首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Research on hepatic stem cells has entered a new era of controversy, excitement, and great expectations. Although adult liver stem cells have not yet been isolated, an enormous repopulating capacity of transplanted mature hepatocytes under conditions of continuous liver injury has been discovered. Stem/progenitor cells from fetal liver have been successfully isolated and transplanted, repopulating up to 10% of normal liver. However, progenitor cell lines from adult and embryonic liver have not shown significant repopulating activity. Intensive research on embryonic stem cells has revealed the first promising attempts to use these cells as a source of hepatic progenitors. Conditions for their differentiation in vitro, isolation of purified hepatic progenitor cells, and liver repopulation are currently being evaluated. Multilineage adult progenitor cells of mesenchymal origin from bone marrow, muscle, and brain may turn out to be the long-sought primitive potential stem cells remaining in adult tissues.  相似文献   

2.
Origin of hepatocellular carcinoma: role of stem cells   总被引:9,自引:0,他引:9  
The question of whether hepatocellular carcinoma (HCC) arises from the differentiation block of stem cells or dedifferentiation of mature cells remains controversial. Recently, researchers suggested that HCC may originate from the transdifferentiation of bone marrow cells. Interestingly, there are four levels of cells in the hepatic stem cell lineage: bone marrow cells, hepato-pancreas stem cells, oval cells and hepatocytes. Hematopoietic stem cells and the liver are known to have a close relationship in early development. Bone marrow stem cells could differentiate into oval cells, which could differentiate into hepatocytes and duct cells. The development of pancreatic and liver buds in embryogenesis suggests the existence of a common progenitor cell to both the pancreas and liver. Cellular events during hepatocarcinogenesis illustrate that HCC may arise from cells at various stages of differentiation in the hepatic stem cell lineage.  相似文献   

3.
Prolonged exposure of mice to diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) results in hepatobiliary injury, atypical ductular proliferation, oval cell appearance, and limited fibrosis. Previously, we reported that short-term ingestion of DDC diet by hepatocyte-specific β-catenin conditional knockout (KO) mice led to fewer A6-positive oval cells than wildtype (WT) littermates. To examine the role of β-catenin in chronic hepatic injury and repair, we exposed WT and KO mice to DDC for 80 and 150 days. Paradoxically, long-term DDC exposure led to significantly more A6-positive cells, indicating greater atypical ductular proliferation in KO, which coincided with increased fibrosis and cholestasis. Surprisingly, at 80 and 150 days in KO we observed a significant amelioration of hepatocyte injury. This coincided with extensive repopulation of β-catenin null livers with β-catenin-positive hepatocytes at 150 days, which was preceded by appearance of β-catenin-positive hepatocyte clusters at 80 days and a few β-catenin-positive hepatocytes at earlier times. Intriguingly, occasional β-catenin-positive hepatocytes that were negative for progenitor markers were also observed at baseline in the KO livers, suggesting spontaneous escape from cre-mediated recombination. These cells with hepatocyte morphology expressed mature hepatocyte markers but lacked markers of hepatic progenitors. The gradual repopulation of KO livers with β-catenin-positive hepatocytes occurred only following DDC injury and coincided with a progressive loss of hepatic cre-recombinase expression. A few β-catenin-positive cholangiocytes were observed albeit only after long-term DDC exposure and trailed the appearance of β-catenin-positive hepatocytes. CONCLUSION: In a chronic liver injury model, β-catenin-positive hepatocytes exhibit growth and survival advantages and repopulate KO livers, eventually limiting hepatic injury and dysfunction despite increased fibrosis and intrahepatic cholestasis.  相似文献   

4.
BACKGROUND AND AIMS: The ability of the bone marrow cells to differentiate into liver, pancreas, and other tissues led to the speculation that these cells might be the source of adult stem cells found in these organs. The present study analyzed whether the bone marrow cells are a source of hepatic oval cells involved in rat liver regeneration induced by 2-acetylaminofluorene (2-AAF) and 70% partial hepatectomy (PHx). METHODS: Three groups of mutant F344 dipeptidyl peptidase IV-deficient (DPPIV(-)) rats were required for the study. Groups A and B received the mitotic inhibitor monocrotaline, followed by male F344 (DPPIV(+)) bone marrow transplantation. Next, group A received PHx only, while group B received the 2-AAF/PHx required for the oval cell activation. The last group C was used to analyze the effects of monocrotaline on transplanted bone marrow cells. These rats underwent transplantation with bone marrow cells and were then treated with monocrotaline. Subsequently, the animals were treated with 2-AAF/PHx. RESULTS: In group A, DPPIV(+) hepatocytes were found in the liver. Group B showed that approximately 20% of the oval cell population expressed both donor marker (DPPIV) and alpha-fetoprotein, and some differentiated into hepatocytes. In contrast, animals in group C failed to significantly induce oval cells with the donor DPPIV antigen. In addition, X/Y-chromosome analysis revealed that fusion was not contributing to differentiation of donor-derived oval cells. CONCLUSIONS: Our results suggest that under certain physiologic conditions, a portion of hepatic stem cells might arise from the bone marrow and can differentiate into hepatocytes.  相似文献   

