首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of NMDA receptors by glutamate is particularly important in the initial stages of memory consolidation. Memantine, a noncompetitive NMDA receptor antagonist, ameliorates memory impairment under certain circumstances, despite blocking the activation of NMDA receptors. The present experiments tested the hypothesis that memantine can improve memory deficits induced by isolation stress in day-old chicks (Gallus gallus domesticus) trained in a one-trial taste-avoidance task. Three experiments assessed the effects of memantine at different concentrations and in combination with isolation stress. The results of Experiment 1 indicate that, under normal, non-stressed conditions, memory in control animals is strong and 15.0 mM memantine impairs memory, similar to that seen in many studies of the effects of NMDA receptor antagonists on learning. However, the results of Experiments 2 and 3 showed that, when chicks were exposed to isolation stress during the pre-training period, memory formation for saline-injected control animals was impaired and 5.0 mM memantine significantly improved memory in an inverted U-shaped dose response function. The current results extend the findings that memantine can ameliorate memory impairment and supports the hypothesis that memantine, despite its action to reduce NMDA receptor activity, can facilitate normalized memory acquisition.  相似文献   

2.
The neurotransmitter glutamate activates several classes of metabotropic receptor and three major types of ionotropic receptor--alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA). The involvement of glutamate mediated neurotoxicity in the pathogenesis of Alzheimer's disease (AD) is finding increasing scientific acceptance. Central to this hypothesis is the assumption that glutamate receptors, in particular of the NMDA type, are overactivated in a tonic rather than a phasic manner. Such continuous, mild, chronic activation ultimately leads to neuronal damage/death. Additionally, impairment of synaptic plasticity (learning) may result not only from neuronal damage per se but may also be a direct consequence of this continuous, non-contingent NMDA receptor activation. Complete NMDA receptor blockade has also been shown to impair neuronal plasticity, thus, both hypo- and hyperactivity of the glutamatergic system leads to dysfunction. Memantine received marketing authorization from the EMEA (European Medicines Agency) for the treatment of moderate to severe AD in Europe and was subsequently also approved by the FDA (Food and Drug Administration) for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive NMDA receptor antagonist with strong voltage-dependency and fast kinetics. This review summarizes existing hypotheses on the mechanism of action (MOA) of memantine in an attempt to understand how the accepted interaction with NMDA receptors could allow memantine to provide both neuroprotection and reverse deficits in learning/memory by the same MOA.  相似文献   

3.
Memantine, a non-competitive NMDA antagonist, has been clinically used in the treatment of dementia in Germany for over ten years. The rationale for this indication is strongly related to the physiological and to the pathological role of glutamate in neurotransmission. Physiologically, NMDA receptors mediate synaptic plasticity by acting as a coincidence detector. Only those synapses that show temporally and spatially discrete activation of NMDA receptors undergo plastic changes secondary to Ca++ influx after rapid unblocking of Mg++, thus crucially contributing to memory and learning processes. The voltage-dependency of Mg++ is so pronounced that under pathological conditions it leaves the NMDA channel upon moderate depolarisation, thus interrupting memory and learning. Its pharmacological properties allow memantine to rapidly leave the NMDA channel upon transient physiological activation by synaptic glutamate (restoring significant signal transmission), but to block the sustained activation of low glutamate concentration under pathological conditions, i.e. to protect against excitotoxicity as a pathomechanism of neurodegenerative disorders. Memantine acts as a neuroprotective agent in various animal models based on both neurodegenerative and vascular processes as it ameliorates cognitive and memory deficits. Memantine has shown to be effective and safe in the treatment of dementia, particularly Alzheimer's disease, in controlled clinical trials. Provided that the dose is slowly increased it is generally well tolerated and safe up to 20 and 30 mg per day, with intake preferably in the morning. The compound is completely absorbed after oral intake with Cmax values after 6 hours, undergoes little metabolism and has a terminal elimination half life between 60 and 100 hours. Due to its low potential of interaction, memantine can be combined with acetylcholinesterase inhibitors, the mainstay of current symptomatic treatment of Alzheimer's disease and it is suited in elderly patients receiving multiple drug therapy.  相似文献   

