首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+ CD25+调节性T细胞AICD机制的研究   总被引:3,自引:1,他引:3  
目的探讨CD4^+CD25^+调节性T细胞活化诱导的细胞死亡(AICD)发生的机制。方法CD4^+CD25^+T细胞以磁性细胞分离器(MACS)从BALB/c小鼠或DO11.10小鼠的静息T细胞分离纯化。体外细胞增殖抑制实验证实其免疫调节作用。CD4^+CD25^+T细胞的AICD以CD3/CD28单克隆抗体活化或以特异性OVA323-339肽、抗原提呈细胞活化等两种方法获得。CD4^+CD25^+T细胞凋亡相关基因的表达通过实时定量PCR检测。流式细胞仪检测细胞的凋亡率。进一步观察FasL中和抗体、TRAIL中和抗体及caspase抑制剂zVAD-fmk对CD4^+CD25^+T细胞凋亡的影响。结果MACS成功分离CD4^+CD25^+T细胞,纯度可达98%,该细胞可特异性表达Foxp3基因,能明显抑制效应性T细胞的体外增殖。CD3/CD28抗体以及OVA特异性抗原活化8d的CD4^+CD25^+调节性T细胞AICD达39%~45%。活化前后的CD4^+CD25^+调节性T细胞死亡受体家族表达发生明显变化;FasL、TRAIL中和抗体及zVAD-fmk可明显抑制CD4^+CD25^+调节性T细胞的凋亡。结论FasL/Fas及其他凋亡相关分子可能参与了CD4^+CD25^+调节性T细胞的凋亡。  相似文献   

2.
CD4(+) T cells play a major role in containing herpesvirus infections. However, their cellular targets remain poorly defined. In vitro CD4(+) T cells have been reported to kill B cells that harbor a latent gammaherpesvirus. We used the B cell-tropic murine gammaherpesvirus-68 (MHV-68) to test whether this also occurred in vivo. MHV-68 that expressed cytoplasmic ovalbumin (OVA) in tandem with its episome maintenance protein, ORF73, stimulated CD8(+) T cells specific for the H2-K(b)-restricted OVA epitope SIINFEKL and was rapidly eliminated from C57BL/6 (H2(b)) mice. However, the same virus failed to stimulate CD4(+) T cells specific for the I-A(d)/I-A(b)-restricted OVA(323-339) epitope. We overcame any barrier to the MHC class II-restricted presentation of an endogenous epitope by substituting OVA(323-339) for the CLIP peptide of the invariant chain (ORF73-IRES-Ii-OVA), again expressed in tandem with ORF73. This virus presented OVA(323-339) but showed little or no latency deficit in either BALB/c (H2(d)) or C57BL/6 mice. Latent antigen-specific CD4(+) T cells therefore either failed to recognize key virus-infected cell populations in vivo or lacked the effector functions required to control them.  相似文献   

3.
NOD mice have a relative deficiency of CD4+CD25+ regulatory T cells that could result in an inability to maintain peripheral tolerance. The aim of this study was to induce the generation of CD4+CD25+ regulatory T cells in response to autoantigens to prevent type 1 diabetes (T1D). We found that immunization of NOD mice with insulin B-chain peptide B:9-23 followed by 72 h in vitro culture with B:9-23 peptide induces generation of CD4+CD25+ regulatory T cells. Route of immunization has a critical role in the generation of these cells. Non-autoimmune mice BALB/c, C57BL/6 and NOR did not show up regulation of CD4+CD25+ regulatory T cells. These cells secreted large amounts of TGF-beta and TNF-alpha with little or no IFN-gamma and IL-10. Adoptive transfer of these CD4+CD25+ regulatory T cells into NOD-SCID mice completely prevented the adoptive transfer of disease by diabetogenic T cells. Although, non-self antigenic OVA (323-339) peptide immunization and in vitro culture with OVA (323-339) peptide does result in up regulation of CD4+CD25+ T cells, these cells did not prevent transfer of diabetes. Our study for the first time identified the generation of antigen-specific CD4+CD25+ regulatory T cells specifically in response to immunization with B:9-23 peptide in NOD mice that are capable of blocking adoptive transfer of diabetes. Our results suggest the possibility of using autoantigens to induce antigen-specific regulatory T cells to prevent and regulate autoimmune diabetes.  相似文献   