5.
BACKGROUND AND AIM: Recent studies indicated that hepatic stem cells in the bone marrow could differentiate into mature hepatocytes, suggesting that bone marrow cells could be used for replacement of damaged hepatocytes in a variety of liver diseases. Hepatocellular carcinoma (HCC) is thought to arise from hepatic stem cells. In this study, we investigated the malignant potential of hepatic stem cells derived from the bone marrow in a mouse model of chemical hepatocarcinogenesis. METHODS: Bone marrow cells were obtained from the male beta-galactosidase (beta-gal) transgenic mouse and transplanted into female recipient mice. Hepatocarcinogenesis was induced by a year of treatment with diethylnitrosamine and phenobarbital (NDEA/PB). One year later, the liver was removed from each treated mouse and evaluated by x-gal staining, immunohistochemistry, and fluorescence in situ hybridisation (FISH). RESULTS: Forty per cent of recipient mice survived and developed multiple HCC. Clusters of beta-gal positive mature hepatocytes were detected sporadically in the entire liver of NDEA/PB treated mice who underwent bone marrow transplantation (BMT) with while no such hepatocytes were identified in the liver of BMT mice that were not treated with NDEA/PB. The Y chromosome was detected with the same frequency as the donor male liver in clusters of beta-gal positive mature hepatocytes by FISH. However, no HCC was positive for beta-gal or the Y chromosome. Immunohistochemically, beta-gal positive mature hepatocytes did not express CD34 or alpha-fetoprotein. CONCLUSIONS: Our results suggest that hepatic stem cells derived from the bone marrow have low malignant potential, at least in our model.  相似文献   

6.
Bodine  DM; Seidel  NE; Orlic  D 《Blood》1996,88(1):89-97
We have examined the repopulating ability of bone marrow and peripheral blood cells collected immediately and at intervals after treatment of donor mice with the combination of granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF). Using a competitive repopulation assay we showed that the repopulating ability of peripheral blood cells was highest immediately after cytokine treatment and declined to normal levels within 6 weeks of the termination of treatment with G-CSF and SCF. In contrast the repopulating ability of bone marrow cells was low immediately after cytokine treatment and increased to levels that were 10-fold or more greater than marrow from untreated mice by 14 days after termination of treatment with G-CSF and SCF. This high level of repopulating activity declined to normal levels by 6 weeks after termination of treatment with G-CSF and SCF. The high level of repopulating ability was confirmed by injecting cells from G- CSF- and SCF-treated donors into unconditioned recipients. Peripheral blood cells collected immediately after treatment with G-CSF and SCF engrafted into unconditioned mice sevenfold better than an equivalent number of bone marrow cells from untreated mice. Likewise, bone marrow cells collected 14 days after treatment of the donor animal with G-CSF and SCF engrafted at 10-fold higher levels than an equivalent number of bone marrow cells from untreated mice. We conclude that the treatment of donor mice with G-CSF and SCF causes a transient increase in the repopulating ability of peripheral blood and later of bone marrow. These observations may have applications to clinical hematopoietic stem cell transplantation.  相似文献   

7.
Hepatic oval cells involved in some forms of liver regeneration express many markers also found on hematopoietic stem cells (HSCs). In addition, multiple independent reports have demonstrated that bone marrow cells can give rise to several hepatic epithelial cell types, including oval cells, hepatocytes, and duct epithelium. These observations have resulted in the hypothesis that bone marrow resident stem cells, specifically HSCs, are an important source for liver epithelial cell replacement, particularly during chronic injury. The function of such stem cells in hepatic injury responses is the topic of this article. Taken together, the published data on the role of bone marrow stem cells in liver damage suggest that they do not play a significant physiological role in the replacement of epithelial cells in any known form of hepatic injury. Fully functional bone marrow-derived hepatocytes exist but are extremely rare and are generated by cell fusion, not stem cell differentiation. Nonetheless, bone marrow-derived cells may play important indirect roles in liver regeneration. First, they may serve as a source for the replacement of endothelial cells. Second, hematopoietic cells, including lymphocytes, neutrophils, macrophages, and platelets, may provide crucial factors required for efficient healing of damaged liver.  相似文献   