4.
Several drugs are in clinical use for symptomatic treatment of Alzheimer's disease patients. Since Alzheimer's disease is known to be associated with down-regulation of the cholinergic and N-methyl-d-aspartate (NMDA) systems, most of these drugs inhibit acetylcholinesterase, potentiate the activity of nicotinic acetylcholine receptors (nAChRs), or modulate NMDA receptors. Galantamine is an anticholinesterase and allosterically potentiates the activity of the nicotinic receptors. We have recently found that galantamine potentiates the activity of NMDA receptors as well. Memantine is unique in that it inhibits the NMDA receptors. We have developed a hypothesis that combining galantamine and memantine will be more effective for improving the patient's conditions than monotherapy with either drug. Patch clamp and intracellular Ca2+ imaging experiments using rat cortical and hippocampal neurons clearly provided the in vitro bases for our hypothesis. Memantine blocked the extrasynaptic NMDA receptor 100 times more potently than the synaptic NMDA receptor at negative membrane potentials and the block of both types of NMDA receptors was attenuated with depolarization. However, galantamine potentiation of the NMDA receptors was not voltage dependent. Thus, co-application of memantine with galantamine prevented the galantamine potentiation and the activation of extrasynaptic NMDA receptors, but membrane depolarization revealed the galantamine potentiation. Therefore, cell death is expected to be prevented by memantine near the resting potential while the NMDA-mediated synaptic transmission, which is down-regulated in the patients, is maintained and potentiated by galantamine. These results provide in vitro bases for the beneficial actions of galantamine and memantine combinations.  相似文献   

5.
Mechanism of action of memantine   总被引:6,自引:0,他引:6  
Memantine is a clinically useful drug in many neurological disorders, including Alzheimer's disease. The principal mechanism of action of memantine is believed to be the blockade of current flow through channels of N-methyl-d-aspartate (NMDA) receptors--a glutamate receptor subfamily broadly involved in brain function. Surprisingly, other drugs that block NMDA receptor channels, such as ketamine, exhibit serious deleterious effects. The unusual therapeutic utility of memantine probably results from inhibitory mechanisms shared with ketamine, combined with actions specific to memantine. These potentially important differences between memantine and ketamine include effects on gating of blocked channels and binding of memantine to two sites on NMDA receptors. Because modulation of NMDA receptor activity can increase or decrease excitability of neuronal circuits, subtle differences in the mechanisms of action of NMDA receptor antagonists can strongly impact on their clinical effects.  相似文献   

6.
The voltage dependence and channel-blocking kinetics of uncompetitive NMDA receptor antagonists have been well-described using in vitro techniques, but there is little evidence concerning the functional significance of these properties in vivo. We have now compared the effects of NMDA antagonists that display varied profiles of voltage-dependent block in vitro, on responses of spinal neurones in anaesthetised rats. The compounds examined were the uncompetitive channel blockers memantine, ketamine and MK-801 and, for comparison, an antagonist that acts at the strychnine-insensitive glycine binding site (MRZ 2/502). Using frequency of spike discharge as an indicator of somatic depolarisation, we have compared the effects of these antagonists on responses evoked by iontophoretic NMDA application and on synaptic responses evoked by pinch or electrical stimulation (the latter eliciting "wind-up"). The effectiveness of the antagonists was directly but variably related to the discharge frequency of the test response. The rank order of dependence on firing rate matched the rank order of voltage dependence reported in vitro, namely: memantine > ketamine > MK-801> or = MRZ 2/502. Doses that reduced responses to iontophoretic application of NMDA were less effective at reducing responses to pinch, perhaps due to the major non-NMDA component of the synaptic response. Memantine preferentially reduced "wind-up" relative to responses to pinch, whereas ketamine and MK-801 reduced both types of synaptic responses in parallel. This "filtering" by low affinity, voltage-dependent NMDA antagonists such as memantine, of non-physiological activity whilst leaving normal synaptic events relatively untouched, may contribute to their more favourable clinical profile.  相似文献   

7.
Memantine and neramexane are noncompetitive NMDA receptor antagonists which have been investigated for their promising effects in aiding memory in people with dementia. Memantine is approved for the treatment of Alzheimer's disease, and neramexane is currently under development for this indication. Therefore, the present study provided a comparative assessment of the effects of equimolar doses of memantine and neramexane on spatial (hippocampus-dependent) memory. Adult male rats were given only 3 training trials to learn the location of a hidden platform in a water maze. In control (vehicle-injected) rats, this minimal amount of training produced intact short-term (15 min), but poor long-term (24 h), memory. Pre-training administration of memantine or neramexane produced a dose-dependent enhancement of long-term memory. Pharmacokinetic experiments with equimolar doses of both agents indicated that lower plasma levels of neramexane were more effective than memantine at enhancing memory. The effective doses of both agents in the current study produced plasma levels (and extrapolated brain CSF levels) within a range of activity at NMDA receptors and plasma levels seen in patients with Alzheimer's disease. These findings provide support for the use of neramexane as a pharmacological intervention in the treatment of dementia.  相似文献   