4.
Naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells (CD25(+) Tregs) constitute a specialized population of T cells that is essential for the maintenance of peripheral self-tolerance. The immune regulatory function of CD25(+) Tregs depends upon their activation. We found that anti-CD4 antibodies activate the suppressive function of human CD25(+) Tregs in a dose-dependent manner. We demonstrate that CD4-activated CD25(+) Tregs suppress the proliferation of CD4(+) and CD8(+) T cells, their IL-2 and IFN-gamma production as well as the capacity of CD8(+) T cells to re-express CD25. By contrast, anti-CD4 stimulation did not induce suppressive activity in conventional CD4(+) T cells. These results identify CD4 as a trigger for the suppressive function of CD25(+) Tregs and suggest a possible CD4-mediated exploitation of these cells.  相似文献   

5.
Qiao M  Thornton AM  Shevach EM 《Immunology》2007,120(4):447-455
CD4(+) CD25(+) Foxp3(+) naturally occurring regulatory T cells (nTreg) are potent inhibitors of almost all immune responses. However, it is unclear how this minor population of cells is capable of exerting its powerful suppressor effects. To determine whether nTreg mediate part of their suppressor function by rendering naive T cells anergic or by converting them to the suppressor phenotype, we cocultured mouse nTreg with naive CD4(+) CD25(-) T cells from T-cell receptor (TCR) transgenic mice on a RAG deficient (RAG(-/-)) background in the presence of anti-CD3 and interleukin-4 (IL-4) to promote cell viability. Two distinct responder cell populations could be recovered from the cocultures. One population remained undivided in the coculture and was non-responsive to restimulation with anti-CD3 or exogenous IL-2, and could not up-regulate IL-2 mRNA or CD25 expression upon TCR restimulation. Those responder cells that had divided in the coculture were anergic to restimulation with anti-CD3 but responded to restimulation with IL-2. The undivided population was capable of suppressing the response of fresh CD4(+) CD25(-) T cells and CD8(+) T cells, while the divided population was only marginally suppressive. Although cell contact between the induced regulatory T cell (iTreg) and the responders was required for suppression to be observed, anti-transforming growth factor-beta partially abrogated their suppressive function. The iTreg did not express Foxp3. Therefore nTreg are not only able to suppress immune responses by inhibiting cytokine production by CD4(+) CD25(-) responder cells, but also appear to modulate the responder cells to render them both anergic and suppressive.  相似文献   

6.
When oral tolerance was induced in either specific pathogen-free (SPF) or germ-free (GF) mice, ovalbumin (OVA) feeding before immunization induced oral tolerance successfully in SPF mice. On the other hand, OVA-specific immunoglobulin G1 (IgG1) and IgE titres in OVA-fed GF mice were comparable to those in phosphate-buffered saline-fed GF mice, thus demonstrating that oral tolerance could not be induced in GF mice. The frequencies of CD25(+) CD4(+)/CD4(+) cells in the mesenteric lymph node (MLN) and the absolute number of CD25(+) CD4(+) cells in the Peyer's patches and MLN of naive GF mice were significantly lower than those in naive SPF mice. In an in vitro assay, the CD25(+) CD4(+) cells from the naive SPF mice suppressed more effectively the proliferation of responder cells in a dose-dependent manner than those from the GF mice. In addition, the CD25(+) CD4(+) regulatory T (T(reg)) cells from the naive SPF mice produced higher amounts of interleukin (IL)-10 and transforming growth factor (TGF)-beta than those from the GF mice. When anti-TGF-beta neutralizing antibody, but not anti-IL-10 neutralizing antibody, was added to the in vitro proliferation assay, the suppressive effect of the CD25(+) CD4(+) T(reg) cells from the SPF mice was attenuated to the same level as that of the CD25(+) CD4(+) cells from the GF mice. In conclusion, the TGF-beta-producing CD25(+) CD4(+) T(reg) cells from the MLN of SPF mice played a major role in oral tolerance induction. In addition, as the regulatory function of the CD25(+) CD4(+) cells from the naive GF mice was much lower than that of the CD25(+) CD4(+) T(reg) cells from the SPF mice, indigenous microbiota are thus considered to contribute to the induction and maintenance of CD25(+) CD4(+) T(reg) cells.  相似文献   

