首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The vesicular gamma-aminobutyric acid (GABA) transporter (VGAT), which transports the inhibitory amino acid transmitters GABA and glycine, is localized to synaptic vesicles in axon terminals. The localization of VGAT immunoreactivity to mouse and rat retina was evaluated with light and electron microscopy by using well-characterized VGAT antibodies. Specific VGAT immunoreactivity was localized to numerous varicose processes in all laminae of the inner plexiform layer (IPL) and to the outer plexiform layer (OPL). Amacrine cell somata characterized by weak VGAT immunoreactivity in the cytoplasm were located in the ganglion cell layer and proximal inner nuclear layer (INL) adjacent to the IPL. In rat retina, VGAT-immunoreactive cell bodies also contained GABA, glycine, or parvalbumin (PV) immunoreactivity, suggesting vesicular uptake of GABA or glycine by these cells. A few varicose VGAT-immunoreactive processes entered the OPL from the IPL. VGAT immunoreactivity in the OPL was predominantly localized to horizontal cell processes. VGAT and calcium binding protein-28K immunoreactivities (CaBP; a marker for horizontal cells) were colocalized in processes and terminals distributed to the OPL. Furthermore, VGAT immunoreactivity overlapped or was immediately adjacent to postsynaptic density-95 (PSD-95) immunoreactivity, which is prominent in photoreceptor terminals. Preembedding immunoelectron microscopy of mouse and rat retinae showed that VGAT immunoreactivity was localized to horizontal cell processes and their terminals. Immunoreactivity was distributed throughout the cytoplasm of the horizontal cell processes. Taken together, these findings demonstrate VGAT immunoreactivity in both amacrine and horizontal cell processes, suggesting these cells contain vesicles that accumulate GABA and glycine, possibly for vesicular release.  相似文献   

3.
4.
5.
6.
In the normal granule cells of the dentate gyrus, glutamate and both gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) coexist. GAD expression is increased after seizures, and simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers to CA3 appears, supporting the hypothesis that GABA can be released from the mossy fibers. To sustain GABAergic neurotransmission, the amino acid must be transported into synaptic vesicles. To address this, using RT-PCR we looked for the presence and regulation of expression of the vesicular GABA transporter (VGAT) mRNA in the dentate gyrus and in mossy fiber synaptosomes of control and kindled rats. We found trace amounts of VGAT mRNA in the dentate gyrus and mossy fiber synaptosomes of control rats. In the dentate gyrus of kindled rats with several seizures and of control rats subject to one acute seizure, no changes were apparent either 1 or 24 h after the seizures. However, repetitive synaptic or antidromic activation of the granule cells in slices of control rats in vitro induces an activity-dependent enhancement of VGAT mRNA expression in the dentate. Surprisingly, in the mossy fiber synaptosomes of seizing rats, the levels of VGAT mRNA were significantly higher than in controls. These data show that the granule cells and their mossy fibers, besides containing machinery for the synthesis of GABA, also contain the elements that support its vesiculation. This further supports the notion that local synaptic molecular changes enable mossy fibers to release GABA in response to enhanced excitability.  相似文献   

7.
8.
9.
10.
11.
12.
Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ‐aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double‐transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole‐cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT‐immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co‐express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Horizontal cells are classically thought to mediate lateral inhibition by gamma-aminobutyric acid (GABA)-transporter mediated release. In the mammalian retina, however, GABA uptake and cloned GABA transporter were not detected in horizontal cells. Furthermore, the vesicular inhibitory amino acid transporter (VIAAT or VGAT) that loads GABA and glycine into synaptic vesicles was reported recently to be expressed in horizontal cells. To further assess synaptic transmission in mammalian horizontal cells, we examined the subcellular distribution of VIAAT in mouse and human retina by confocal microscopy with specific cell markers. VIAAT was observed in the mouse outer plexiform layer as punctate structures that localized in calbindin-positive horizontal cells. These structures were in close apposition with synaptophysin-, PSD-95-, dystrophin-, and bassoon-immunopositive photoreceptor terminals, suggesting that VIAAT is localized in horizontal cell tips at photoreceptor terminals. VIAAT-positive puncta were also in apposition to lectin-labeled cone terminals or dendrites of PKCalpha-immunopositive rod bipolar cells, indicating that VIAAT is expressed in horizontal cell tips at both rod and cone terminals. By contrast, only a very few puncta were observed in the human outer plexiform layer, whereas the inner plexiform layer remained labeled as in the mouse retina. When using adult human retinal cells in culture, horizontal cells identified by parvalbumin immunostaining were found to contain VIAAT, either at their terminals or throughout the entire cell similarly as in syntaxin-immunopositive cells. These differences between human retinal tissue and cultured cells were attributed to VIAAT degradation in postmortem retinal tissue. VIAAT localization in mouse and human horizontal cells further support the role of inhibitory transmitters in lateral inhibition at the photoreceptor terminals.  相似文献   

20.
Plasmalemmal and vesicular gamma-aminobutyric acid (GABA) transporters influence neurotransmission by regulating high-affinity GABA uptake and GABA release into the synaptic cleft and extracellular space. Postnatal expression of the plasmalemmal GABA transporter-1 (GAT-1), GAT-3, and the vesicular GABA/glycine transporter (VGAT) were evaluated in the developing mouse retina by using immunohistochemistry with affinity-purified antibodies. Weak transporter immunoreactivity was observed in the inner retina at postnatal day 0 (P0). GAT-1 immunostaining at P0 and at older ages was in amacrine and displaced amacrine cells in the inner nuclear layer (INL) and ganglion cell layer (GCL), respectively, and in their processes in the inner plexiform layer (IPL). At P10, weak GAT-1 immunostaining was in Müller cell processes. GAT-3 immunostaining at P0 and older ages was in amacrine cells and their processes, as well as in Müller cells and their processes that extended radially across the retina. At P10, Müller cell somata were observed in the middle of the INL. VGAT immunostaining was present at P0 and older ages in amacrine cells in the INL as well as processes in the IPL. At P5, weak VGAT immunostaining was also observed in horizontal cell somata and processes. By P15, the GAT and VGAT immunostaining patterns appear similar to the adult immunostaining patterns; they reached adult levels by about P20. These findings demonstrate that GABA uptake and release are initially established in the inner retina during the first postnatal week and that these systems subsequently mature in the outer retina during the second postnatal week.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号