8.
Memantine, a non-competitive NMDA receptor antagonist, is used for the treatment of Alzheimer's disease (AD) and off-label as an anti-depressant. Here we investigated possible anti-depressant, cognitive enhancing and neuroprotective effects of memantine in the olfactory bulbectomized (OBX) rat. OBX is used as a screening model for antidepressants and shows cognitive disturbances. In Experiment I, memantine treatment started 14 days after OBX surgery (this setup is similar to what we use for screening of potential antidepressants) and 2 days before surgery in experiment II. In both experiments, memantine (20 mg/kg, p.o) was administered once daily for 28 days. Animals were tested in the open field (locomotor activity), passive avoidance (fear learning and memory), and holeboard (spatial acquisition and memory) before and after the bulbectomy. Memantine, when administered before surgery, prevented OBX-induced hyperactivity and partly fear memory loss. These behavioral effects were present for at least 3 weeks after cessation of treatment. Memantine, however did not improve spatial memory. When administered 2 weeks after OBX surgery, memantine was ineffective in normalizing open field hyperactivity and improving cognitive deficits. Interestingly, after the animals were retrained in passive avoidance, memantine- treated OBX rats (both in experiment I and II) showed improved fear learning and memory. Our findings suggest that memantine has both neuroprotective and cognitive enhancing effects without antidepressant-like properties in the OBX rat. Based on our results, we propose that memantine may be more beneficial to AD patients when administered early in the disease process.  相似文献   

9.
Increasing evidence suggests that disturbances in glutamatergic activity play an important role in Alzheimer's disease (AD). Excessive glutamate-mediated activation of NMDA receptors, for example, may contribute to the neuronal death that characterises AD. On the other hand, physiological activation of the NMDA receptor appears necessary for normal cognitive function. Therefore, compounds that finely modulate NMDA receptor activity hold promise as treatments for AD. Memantine (Namenda, Axura, Ebixa; Forest Laboratories, Inc., Merz Pharmaceuticals GmbH, H. Lundbeck A/S) is a low-moderate affinity, uncompetitive NMDA-receptor antagonist that appears to block pathological, but not physiological, activation of the NMDA receptor. Consequently, therapeutic doses of the drug are well-tolerated and do not seem to interfere with the acquisition or processing of cognitive information. Memantine has been shown to improve symptoms and reduce the rate of clinical deterioration among patients with moderate-to-severe AD and was approved in the US for this indication in October 2003. This review provides a brief rationale for the development of memantine as a therapy for AD, as well as an overview of the pharmacology, clinical efficacy, safety and tolerability of this novel therapeutic agent.  相似文献   

10.
The interaction between uncompetitive NMDA receptor antagonists (memantine and ketamine), and morphine (mu-opioid receptor agonist) and pentazocine (kappa-opioid receptor agonist) was studied in the writhing test in mice. Memantine and ketamine, administered at subthreshold doses, potentiated antinociceptive effect of the threshold (1 mg/kg) dose of morphine. The effects of the threshold (6 mg/kg) dose of pentazocine were not significantly changed by ketamine, and were significantly enhanced by the higher dose of memantine (15 mg/kg). Simultaneously performed experiments in the chimney test have shown that combination of morphine or pentazocine with an NMDA receptor antagonist did not induce significant alterations in the motor coordination of mice. The obtained results have shown that NMDA receptor antagonists (ketamine, memantine) are able to enhance the antinociceptive activity of opioids (morphine, pentazocine). It is necessary to underline that this effect was more apparent for morphine (mu-opioid receptor agonist) + NMDA antagonists than for pentazocine (kappa-opioid receptor agonist). These results may have some importance for clinical practice.  相似文献   