7.
Smith TR  Alexander C  Kay AB  Larché M  Robinson DS 《Allergy》2004,59(10):1097-1101
BACKGROUND: We have previously described both modification of allergen immunotherapy using peptide fragments, and reduced regulation of allergen stimulated T cells by CD4(+) CD25(+) T cells from allergic donors when compared with nonallergic controls. It has been suggested that allergen immunotherapy induces regulatory T cell activity: we hypothesized that allergen peptide immunotherapy might increase suppressive activity of CD4(+) CD25(+) T cells. OBJECTIVE: To examine cat allergen-stimulated CD4 T cell responses and their suppression by CD4(+) CD25(+) T cells before and after cat allergen peptide immunotherapy in a double-blind placebo-controlled study. METHODS: Peripheral blood was obtained and stored before and after peptide immunotherapy or placebo treatment. CD4(+) and CD4(+) CD25(+) were then isolated by immunomagnetic beads and cultured with allergen in vitro. RESULTS: Comparing cells from blood taken before with that after peptide immunotherapy there was a significant reduction in both proliferation and IL-13 production by allergen-stimulated CD4+ T cells, whereas no change was seen after placebo. CD4(+) CD25(+) T cells suppressed both proliferation and IL-13 production by CD4(+) CD25(-) T cells before and after therapy but peptide therapy was not associated with any change in suppressive activity of these cells. CONCLUSION: Allergen peptide immunotherapy alters T cell response to allergen through mechanisms other than changes in CD4(+) CD25(+) T cell suppression.  相似文献   

8.
To track epitope-specific CD4(+) T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA(323-339) epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA(II), replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4(+) T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4(+) T cells were recruited to the infected lung both in the presence and absence of the OVA(323-339) epitope. These data show that, when primed, CD4(+) T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.  相似文献   

9.
Hamza E  Gerber V  Steinbach F  Marti E 《Immunology》2011,134(3):292-304
Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-β1 (TGF-β1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-β1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-β1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.  相似文献   

10.
ABSTRACT: BACKGROUND: Antigen-specific immunotherapy (SIT) has been widely practiced in treating allergic diseases such as asthma. However, this therapy may induce a series of allergic adverse events during treatment. Peptide immunotherapy (PIT) was explored to overcome these disadvantages. We confirmed that multiple antigen peptides (MAPs) do not cause autoimmune responses, which led to the presumption that MAPs intervention could alleviate allergic airway inflammation without inducing adverse effects. RESULTS: In this study, synthesized OVA323-339MAP octamers were subcutaneously injected into ovalbumin (OVA)-sensitized and -challenged Balb/c mice to observe its effect on allergic airway inflammation, Th2 immune response, and immune regulating function. It was confirmed that OVA sensitization and challenge led to significant peritracheal inflammatory, cell infiltration, and intensive Th2 response. Treatment of OVA323-339MAP octomers in the airway inflammation mice model increased CD4+CD25+Foxp3+ T regulatory (Treg) cells and their regulatory function in peripheral blood, mediastinal draining lymph nodes, and the spleen. Furthermore, OVA323-339MAP increased IL-10 levels in bronchial alveolar lavage fluid (BALF); up-regulated the expression of IL-10,membrane-bound TGF-beta1, as well as Foxp3 in lung tissues; and up-regulated programmed death-1 (PD-1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4) on the surface of Treg cells. These results were further correlated with the decreased OVA specific immunoglobulin E (sIgE) level and the infiltration of inflammatory cells such as eosinophils and lymphocytes in BALF. However, OVA323-339 peptide monomers did not show any of the mentioned effects in the same animal model. CONCLUSIONS: Our study indicates that OVA323-339MAP had significant therapeutic effects on mice allergic airway inflammation by regulating the balance of Th1/Th2 response through Treg cells in vivo. Key words Allergic airway inflammation; Specific immunotherapy; Multiple antigen peptide.  相似文献   