8.
Expansion of hematopoietic stem cells in the developing liver of a mouse embryo   总被引:11,自引:11,他引:11  
Ema H  Nakauchi H 《Blood》2000,95(7):2284-2288
The activity of hematopoietic stem cells in the developing liver of a C57BL/6 mouse embryo was quantified by a competitive repopulation assay. Different doses of fetal liver cells at days 11 to 18 of gestation were transplanted into irradiated mice together with 2 x 10(5) adult bone marrow cells. A long-term repopulation in myeloid-, B-cell, and T-cell lineage by fetal liver cells was evaluated at 20 weeks after transplantation. At day 12 of gestation multilineage repopulating activity was first detected in the liver as 50 repopulating units (RU) per liver. The number of RU per liver increased 10-fold and 33-fold by day 14 and day 16 of gestation, and decreased thereafter, suggesting a single wave of stem cell development in the fetal liver. A limiting dilution analysis revealed that the frequency of competitive repopulating units (CRU) in fetal liver cells at day 12 of gestation was similar to that at day 16 of gestation. Because of an increase of total fetal liver cell number, the absolute number of CRU per liver from days 12 to 16 of gestation increased 38-fold. Hence, the mean activity of stem cells (MAS) that is given by RU per CRU remained constant from days 12 to 16 of gestation. From these data we conclude that hematopoietic stem cells expand in the fetal liver maintaining their level of repopulating potential.  相似文献   

9.
The stem cell leukemia (SCL) gene is essential for the development of hematopoietic stem cells in the embryo. Here, we used a conditional gene targeting approach to examine the function of SCL in adult hematopoietic stem cells (HSCs). Flow cytometry of bone marrow from SCL-deleted mice demonstrated a 4-fold increase in number of Lin(neg) c-kit(+) Sca-1(+) cells. Despite this increase in the number of phenotypic HSCs, competitive repopulation assays demonstrated a severe multilineage defect in repopulation capacity by SCL-deleted bone marrow cells. SCL-heterozygous cells also showed a mild repopulation defect, thus suggesting haploinsufficiency of SCL. The transplantation defect of SCL-deleted cells was observed within 4 weeks of transplantation, indicating a defect in a multipotent progenitor or short-term repopulating HSCs. Although the defect persisted in secondary transplants, it remained relatively stable, suggesting that SCL was not required for self-renewal of the HSCs. Generation of SCL-deleted cells within SCL-wild-type mice rescued the early repopulating defect. Together, our results suggest that SCL is required for the normal function of short-term repopulating HSCs.  相似文献   

10.
BACKGROUND AND OBJECTIVES: The aim of this study was to determine whether Hoechst effluxing side population cells isolated from murine liver represent hepatic stem cells, and to examine whether hepatic side population cells arise from bone marrow side population cells. DESIGN AND METHODS: Side population cells were isolated from murine liver by flow cytometry after Hoechst staining and injected directly into murine livers of animals pre-treated with the hepatotoxin 3,5 diethoxy carbonyl-1, 4-dihydrocollidine (DDC). Y-chromosome in situ hybridization was used to track donor cells in the livers. In addition, bone marrow side population cells were stably engrafted into the hematopoietic system of sublethally irradiated recipients and CD45 alleleic staining and Y-chromosome in situ hybridization were used to track side population cell progeny in the liver. RESULTS: In vitro, CD45pos and CD45neg hepatic SP cells gave rise to hematopoietic colonies and mixed colonies of hematopoietic and hepatic differentiation. After orthotopic liver cell transplantation, donor hepatic side population cells contributed to the regeneration of mature liver parenchyma and bile duct epithelium. After transplantation of bone marrow side population cells, both CD45pos and CD45neg hepatic side population cells were partially derived from donor stem cells and could be recruited to repair liver damage after treatment with DDC. INTERPRETATION AND CONCLUSIONS: These findings introduce hepatic side population cells as a facultative liver-regenerating population, reveal interchangeability of tissue stem cells at the level of the side population, and suggest that bone marrow-derived side population cells might be exploited for the repair of diseased or damaged liver.  相似文献   