11.
Memantine is the first and only medication that has been approved by European, US and Canadian regulatory agencies for the treatment of moderate-to-severe Alzheimer's disease (AD). It is an NMDA receptor antagonist that works to prevent excitotoxicity and cell death, which are mediated by the excessive influx of calcium during a sustained release of glutamate. Preclinical studies of memantine reveal that it has the potential to improve memory and learning processes after impairment has occurred, as well as to prevent further neuronal damage. Although memantine has been considered for the treatment of earlier AD, it has not yet been approved for this. Randomized controlled trials of memantine in the treatment of mild-to-moderate AD have demonstrated small treatment effects in measures of cognition, global assessment and behavior favoring the use of memantine. However, the differences between treatment groups were not consistently significant. Two ongoing long-term trials are further investigating the efficacy of memantine in the treatment of mild-to-moderate AD.  相似文献   

12.
N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential in numerous CNS disorders ranging from acute neurodegeneration (e.g. stroke and trauma), chronic neurodegeneration (e.g. Parkinson's disease, Alzheimer's disease, Huntington's disease, ALS) to symptomatic treatment (e.g. epilepsy, Parkinson's disease, drug dependence, depression, anxiety and chronic pain). However, many NMDA receptor antagonists also produce highly undesirable side effects at doses within their putative therapeutic range. This has unfortunately led to the conclusion that NMDA receptor antagonism is not a valid therapeutic approach. However, memantine is clearly an uncompetitive NMDA receptor antagonist at therapeutic concentrations achieved in the treatment of dementia and is essentially devoid of such side effects at doses within the therapeutic range. This has been attributed to memantine's moderate potency and associated rapid, strongly voltage-dependent blocking kinetics. The aim of this review is to summarise preclinical data on memantine supporting its mechanism of action and promising profile in animal models of chronic neurodegenerative diseases. The ultimate purpose is to provide evidence that it is indeed possible to develop clinically well tolerated NMDA receptor antagonists, a fact reflected in the recent interest of several pharmaceutical companies in developing compounds with similar properties to memantine.  相似文献   

13.
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer´s disease (AD) in Europe on 17th May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.  相似文献   

14.
The behavioural and biochemical effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, dizocilpine and memantine, and the competitive NMDA receptor antagonist, CGP 39551, were investigated in rats. Systemic injections of dizocilpine (0.33 mg/kg) increased locomotion and rearing in an open field, whereas memantine (20 mg/kg) increased only locomotor activity. CGP 39551 (10 and 20 mg/kg) did not change open field activity. Dopamine (DA) metabolism--as measured by the ratio of dihydroxyphenylacetic acid/dopamine (DOPAC/DA)--increased in response to dizocilpine in the prefrontal cortex and the nucleus accumbens. Memantine enhanced DOPAC/DA in the prefrontal cortex, the nucleus accumbens and to a lesser degree in the posterior striatum. In contrast to non-competitive NMDA receptor antagonists, CGP 39551 did not increase DA metabolism of subcortical structures and even decreased DOPAC/DA in the prefrontal cortex. These results indicate that competitive and non-competitive NMDA receptor antagonists affect spontaneous locomotion differentially in rats. The biochemical data imply that the stimulant actions non-competitive NMDA receptor antagonists are at least partially due to activation of ascending dopaminergic systems. Potential mechanisms involved in the differential effects of both types of NMDA receptor antagonists are discussed.  相似文献   

15.
β-amyloid (Aβ) is widely accepted to be one of the major pathomechanisms underlying Alzheimer's disease (AD), although there is presently lively debate regarding the relative roles of particular species/forms of this peptide. Most recent evidence indicates that soluble oligomers rather than plaques are the major cause of synaptic dysfunction and ultimately neurodegeneration. Soluble oligomeric Aβ has been shown to interact with several proteins, for example glutamatergic receptors of the NMDA type and proteins responsible for maintaining glutamate homeostasis such as uptake and release. As NMDA receptors are critically involved in neuronal plasticity including learning and memory, we felt that it would be valuable to provide an up to date review of the evidence connecting Aβ to these receptors and related neuronal plasticity. Strong support for the clinical relevance of such interactions is provided by the NMDA receptor antagonist memantine. This substance is the only NMDA receptor antagonist used clinically in the treatment of AD and therefore offers an excellent tool to facilitate translational extrapolations from in vitro studies through in vivo animal experiments to its ultimate clinical utility.  相似文献   