11.
Transplantation tolerance induced by neonatal injection of semi-allogeneic spleen cells is associated with a pathological syndrome caused by T helper type 2 (Th2) differentiation of donor-specific CD4(+) T lymphocytes. We have shown previously that this Th2-biased response is inhibited by host CD8(+) T cells. Herein, we demonstrate that upon neonatal immunization with (A/J × BALB/c)F(1) spleen cells, BALB/c mice expand a population of CD8(+) T cells expressing both CD25 and forkhead box P3 (FoxP3) markers. In this setting, CD8(+) CD25(+) T cells predominantly produce interferon (IFN)-γ and interleukin (IL)-10 and are efficient in controlling IL-4, IL-5 and IL-13 production by donor-specific CD4(+) T cells in vitro. CD8(+) FoxP3(-) T cells are single producers of IFN-γ or IL-10, whereas CD8(+) FoxP3(+) T cells are double producers of IFN-γ and IL-10. We further demonstrate that IFN-γ and IL-10 are two major cytokines produced by CD8(+) T cells involved in the in vivo regulation of Th2-type pathology. In this setting, we conclude that neonatal alloimmunization induces the expansion of several regulatory CD8(+) T cells which may control Th2 activities via IFN-γ and IL-10.  相似文献   

12.
本研究探讨血红素加氧酶-1(heme oxygenase-1,HO-1)诱导CD4+CD25+调节性T细胞(regulatory T cells,Treg)foxp3表达,增加IL-10分泌,提高CD4+CD25+Treg的免疫抑制功能。选用磁珠分离正常BALB/c小鼠脾脏CD4+CD25+Treg,转染含HO-1质粒pcDNA3HO-1,或用血红素(hemin)、锡-原卟啉(Sn-protoporphyrin,SnPP)干预,培养48 h。用卵清蛋白致敏、激发BALB/c小鼠建立哮喘模型,并在致敏、激发阶段分别经血红素和SnPP干预。用Real-Time PCR和Western blot方法分别测定培养细胞内HO-1、foxp3 mRNA及蛋白量;ELISA方法分别测定细胞上清液和动物血清中IL-10、TGF-β水平;用磁珠分离哮喘动物脾脏CD4+CD25+Treg进行功能抑制试验。结果显示:经pcDNA3HO-1和血红素上调CD4+CD25+Treg HO-1表达,foxp3表达及蛋白水平相应增加,上清液IL-10水平明显升高。而OVA致敏、激发的哮喘小鼠模型,经血红素干预后,血清IL-10分泌亦增多,CD4+CD25+Treg功能抑制作用显著增强。该结果表明HO-1诱导CD4+CD25+Treg特异性转录因子foxp3表达,促进IL-10分泌,增强CD4+CD25+Treg的调节功能,具有显著的免疫抑制作用。  相似文献   

