated phorbol-12,13-dibutyrate [( 3H]PDBu), a phorbol ester, was utilized to autoradiographically localize protein kinase C (PKC) in the cat visual cortex. Thin, slide-mounted sections of adult cat brain were used to characterize binding of [3H]PDBu. This was found to be saturable, reversible, and more readily displaced by phorbol ester than by synthetic diacylglycerols. Binding sites displayed a tissue concentration of 20 pmol/mg protein, and a dissociation constant of 8.0 nM. [3H]PDBu was slow to associate with its receptor, requiring 9.5 h to reach equilibrium. Autoradiograph revealed that PKC is heterogeneously distributed in the cat brain, and displays a laminar-specific pattern in the visual cortex. This laminar distribution undergoes marked changes during the first two months of postnatal life. In the visual cortex of neonatal kittens, [3H]PDBu binding is confined to layers I and V. Layer III acquires high levels of binding by postnatal day 15, layer II by 28 days, and layer VI becomes labelled by 40 days of age. Adult animals exhibit high levels of binding in all laminae except layer IV. Age-dependent changes in PKC's laminar distribution do not seem to be correlated with specific anatomical, neurochemical, or behavioural events during development. PKC appears to be associated with cell bodies or processes intrinsic to the visual cortex, and is probably not located on the terminals of cortical afferents.  相似文献   

8.
This study investigated the distribution of platelet activating factor (PAF) binding sites in the brain and their involvement in global ischemia in a model of bilateral common carotid occlusion in the gerbil. In sagittal sections of gerbil brain, labeling with [3H]PAF was mainly located in the cortex, hippocampus and cerebellum. The corpus striatum, the superior and inferior colliculi showed lower binding, while the thalamus was only weakly labeled. Scatchard analysis of the data obtained from displacement curves with unlabeled PAF revealed the presence of one or two populations of binding sites with different affinity constant values depending on the brain structures. When the gerbils were submitted to 10 min ischemia, similar autoradiography with [3H]PAF demonstrated a dramatic reduction of labeling in all brain structures, particularly in the hippocampus. Immunoreactive endogenous PAF concentrations in brain tissues showed a marked increase in ischemic animals: (8977.3±1113 pg/g wet weight) as compared to sham-operated control: (997.7±77 pg/g wet weight). Endogenous PAF levels returned to basal values following 30 min reperfusion. These results indicate that PAF may be involved in the early stages of brain ischemia in the gerbil and suggest that endogenous PAF produced during ischemia may contribute to the down-regulation of [3H]PAF binding sites in the brain.  相似文献   

9.
The alterations of second-messenger ligand binding and cerebral blood flow (CBF) were evaluated in the gerbil brain after 2-h unilateral common carotid artery occlusion. [3H]Forskolin (FK) and [3H]phorbol-12,13-dibutyrate (PDBu) were used as specific ligands for adenylate cyclase (AC) and protein kinase C (PKC) activity estimation, respectively. CBF was determined at the end of the experiment by the [14C]iodoantipyrine method. A quantitative autoradiographic method permitted simultaneous measurement of the three parameters in the same brain. The levels in the caudate-putamen, globus pallidus, and hippocampus were analyzed. The animals were divided into three groups: Group 1 with severe ischemia (CBF in the lateral nuclei of the thalamus (CBFt) less than 50 ml/100 g/min), Group 2 with mild ischemia (CBFt greater than or equal to 50 ml/100 g/min), and the Sham Group. The PDBu binding revealed a statistically significant increase in the caudate-putamen, lateral nuclei of the thalamus and hippocampus (CA1 and CA3 regions and dentate gyrus) on the ischemic side in Group 1 as compared to that in Group 2 and the Sham Group. In contrast, the FK binding did not show any significant changes in any of the regions. These data and our previous findings for 6-h ischemia suggest that (1) PKC translocation to the cell membrane may occur at the early ischemic phase in particular regions including the caudate-putamen, lateral nuclei of the thalamus and hippocampus, with the translocated PKC gradually diminishing during the subsequent ischemic period; and (2) the suppression of the AC system observed in 6-h ischemia may not appear in the early ischemic phase.  相似文献   