16.
Alzheimer's disease (AD) and Vascular dementia represent the most common forms of dementia. If left unabated, the economic cost of caring for patients with these maladies would consume the entire gross national product of the industrialized world by the middle of this century. Until recently, the only available drugs for this condition were cholinergic treatments, which symptomatically enhance cognitive state to some degree, but they were not neuroprotective. Many potential neuroprotective drugs tested in clinical trials failed because of intolerable side effects. However, after our discovery of its clinically-tolerated mechanism of action, one putatively neuroprotective drug, memantine, was recently approved by the European Union and the U.S. Food and Drug Administration (FDA) for the treatment of dementia. Recent phase 3 clinical trials have shown that memantine is effective in the treatment of both mild and moderate-to-severe Alzheimer's disease and possibly Vascular dementia (multi-infarct dementia). Here we review the molecular mechanism of memantine's action and also the basis for the drug's use in these neurological diseases, which are mediated at least in part by excitotoxicity. Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. Excitotoxic neuronal cell damage is mediated in part by overactivation of N-methyl-D-aspartate (NMDA)-type glutamate receptors, which results in excessive Ca(2+) influx through the receptor associated ion channel and subsequent free radical formation. Physiological NMDA receptor activity, however, is also essential for normal neuronal function. This means that potential neuroprotective agents that block virtually all NMDA receptor activity will very likely have unacceptable clinical side effects. For this reason many previous NMDA receptor antagonists have disappointingly failed advanced clinical trials for a number of neurodegenerative disorders. In contrast, studies in our laboratory have shown that the adamantane derivative, memantine, preferentially blocks excessive NMDA receptor activity without disrupting normal activity. Memantine does this through its action as an uncompetitive, low-affinity, open-channel blocker; it enters the receptor-associated ion channel preferentially when it is excessively open, and, most importantly, its off-rate is relatively fast so that it does not substantially accumulate in the channel to interfere with subsequent normal synaptic transmission. Clinical use has corroborated the prediction that memantine is well tolerated. Besides Alzheimer's disease, memantine is currently in trials for additional neurological disorders, including HIV-associated dementia, depression, glaucoma, and severe neuropathic pain. A series of second-generation memantine derivatives are currently in development and may prove to have even greater neuroprotective properties than memantine. These second-generation drugs take advantage of the fact that the NMDA receptor has other modulatory sites in addition to its ion channel that potentially could also be used for safe but effective clinical intervention.  相似文献   

17.
The effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists, memantine (1-amino-3,5-dimethyladamantane) and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzocyclo-hepten-5,10-imin e maleate) were compared on synaptic transmission and long-term potentiation (LTP) in hippocampal slices and on NMDA-induced currents in cultured superior collicular neurones. 2. Memantine (10-100 microM) reversibly reduced, but did not abolish, NMDA receptor-mediated secondary population spikes recorded in area CA1 of hippocampal slices bathed in Mg(2+)-free artificial cerebrospinal fluid. 3. Memantine (100 microM) antagonized NMDA receptor-mediated excitatory postsynaptic currents recorded in area CA1 in a strongly voltage-dependent manner i.e. depressed to 11 +/- 4% of control at -35 mV and 95 +/- 5% of control at +40 mV (n = 9), with no apparent effect on response kinetics. 4. The effects of MK-801 and memantine on the induction of LTP were assessed after prolonged pre-incubations with these antagonists. When present for 6.6 +/- 0.4 h prior to tetanic stimulation, memantine blocked the induction of LTP with an IC50 of 11.6 +/- 0.53 microM. By comparison, similar long pre-incubations with MK-801 (6.4 +/- 0.4 h) blocked the induction of LTP with an IC50 of 0.13 +/- 0.02 microM. 5. Memantine and MK-801 reduced NMDA-induced currents in cultured superior colliculus neurones recorded at -70 mV with IC50s of 2.2 +/- 0.2 microM and 0.14 +/- 0.04 microM respectively. The effects of memantine were highly voltage-dependent and behaved as though the affinity decreased epsilon fold per 50 mV of depolarization (apparent delta = 0.71). In contrast, under the conditions used, MK-801 appeared to be much less voltage-dependent i.e. affinity decreased epsilon fold per 329 mV of depolarization (apparent delta = 0.15). 6. Depolarizing steps from -70 mV to +50 mV in the continuous presence of memantine (10 microM) caused a rapid relief of blockade of NMDA-induced currents from 83.7 +/- 1.9% to 21.8 +/- 1.8% (n = 5). This relief was best fitted by a double exponential function (17.2 +/- 11.7 and 698 +/- 204 ms), the faster component of which was most pronounced. 7. In conclusion, whereas MK-801 is equipotent in blocking NMDA-induced currents (at - 70 mV) and the induction of LTP, memantine is relatively less potent in blocking the induction of LTP. This is due to its rapid relief of blockade upon depolarization; a property which might explain its promising clinical profile in the treatment of chronic neurodegenerative diseases.  相似文献   