13.
CD25(+)CD4(+) regulatory T cells inhibit the activation of autoreactive T cells in vitro and in vivo, and suppress organ-specific autoimmune diseases. The mechanism of CD25(+)CD4(+) T cells in the regulation of experimental autoimmune encephalomyelitis (EAE) is poorly understood. To assess the role of CD25(+)CD4(+) T cells in EAE, SJL mice were immunized with myelin proteolipid protein (PLP)(139-151) to develop EAE and were treated with anti-CD25 mAb. Treatment with anti-CD25 antibody following immunization resulted in a significant enhancement of EAE disease severity and mortality. There was increased inflammation in the central nervous system (CNS) of anti-CD25 mAb-treated mice. Anti-CD25 antibody treatment caused a decrease in the percentage of CD25(+)CD4(+) T cells in blood, peripheral lymph node (LN) and spleen associated with increased production of IFN-gamma and a decrease in IL-10 production by LN cells stimulated with PLP(130-151) in vitro. In addition, transfer of CD25(+)CD4(+) regulatory T cells from naive SJL mice decreased the severity of active EAE. In vitro, anti-CD3-stimulated CD25(+)CD4(+) T cells from naive SJL mice secreted IL-10 and IL-10 soluble receptor (sR) partially reversed the in vitro suppressive activity of CD25(+)CD4(+) T cells. CD25(+)CD4(+) T cells from IL-10-deficient mice were unable to suppress active EAE. These findings demonstrate that CD25(+)CD4(+) T cells suppress pathogenic autoreactive T cells in actively induced EAE and suggest they may play an important natural regulatory function in controlling CNS autoimmune disease through a mechanism that involves IL-10.  相似文献   

14.
We have identified a novel interleukin (IL)-7-responsive T cell population [forkhead box P3 (FoxP3(+) ) CD4(+) CD25(+) CD127(+) ] that is comparably functionally suppressive to conventional FoxP3(+) CD4(+) CD25(+) regulatory T cells (T(regs) ). Although IL-2 is the most critical cytokine for thymic development of FoxP3(+) T(regs) , in the periphery other cytokines can be compensatory. CD25(+) CD127(+) T cells treated with IL-7 phenotypically 'matured' into the known 'classical' FoxP3(+) CD4(+) CD25(high) CD127(-) FoxP3(+) T(regs) . In freshly isolated splenocytes, the highest level of FoxP3 expression was found in CD127(+) CD25(+) T cells when compared with CD127(-) CD25(+) or CD127(+) CD25(-) cells. IL-7 treatment of CD4(+) CD25(+) T cells induced an increase in the accumulation of FoxP3 in the nucleus in vitro. IL-7-mediated CD25 cell surface up-regulation was accompanied by a concurrent down-regulation of CD127 in vitro. IL-7 treatment of the CD127(+) CD25(+) FoxP3(+) cells also resulted in up-regulation of cytotoxic T lymphocyte antigen 4 without any changes in CD45RA at the cell surface. Collectively, these data support emerging evidence that FoxP3(+) T cells expressing CD127 are comparably functionally suppressive to CD25(+) CD127(-) FoxP3(+) T cells. This IL-7-sensitive regulation of FoxP3(+) T(reg) phenotype could underlie one peripheral non-IL-2-dependent compensatory mechanism of T(reg) survival and functional activity, particularly for adaptive T(regs) in the control of autoimmunity or suppression of activated effector T cells.  相似文献   

15.
16.
Advancing age is associated with significant alterations in immune functions, including a decline in CD4 T cell function, in both mice and humans. In our previous report, we showed that CD4(+)CD25(-) T cells in aged (24-month-old) mice, especially after in vitro pre-stimulation of these cells, exhibit hyporesponsive and suppressive properties. We examined here whether the suppressive activity of aged CD4(+)CD25(-) T cells is ascribable to a particular population within these cells. In vitro analyses revealed that cell populations rapidly extruding Rhodamine-123 (R123) (referred to as R123(lo) cells) in aged CD4(+)CD25(-) T cells have a more potent suppressive function compared with R123(hi) populations.In addition, CD103(+) cells in freshly prepared aged CD4(+)CD25(-)R123(lo) T cells had a most potent suppressive activity. Both R123(hi) and R123(lo) populations had individually stronger suppressive activity after pre-stimulation than before pre-stimulation. Furthermore, the R123(lo) population in young CD4(+)CD25(-) T cells also had different properties from R123(hi) T cells: low responsiveness, no additive effect in proliferation assays, and the gain of a suppressive function after in vitro pre-stimulation. Taken together, these results suggest that CD4(+)CD25(-)R123(lo) T cells are a unique population within whole CD4(+)CD25(-) T cells. This population exists in the early stage of the life span, and the properties in this population become obvious with aging, that is the gain of their suppressive activity.  相似文献   