11.
BACKGROUND: Several studies have demonstrated that bone marrow contains a subpopulation of stem cells capable of participating in the hepatic regenerative process, even if some reports indicate quite a low level of liver repopulation by human stem cells in the normal and transiently injured liver. AIMS: In order to overcome the low engraftment levels seen in previous models, we tried the direct intraperitoneal administration of human cord blood stem cells, using a model of hepatic damage induced by allyl alcohol in NOD/SCID mice. METHODS: We designed a protocol based on stem cell infusion following liver damage in the absence of irradiation. Flow cytometry, histology, immunohistochemistry and RT-PCR for human hepatic markers were performed to monitor human cell engraftment. RESULTS: Human stem cells were able to transdifferentiate into hepatocytes, to improve liver regeneration after damage and to reduce the mortality rate both in both protocols, even if with qualitative and quantitative differences in the transdifferentiation process. CONCLUSIONS: We demonstrated for the first time that the intraperitoneal administration of stem cells can guarantee a rapid liver engraftment. Moreover, the new protocol based on stem cell infusion following liver damage in the absence of irradiation may represent a step forward for the clinical application of stem cell transplantation.  相似文献   

12.
Hepatic "stem" cells: coming full circle   总被引:29,自引:0,他引:29  
Activation, proliferation, and differentiation of a distinct phenotype of cells, called oval cells, are observed after severe hepatic injuries in which the proliferation of existing hepatocytes is inhibited. Under those conditions, oval cells can act as bipotential progenitors of the two types of epithelial cells within the liver, hepatocytes and bile ductular cells. Oval cells are also believed to play a role in the hepatocellular carcinoma and cholangiocarcinoma development; although circumstantial data are available, no direct evidence exists to support this theory. Oval cells have usually been thought to be the progeny of an hepatic stem cell, native to the liver. Recently, however, we, as well as others, have obtained clear evidence that in the rodents, hepatic oval cells, or at least a fraction of them, can derive from a precursor cell of bone marrow origin. The rodent data have been supported by recent findings that human bone marrow cells are capable of becoming hepatocytes and cholangiocytes as well. Having shown that oval cells can be derived from an extrahepatic source, we now have the technology to address many unanswered questions in oval cell origin, fate, and physiology through the use of sex-mismatched bone marrow transplants.  相似文献   

13.
Oval cell-mediated liver regeneration: Role of cytokines and growth factors   总被引:24,自引:0,他引:24  
In experimental models, which induce liver damage and simultaneously block hepatocyte proliferation, the recruitment of a hepatic progenitor cell population comprised of oval cells is invariably observed. There is a substantial body of evidence to suggest that oval cells are involved in liver regeneration, as they differentiate into hepatocytes and biliary cells. Recently, bone marrow cells were shown to be a source of a stem cells with the capacity to repopulate the liver. Presently, the relationship between bone marrow cells and oval cells is unclear. Investigations will be greatly assisted by the availability of in vitro models based on a knowledge of cytokines that affect oval cells. While the cytokines, which regulate the different hematopoietic lineages, are well characterized, there is relatively little information regarding those that influence oval cells. This review outlines recent developments in the field of oval cell research and focuses on cytokines and growth factors that have been implicated in regulating oval cell proliferation and differentiation.  相似文献   

14.
OBJECTIVE: During aging, hematopoietic stem cell (HSC) exhaustion is more severe in BALB/cByJ (BALB) mice than in C57BL/6J (B6) mice. Our objective is to determine whether HSC exhaustion during development from fetus to adult also is more severe for BALB than for B6 mice. MATERIALS AND METHODS: Hematopoietic stem cells from fetal liver cells (FLCs) and from young adult bone marrow cells (BMCs) were compared using the competitive repopulation assay to measure long-term repopulating ability (LTRA) and HSC expansion after serial transplantation. LTRAs were measured in repopulating units (RU), as the ability to produce donor-type erythrocytes and lymphocytes in lethally irradiated recipients relative to the congenic fresh marrow competitor. To test expansion, FLCs or BMCs were serially transplanted into lethally irradiated carriers whose marrow cells were compared using fluorescence-activated cell staining (FACS), and subsequently tested for LTRA. RESULTS: BALB and B6 FLCs, respectively, repopulated 2.6 and 13.5 times as well as BMCs. LTRAs correlated with HSC expansion for BALB, but not B6. Per million donor cells, CD34(-) HSC-enriched fractions (HEFs) and total RU values were 6.8 and 4.6 times higher for FLCs than for BMCs in BALB carriers, while these ratios were only 1.2 and 0.97 higher in B6 carriers. CONCLUSION: In B6 HSC development, LTRA is dissociated from expansion. Although 1 x 10(6) BMCs have much lower LTRA, they expand HSCs as well as 1 x 10(6) FLCs. HSC expansion is partly exhausted in BALB, but not B6, during development.  相似文献   