18.
Increasing evidence suggests that disturbances in glutamatergic activity play an important role in Alzheimer’s disease (AD). Excessive glutamate-mediated activation of NMDA receptors, for example, may contribute to the neuronal death that characterises AD. On the other hand, physiological activation of the NMDA receptor appears necessary for normal cognitive function. Therefore, compounds that finely modulate NMDA receptor activity hold promise as treatments for AD. Memantine (Namenda?, Axura®, Ebixa®; Forest Laboratories, Inc., Merz Pharmaceuticals GmbH, H. Lundbeck A/S) is a low-moderate affinity, uncompetitive NMDA-receptor antagonist that appears to block pathological, but not physiological, activation of the NMDA receptor. Consequently, therapeutic doses of the drug are well-tolerated and do not seem to interfere with the acquisition or processing of cognitive information. Memantine has been shown to improve symptoms and reduce the rate of clinical deterioration among patients with moderate-to-severe AD and was approved in the US for this indication in October 2003. This review provides a brief rationale for the development of memantine as a therapy for AD, as well as an overview of the pharmacology, clinical efficacy, safety and tolerability of this novel therapeutic agent.  相似文献   

19.
Memantine has been clinically used in the treatment of organic disorders in Germany for over ten years and has now been approved in Europe and also in the US for moderate to severe Alzheimer's disease. The rationale for this indication is strongly related to the physiological and pathological role of glutamate in neurotransmission. Glutamate is an agonist of NMDA, kainate and AMPA (ionotropic) receptors, where its influence on NMDA receptors plays an important role with regard to neuronal plasticity effecting memory and learning. Excessive levels of glutamate result in neurotoxicity, in part by overactivation of NMDA receptors. Memantine acts as an uncompetitive antagonist of NMDA receptors and therefore compensates for this overactivation. Furthermore, memantine is a neuroprotective agent in various animal models based on both neurodegenerative and vascular processes, as it ameliorates cognitive and memory deficits. Memantine was effective and safe in several clinical studies, particularly in Alzheimer's disease. The compound is completely absorbed after oral intake and undergoes little metabolism. Having a low probability for drug-drug interactions, memantine, in principle, is suited for elderly patients exposed to multiple therapeutic therapies.  相似文献   

20.
Glutamatergic synaptic transmission in the mammalian central nervous system was slowly established over a period of some 20 years, dating from the 1950s. Realisation that glutamate and like amino acids (collectively known as excitatory amino acids (EAA)) mediated their excitatory actions via multiple receptors preceded establishment of these receptors as synaptic transmitter receptors. EAA receptors were initially classified as N-methyl-D-aspartate (NMDA) and non-NMDA receptors, the latter subdivided into quisqualate (later AMPA) and kainate receptors after agonists that appeared to activate these receptors preferentially, and by their sensitivity to a range of differentially acting antagonists developed progressively during the 1970s. NMDA receptors were definitively shown to be synaptic receptors on spinal neurones by the sensitivity of certain excitatory pathways in the spinal cord to a range of specific NMDA receptor antagonists. Importantly, specific NMDA receptor antagonists appeared to be less effective at synapses in higher centres. In contrast, antagonists that also blocked non-NMDA as well as NMDA receptors were almost universally effective at blocking synaptic excitation within the brain and spinal cord, establishing both the existence and ubiquity of non-NMDA synaptic receptor systems throughout the CNS. In the early 1980s, NMDA receptors were shown to be involved in several central synaptic pathways, acting in concert with non-NMDA receptors under conditions where a protracted excitatory postsynaptic potential was effected in response to intense stimulation of presynaptic fibres. Such activation of NMDA receptors together with non-NMDA receptors led to the phenomenon of long-term potentiation (LTP), associated with lasting changes in synaptic efficacy (synaptic plasticity) and considered to be an important process in memory and learning. During the 1980s, it was shown that certain glutamate receptors in the brain mediated biochemical changes that were not susceptible to NMDA or non-NMDA receptor antagonists. This dichotomy was resolved in the early 1990s by the techniques of molecular biology, which identified two families of glutamate-binding receptor proteins (ionotropic (iGlu) and metabotropic (mGlu) receptors). Development of antagonists binding to specific protein subunits is currently enabling precise identification of discrete iGlu or mGlu receptor subtypes that participate in a range of central synaptic processes, including synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号