17.
Yang J  Zhao J  Yang Y  Zhang L  Yang X  Zhu X  Ji M  Sun N  Su C 《Immunology》2007,120(1):8-18
A number of epidemiological and clinical studies have suggested an inverse association between allergy and helminth infection, such as Schistosomiasis. Therefore, we hypothesize that Schistosoma japonicum egg antigens, a type of native antigen, can induce production of CD4(+) CD25(+) T cells with regulatory activity, modulating airway inflammation and inhibiting asthma development. The frequency of CD4(+) CD25(+) T cells was determined by flow cytometry for mice treated with ovalbumin (OVA), CD25(+) depletion/OVA, schistosome egg antigens, schistosome egg antigens/OVA and for control mice. The ability of CD25(+) T cells from these mice to suppress T-cell proliferation and cytokine production was investigated both in vivo and in vitro. Results showed that the CD4(+) CD25(+) T cells of OVA-treated mice exhibited impaired control of dysregulated mucosal T helper 2 responses compared to the controls (P < 0.05). Depletion of CD25(+) cells accelerated OVA-induced airway inflammation and increased the expression of interleukin (IL)-5 and IL-4. Treatment with schistosome egg antigens increased the number and suppressive activity of CD4(+) CD25(+) T cells, which made IL-10, but little IL-4. In a murine model of asthma, S. japonicum egg antigens decreased the expression of Th2 cytokines, relieved antigen-induced airway inflammation, and inhibited asthma development. Thus, we provided evidence that S. japonicum egg antigens induced the production of CD4(+) CD25(+) T cells, resulting in constitutive immunosuppressive activity and inhibition of asthma development. These results reveal a novel form of protection against asthma and suggest a mechanistic explanation for the protective effect of helminth infection on the development of allergy.  相似文献   

18.
A subset of CD4(+) T cells, the CD4(+) CD25(+) regulatory T (T(reg)) cells in the lymphoid organs and peripheral blood are known to possess suppressive function. Previous in vitro and in vivo studies have indicated that T cell receptor (TCR) signal is required for development of such 'natural regulatory (T(reg)) cells' and for activation of the effector function of CD4(+) CD25(+) regulatory T cells. CD5 is a cell surface molecule present on all T cells and a subtype of B lymphocytes, the B-1 cells, primarily localized to coelomic cavities, Peyer's patches, tonsils and spleen. CD5 acts as a negative regulator of T cell and B cell signaling via recruitment of SHP-1. Here, we demonstrate that T(reg) cells obtained from CD5(-/-) mice are more potent than those from wild type mice in suppressing the in vitro cell proliferation of anti-CD3 stimulated CD4(+) CD25(-) responder T cells. This phenomenon was cell contact and GITR dependent. Lack of CD5 expression on T(reg) cells (from spleen, lymph node and thymus) did not affect the intracellular levels of Foxp3. However, CD5(-/-) T(reg) thymocytes were able to elicit a higher Ca(2+) response to TCR + co-stimulatory signals than the wild type cells. CD5(-/-) mice expressed more Foxp3 mRNA in the colon than wild type mice, and additionally, the severity of the dextran sulfate sodium (DSS)-induced colitis in CD5(-/-) mice was less than the wild type strain. We suggest that manipulation of CD5 expression or the downstream signaling components of CD4(+) CD25(+) T(reg) cells as a potential strategy for therapeutic intervention in cases of auto-immune disorders.  相似文献   