15.
The bone marrow contains stem cells that have the potential to differentiate into a variety of organ-specific mature cells, including the liver and the pancreas. Recently, the origin of hepatic progenitors and hepatocytes was identified to be the bone marrow. However, evidence that describes which cells, among all bone marrow cells, differentiate into hepatocytes, has not yet been presented. Based on recent reports, hematopoietic and hepatic stem cells share characteristic markers such as CD34, c-kit, and Thy1. In particular, both hematopoietic and hepatic stem cells express the Thy1 antigen. We investigated whether rat Thy1-positive bone marrow cells express liver-specific genes in vitro, and whether transplanted Thy1 BM cells differentiate into mature hepatocytes in vivo. For collection of Thy1 cells from bone marrow, FITC-conjugated anti-Thy1.1 monoclonal antibody was used with a Fluorescence-Activated Cell Sorter system. A coculture system of 2 separate layers was used for culture of Thy bone marrow cells. Cultured Thy1 cells expressed albumin protein, which was analyzed by immunofluorescent staining. Thy1 bone marrow cells obtained from wild-type dipeptidyl peptidase IV (DPPIV(+)) male rat were directly transplanted into the injured liver of DPPIV mutant (DPPIV(−)) Fisher 344 female rats and differentiated into mature hepatocytes in recipient liver on 60 days. Donor-derived hepatocytes were confirmed by DPPIV staining and Y-chromsome in situ hybridization. Our results suggest that Thy1-positive bone marrow cells have the potential to generate liver-specific genes in vitro and can differentiate into mature hepatocytes in adult liver in vivo. Thy1-positive bone marrow stem cells may represent preexisting hepatocyte-specific stem cells.  相似文献   

16.
Primary hepatocytes are blocked in mitotic activity and well-defined culture conditions only allow the limited expansion of these cells. Various genetic modifications have therefore been employed to establish immortalized hepatic cell lines, but, unfortunately, proper hepatocyte cultures conducting a faithful hepatic gene expression program and lacking malignancy are hardly available. Here we report the immortalization of primary hepatocytes isolated from p19(ARF) null mice using the rationale that loss of p19(ARF) lowers growth-suppressive functions of p53 and bypasses cellular senescence without losing genetic stability. The established hepatocytes, called MIM, express liver-specific markers, show a nontumorigenic phenotype, and competence to undergo Fas-mediated apoptosis. Intrasplenic transplantation of GFP-expressing parental MIM cells into Fas-injured livers of SCID mice revealed liver-reconstituting activity. In the regenerated liver, MIM cells localized in small-sized clusters and showed presence in structures comparable to canals of Hering, the site of oval cells. Transplantation of MIM-Bcl-X(L) cells, which are protected against apoptosis, and successive Fas-induced liver damage, enhanced donor-derived liver repopulation by showing differentiation into cholangiocytes and cells expressing markers characteristic of both fetal hepatocytes and oval cells. In conclusion, these data indicate that long-term cultivated p19(ARF) null hepatocytes are capable of generating hepatic progenitor cells during liver restoration, and thus represent a highly valuable tool to study the differentiation repertoire of hepatocytes.  相似文献   

17.
OBJECTIVES: The aim of this study was to determine the potential of bone marrow derived cells to participate in liver repopulation. In this model, the injected cells had a "selective growth advantage" compared to the native hepatocytes whose proliferation was blocked by retrorsine. METHODS: Total bone marrow cells were isolated from male Fisher 344 rats not deficient in dipeptidyl peptidase activity (F344, DPP IV+). The animals were given an injection of retrorsine and were divided in 2 groups: 1/group R (N=13): female F344 rats received 4.106 male cells at day 0 (labeled by chromosome Y). 2/group RH (N=19): Male F344 DPP IV- rats received 4.106 male DPP IV+ cells after hepatectomy at day 0 (labelled by DPP IV activity). RESULTS: Group R: no male cell was detected by PCR at day 14, 28, 56 and 84. Group RH: isolated DPP IV+ transplanted cells were observed at days 14 and 28 in the periportal areas. Later, these cells were no longer visible. Liver regeneration occurred by proliferation of small clusters of hepatocytes. CONCLUSIONS: In this experimental model the capacity of transplanted bone marrow cells to repopulate the liver was tested against the same capacity of native liver stem cells. Liver regeneration occurred via native liver cells seen as small hepatocytes. In this model the small hepatocytes may be considered as hepatic stem cells.  相似文献   