10.
Since protein kinase C (PKC) is known to be activated in the olfactory bulb and in several limbic areas related to odor processing, we determined whether an olfactory stimulus was able to modulate the activity of PKC in animals with bilateral entorhinal cortex lesion. The translocation of PKC from the cytosol to the membrane was studied using the phorbol ester 12,13-dibutyrate ([3H]PDBu) binding in control and bilateral entorhinal cortex (EC) lesioned rats. The lesion of EC per se did not significantly affect [3H]PDBu binding in any of the brain structures analyzed, while odor stimulation induced it in both control and EC-lesioned groups in the external plexiform layer of the olfactory bulb. In contrast, an odor-induced increase of [3H]PDBu binding in internal glomerular layer of the olfactory bulb was only observed in EC lesioned animals. Similar results were obtained in the piriform cortex. In both CA1 and CA3 hippocampal subfields, odor stimulation induced an increase of [3H]PDBu binding in both control and EC-lesioned animals, the increase being potentiated only in CA1 of lesioned rats. The dentate gyrus and the amygdala exhibited a similar pattern of [3H]PDBu binding, showing a significant increase exclusively in EC-lesioned animals after odor stimulation. The results strongly suggest that the EC plays a key role in odor processing. PKC appears to play an important role in responding to the activation of lipid second messengers, which have been described to be involved in the processing of odor stimuli in several structures of the olfactory pathway.  相似文献   

11.
The occurrence of insuling receptors and biological responses to insulin has been investigated in trypsin-dissociated fetal rat brain cells maintained in culture for 8 days. Binding of [125]insulin to brain cells in culture was time- and pH-dependent and 85–90% specific. Porcine insulin competed for [125]insulin binding in a dose-dependent manner. Unrelated polypeptides, including angiotensin II, glucagon, bovine growth hormone, and bovine prolactin did not compete for [125]insulin binding. The half-life of [125]insulin dissociation from receptors at 24°C was 15 min and a plot of ln[B/Bo] vs time suggested two dissociation rate constants of2.7 × 10−4 sec−1 and5.0 × 10−5 sec−1. Scatchard analysis of the binding data gave a curvelinear plot which may indicate negative cooperativity or the occurrence of both high affinity(Ka = 2 × 1011M−1) and low affinity(Ka = 4 × 1010M−1) sites. Of the estimated total of 4.9 × 104 binding sites per cell, 28–30% appear to be high affinity sites.

Incubation of cultures with insuling caused a time- and dose-dependent stimulation of [3H]thymidine and [3H]uridine incorporation into TCA-precipitable material. Maximum stimulation of thymidine incorporation (2–5-fold) occured 11 h after incubation with 167 nM insulin. The same concentration of insulin caused a 2.2-fold increase in [3H]uridine incorporation in 2 h. These results indicate that cells cultured from rat brain contain specific insulin receptors capable of mediating effects of insulin on macromolecular synthesis in the central nervous system.  相似文献   


12.
Jang CG  Rockhold RW  Ho IK 《Brain research》1999,821(2):520-525
The time course of autoradiographic binding of major second messengers in the rat brain was studied at 2, 7, and 24 h after withdrawal from butorphanol infusion. [3H]Forskolin and [3H]phorbol 12,13-dibutyrate (PDBu) were used to label adenylate cyclase and protein kinase C (PKC), respectively. Rats were rendered dependent by intracerebroventricular infusion of butorphanol (26 nmol microliter-1 h-1) via osmotic minipumps for 3 days. Withdrawal was initiated by abrupt cessation of the butorphanol infusion. The levels of [3H]forskolin binding were not changed at any time or in any brain area, except for an increase following 7 h of withdrawal in the brainstem only. The levels of [3H]PDBu binding were significantly increased (13-47%) in multiple areas of the rat brain following 7 h of withdrawal from butorphanol infusion. These findings suggest that the phosphoinositide cycle system is more susceptible to alteration during butorphanol dependence than is the adenylate cyclase system in the rat brain.  相似文献   

13.
The metabolic effects of the neurotoxic, ring-substituted amphetamine 3,4-methylenedioxy-methamphetamine (MDMA or ‘Ecstasy’) were examined in vivo. In this study, we focused on the ability of MDMA to induce a translocation of the calcium and phospholipid-dependent protein kinase C (PKC) from cytosol to the cortical plasma membrane. Two injections of MDMA (20 mg/kg; 10 h apart; s.c.) increased the density of membrane bound PKC sites by 48.0% over saline treated animals without mediating a significant change in ligand ([3H]phorbol 12,13 dibutyrate; [3H]PDBu) affinity. Longer drug treatments (8 × 20 mg/kg) induced a lasting (up to 5 days post-treatment) increase in the density of membrane-bound PKC. Prior destruction of cortical 5-HT nerve terminals with p-chloroamphetamine (PCA) prevents this effect and suggests that viable 5-HT uptake sites are essential for MDMA-induced PKC translocation. These results demonstrate that MDMA-induced PKC translocation to mediated by viable cortical 5-HT nerve terminals, and that prolonged kinase activation may contribute to MDMA-induced serotonergic neurotoxicity.  相似文献   