19.
CD4(+) T-cell-dependent acquired immunity confers antibody-independent protection against pneumococcal colonization. Since this mechanism is poorly understood for extracellular bacteria, we assessed the antigen specificity of the induction and recall of this immune response by using BALB/c DO11.10Rag(-/-) mice, which lack mature B and T cells except for CD4(+) T cells specific for the OVA(323-339) peptide derived from ovalbumin. Serotype 6B Streptococcus pneumoniae strain 603S and unencapsulated strain Rx1Delta lytA were modified to express OVA(323-339) as a fusion protein with surface protein A (PspA) (strains 603OVA(1) and Rx1Delta lytAOVA(1)) or with PspA, neuraminidase A, and pneumolysin (Rx1Delta lytAOVA(3)). Whole-cell vaccines (WCV) were made of ethanol-killed cells of Rx1Delta lytA plus cholera toxin (CT) adjuvant, of Rx1Delta lytAOVA(1) + CT (WCV-OVA(1)), and of Rx1Delta lytAOVA(3) + CT (WCV-OVA(3)). Mice intranasally immunized with WCV-OVA(1), but not with WCV or CT alone, were protected against intranasal challenge with 603OVA(1). There was no protection against strain 603S in mice immunized with WCV-OVA(1). These results indicate antigen specificity of both immune induction and the recall response. Effector action was not restricted to antigen-bearing bacteria since colonization by 603S was reduced in animals immunized with vaccines made of OVA-expressing strains when ovalbumin or killed Rx1Delta lytAOVA(3) antigen was administered around the time of challenge. CD4(+) T-cell-mediated protection against pneumococcal colonization can be induced in an antigen-specific fashion and requires specific antigen for effective bacterial clearance, but this activity may extend beyond antigen-expressing bacteria. These results are consistent with the recruitment and/or activation of phagocytic or other nonspecific effectors by antigen-specific CD4(+) T cells.  相似文献   

20.
Our purpose was to determine whether numbers of CD4(+)CD25(+) T [T regulatory (T(reg))] cells and mRNA expression of functional molecules of T(reg) are related to airway allergy and disease severity in 51 paediatric patients with allergic rhinitis or bronchial asthma and 47 healthy controls. Surface markers were evaluated with flow cytometry, and mRNA was determined with real-time polymerase chain reaction. Children with allergic disease had fewer CD4(+)CD25(+) T cells (8 x 49% +/- 2 x 41% versus 9 x 58% +/- 2 x 43%, P<0 x 05) and CD4(+)CD25(hi) T cells (1 x 32% +/- 0 x 68% versus 1 x 70% +/- 0 x 68%, P<0 x 01) than control subjects. Numbers of CD4(+)CD25(+) and CD4(+)CD25(hi) T lymphocytes were higher in children with persistent allergic rhinitis and/or moderate-severe bronchial asthma than in those with respective milder disease. The number of T(reg) cells was correlated positively with total immunoglobulin E level. The mRNA expression of forkhead box P3 (FoxP3) was increased in moderate-severe versus mild asthma (2 x 93 +/- 0 x 38 versus 1 x 60 +/- 0 x 31, P< 0 x 01). Patients with moderate-severe bronchial asthma also had increased mRNA expression of interleukin (IL)-10 compared with patients with mild asthma (15 x 24 +/- 4 x 07 versus 3 x 77 +/- 2 x 18, P<0 x 01). The suppressive function of T(reg) cells from patients with more severe asthma was competent in vitro. On average, decreased numbers of T(reg) cells in children with allergic airway disease might represent a defect of the T(reg) population. With increased expression of FoxP3 and IL-10 in T(reg) from patients with relatively severe allergic disease, adaptive and functional T(reg) might be generated in response to aggravated atopy and disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号