18.
Following a report of skeletal muscle regeneration from bone marrow cells, we investigated whether hepatocytes could also derive in vivo from bone marrow cells. A cohort of lethally irradiated B6D2F1 female mice received whole bone marrow transplants from age-matched male donors and were sacrificed at days 1, 3, 5, and 7 and months 2, 4, and 6 posttransplantation (n = 3 for each time point). Additionally, 2 archival female mice of the same strain who had previously been recipients of 200 male fluorescence-activated cell sorter (FACS)-sorted CD34(+)lin(-) cells were sacrificed 8 months posttransplantation under the same protocol. Fluorescence in situ hybridization (FISH) for the Y-chromosome was performed on liver tissue. Y-positive hepatocytes, up to 2.2% of total hepatocytes, were identified in 1 animal at 7 days posttransplantation and in all animals sacrificed 2 months or longer posttransplantation. Simultaneous FISH for the Y-chromosome and albumin messenger RNA (mRNA) confirmed male-derived cells were mature hepatocytes. These animals had received lethal doses of irradiation at the time of bone marrow transplantation, but this induced no overt, histologically demonstrable, acute hepatic injury, including inflammation, necrosis, oval cell proliferation, or scarring. We conclude that hepatocytes can derive from bone marrow cells after irradiation in the absence of severe acute injury. Also, the small subpopulation of CD34(+)lin(-) bone marrow cells is capable of such hepatic engraftment.  相似文献   

19.
AIM: To investigate the differentiation of rat bone marrow stem cells in liver after partial hepatectomy. METHODS: Bone marrow cells were collected from the tibia of rat with partial hepatectomy, the medial and left hepatic lobes were excised. The bone marrow stem cells (Thy CD3-CD45RA- cells) were enriched from the bone marrow cells by depleting red cells and fluorescence-activated cell sorting. The sorted bone marrow stem cells were labeled by PKH26-GL in vitro and autotransplanted by portal vein injection. After 2 wk, the transplanted bone marrow stem cells in liver were examined by the immunohistochemistry of albumin (hepatocyte-specific marker). RESULTS: The bone marrow stem cells (Thy CD3-CD45RA- cells) accounted for 2.8% of bone marrow cells without red cells. The labeling rate of 10μM PKH26-GL on sorted bone marrow stem cells was about 95%. There were sporadic PKH26-GL-labeled cells among he-patocytes in liver tissue section, and some of the cells expressed albumin. CONCLUSION: Rat bone marrow stem cells can differentiate into hepatocytes in regenerative environment and may participate in liver regeneration after partial hepatectomy.  相似文献   

20.
Several lines of evidence suggest that overexpression of interferon gamma (IFN-gamma) in the marrow microenvironment may play a role in the pathogenesis of marrow suppression in aplastic anemia. We previously showed that overexpression of IFN-gamma by marrow stromal cells inhibits human long-term culture initiating cell activity assayed in vitro to a much greater degree than the addition of soluble IFN-gamma. The effect of IFN-gamma on true repopulating stem cells assayed in vivo has not been studied previously. We compared the effect of co-culture of murine marrow cells in the presence of stromal cells transduced with a retroviral vector expressing murine IFN-gamma vs stromal cells transduced with a control neo vector. Using a murine congenic competitive repopulation assay, there was significantly less long-term repopulating stem cell activity remaining after culture on mIFN-gamma-expressing stroma as compared to control stroma. We also investigated the effect of directly transducing murine bone marrow cells with the mIFN-gamma or control vector. Marrow cells transduced with either vector were transplanted into W/Wv recipient mice. The percentage of vector-containing cells in the mIFN-gamma mice was significantly lower than in the control mice, suggesting that mIFN-gamma-transduced primitive cells may not have survived culture, or that mIFN-gamma directly decreases gene transfer into repopulating cells. Despite no significant differences in white or red blood cells in the mice transplanted with the mIFN-gamma-transduced cells, the number of bone marrow colony-forming unit-C 16 weeks after transplantation was significantly lower in the IFN-gamma group. These data indicate that ectopic or overexpression of mIFN-gamma, especially by marrow microenvironmental elements, may have a marked effect on primitive hematopoiesis as assayed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号