14.
Entorhinal cortex lesioning (ECL) produces a loss of more than 80% of the synapses in the outer molecular layer of the hippocampus. However, the loss of synapses is transient. Beginning a few days after denervation, new synapses are formed, virtually replacing the lost inputs within 2 months. Synaptic remodelling induced by ECL is associated with specific modifications of neurotransmitters, hormones and growth factors. Particularly, protein kinase C (PKC) plays important functional roles in receptor-mediated transmembrane signal transduction. PKC is also involved in various aspects of synaptic plasticity, such as cellular growth and differentiation. To investigate further the potential roles of PKC in synaptic plasticity observed in the ECL model, [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding, a putative marker of PKC, was examined at different times post-lesion. [3H]PDBu binding sites transiently decreased bilaterally at 2 and 8 days post-lesion (20%) in different laminae and sub-fields of the rostral hippocampus but returned to control values at 14 and 30 days post-lesion. In caudal portion of the hippocampus, [3H]PDBu binding was also decreased at 2 days post-lesion but only on the contralateral side. Interestingly, [3H]PDBu binding sites in the cortex increased by up to 30% in the contralateral side while no significant change was observed in the ipsilateral side at any time post-lesion. It is known that PKC can be regulated by different systems following alterations of neuronal and glial activity. We suggest that these could be involved in the response of PKC and [3H]PDBu binding sites following ECL. Moreover, PKC seemed to be modified in different brain areas in addition to the hippocampal formation in this model. This can be associated to a rather general reorganization observed following losses of neuronal inputs from the entorhinal cortex and the subsequent reinnervation process.  相似文献   

15.
The postnatal development of nicotine-like binding sites in the cortex, hippocampus, midbrain and cerebellum of 3-, 7-, 12-, 17- and 30-day-old mice was studied. Two different nicotinic cholinergic ligands, namely [3H]acetylcholine ([3H]ACh) and [3H]nicotine ([3H]NIC) were used to detect the nicotine-like binding sites in in vitro binding assays. The postnatal development of the binding sites of [3H]NIC increased gradually with age in all brain regions studied. The [3H]ACh binding, on the other hand, showed a marked peak on day 12 in the cerebellum and midbrain but did not change notably with age in the hippocampus and cortex, except for a slight temporary increase in the cortex on day 7. The time-course for the appearance of nicotinic binding sites as observed with [3H]ACh was found to be rather similar to that earlier described for [3H]alpha-bungarotoxin binding sites, whereas that for [3H]NIC differed from that described for other nicotinic ligands.  相似文献   

16.
The time course of autoradiographic binding of major second messengers in the rat brain was studied at 2, 7, and 24 h after withdrawal from butorphanol infusion. [3H]Forskolin and [3H]phorbol 12,13-dibutyrate (PDBu) were used to label adenylate cyclase and protein kinase C (PKC), respectively. Rats were rendered dependent by intracerebroventricular infusion of butorphanol (26 nmol μl−1 h−1) via osmotic minipumps for 3 days. Withdrawal was initiated by abrupt cessation of the butorphanol infusion. The levels of [3H]forskolin binding were not changed at any time or in any brain area, except for an increase following 7 h of withdrawal in the brainstem only. The levels of [3H]PDBu binding were significantly increased (13–47%) in multiple areas of the rat brain following 7 h of withdrawal from butorphanol infusion. These findings suggest that the phosphoinositide cycle system is more susceptible to alteration during butorphanol dependence than is the adenylate cyclase system in the rat brain.  相似文献   

17.
Transport into the presynaptic terminal by the dopamine transporter is the primary mechanism for removing dopamine from the synaptic cleft. This transporter is a specific marker for dopamine terminals and is a primary site for CNS actions of cocaine. Several radioligands have been developed for analysis of the dopamine transporter. The ligands vary in affinity and specificity, leading to differences in reported transporter density in brain regions. We compared two of the most commonly used ligands, [3H]WIN 35,428 and [125I]RTI-55, analyzing the localization and density of sites in the rat brain using serial sections and quantitative autoradiography. Citalopram at 50 nmol/1 was used to block [125I]RTI-55 binding to serotonin transport sites. Transporter density was highest in the striatum and both ligands labeled equivalent numbers of sites, with lateral to medial and anterior to posterior gradients. In most areas the density of sites measured with the two ligands was similar. However, [125I]RTI-55 binding was significantly higher than [3H]WIN 35,428 binding in the substantia nigra zona compacta, ventral tegmental area, subthalamic nucleus and a number of other subcortical nuclear groups while [3H]WIN 35,428 binding was higher in lateral striatum and in olfactory tubercle. These differences could reflect different forms of the transporter, perhaps due to post-translational modifications, and they may provide a basis for differential pharmacological regulation of transporter function in discrete brain regions and disease states.  相似文献   

18.
We previously found that unilateral cochlear ablation altered transmitter release from glutamatergic synaptic endings in several brain stem auditory nuclei. To determine if this release activity could be regulated by protein kinase C (PKC), which has been associated with regulation of transmitter release, the electrically evoked release of [3H]d-aspartate ([3H]d-Asp) was quantified in vitro as an index of exocytosis from glutamatergic presynaptic endings in the major subdivisions of the cochlear nucleus (CN) and in the main nuclei of the superior olivary complex (SOC). Treating dissected tissues with a PKC activator, such as phorbol 12,13-diacetate (PDA) or phorbol 12,13-dibutyrate (PDBu) (3 microM), elevated the evoked release of [3H]d-Asp by 1.5- to 3.3-fold. The PKC inhibitor Ro31-8220 (50 nM) did not alter the evoked release but blocked the stimulatory effects of PDA and PDBu. These findings suggested that PKC could positively regulate transmitter release from glutamatergic presynaptic endings in brain stem auditory pathways. Seven days after unilateral cochlear ablation, when cochlear nerve endings had degenerated in the ipsilateral CN, PDBu elevated the evoked release bilaterally in each CN subdivision and SOC nucleus, implying that PKC could regulate glutamatergic release in the noncochlear pathways remaining in the ipsilateral CN and in the other pathways after unilateral hearing loss. After 145 postlesion days, Ro31-8220 blocked endogenous elevations in the evoked release in the ipsilateral SOC but did not alter the elevated or upregulated release in the other tissues. This suggested that the elevations of glutamatergic release activity in the ipsilateral SOC that appeared after unilateral cochlear ablation depended on endogenous activation of PKC.  相似文献   

19.
1. We have characterized and quantified specific binding of [3H]-flunitrazepam (FNZ: (benzodiazepine), [3H]-naloxone (NAL: (opiate) and [3h]cgp-12177(CGP: (beta-adrenergic) to thick slices (230–400 μm) of mouse and rat brain.

2. The binding sites are stereospecific, saturable and of high affinity. In all cases, the binding of the ligands is readily reversible and demonstrates the appropriate drug specificity.

3. In mouse brain [3H]-NAL binding is elevated by chronic treatment with naloxone (via capsules).

4. We have been unsuccessful in quantifying beta adrenoreceptors with the archetypal ligand [3H]-dihydroalprenolol (DHA). However, the use of [3H]-CGP 12177 enabled us to detect high-affinity beta adrenoreceptors in brain slices.

5. [3H]-CGP also permits the demonstration of rapid and reversible agonist-induced down-regulation (internalization) of beta binding sites.

6. We have been successful in quantifying beta adrenergic sites in single pineal glands of rat and hamster.  相似文献   


20.
Receptor binding sites for the phencyclidine (PCP) analogue, [3H]TCP, have been localized in the rat and guinea pig central nervous systems by in vitro autoradiography. Quantitation of [3H]TCP binding site densities in rat brain reveals highest levels in the forebrain, in particular the strata oriens and radiatum of the hippocampus, the molecular layer of the dentate gyrus and superficial layers of the cerebral cortex. Moderate levels of binding occur in the amygdala, thalamus, anterior olfactory nucleus external plexiform layer of the olfactory bulb, olfactory tubercle, geniculate nuclei and deep layers of the cortex. Low levels of binding occur throughout most of the septum, diagonal band, hypothalamus, pons-medulla and cerebellum. Spinal cord grey matter also has low levels binding. Excitotoxin lesions of the hippocampal formation, which destroy the pyramidal and granule cells, reduce the binding of [3H]TCP to strata radiatum and oriens and the molecular layer of the dentage gyrus by 60% suggesting that [3H]TCP labels intrinsic neurons in these regions. Residual binding is probably on afferent terminals. Ibotenic acid lesions of the caudate-putamen reduce [3H]TCP binding by 70%, indicating that binding sites are localized on intrinsic striatal neurons. 6-Hydroxydopamine lesions do not alter [3H]TCP binding levels the caudate, suggesting the absence of binding sites on dopaminergic terminals in the caudate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号