首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Precision of dual-photon absorptiometry (DPA) measurements was determined in a lumbar spine phantom and in humans. Approximately half of the measurements were made before and half after a153gadolinium source change. The phantom was measured with different amounts of acrylic, which simulates human soft tissue, in order to evaluate the influence of body thickness on bone mineral density (BMD). Results of scans analyzed with two software versions from Lunar Radiation Corp., the widely used 08B and a prototype 08C, are compared. DPA with a cold source significantly overestimated BMD in the phantom in the presence of large amounts (more than 25 cm) of soft tissue equivalent with version 08B but not with the newer version 08C. Similiarly, in nine subjects, there was a significant decrease in spine BMD after a source change when scans were analyzed with version 08B (mean difference 0.026 g/cm2,P=0.002) but not with 08C (0.01 g/cm2,P=0.234). No systematic effect of source change on femoral BMD measurements was observed. The SD of the mean difference of two measurements of the nine subjects was 0.019 g/cm2 (1.6% of the mean value) for the spine with software version 08B and 0.024 g/cm2 (2.0%) with version 08C, 0.03 g/cm2 (3.3%) for the femur neck, 0.03 g/cm2 (4.0%) for the greater trochanter, and 0.04 g/cm2 (4.9%) for Ward's triangle region of the proximal femur. The spine phanton was scanned on two other commercial bone densitometers in order to assess inter-instrument variation. Phantom measurements of L2-4 BMD made on two Lunar Radiation Corp model DP3 scanners which differed by 2% were 10 and 12% higher than those with a Norland Corp. model 2600 scanner.  相似文献   

2.
Lumbar spine bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) (Hologic QDR 1000) and by153Gd dual-photon absorptiometry (DPA) (Novo Lab 22a) in 120 postmenopausal women. Though a high correlation existed between the two techniques, the ratio between DXA and DPA values was not constant. Using DXA we observed a higher dependence of BMD on weight than in the DPA measurements. To investigate the different behaviour of DXA and DPA machines with weight, we analysed the effects of increasing thickness of soft tissue equivalents on the BMD of the Hologic spine phantom and on the BMD equivalent of an aluminium standard tube. Increasing tissue-equivalent thickness caused the phantom BMD measured by DPA to decrease significantly but had not effect on the DXA measurements. The different behaviour of DPA and DXA equipment with regard to the phantoms could account for the differences observed in the relations between BMD and weight in the patients. Using multiple regression we studied the influence of weight and body mass index on the relation between BMD measured by the two techniques. The introduction of either of these variables into the regression resulted in an improvement of the prediction of the DXA values from the DPA values. However, the residual standard error of the estimate was still higher than the combined precision errors of the two methods, so that no simple relation allows a conversion of BMDDPA into BMDDXA. Our results confirm that BMD is positively correlated with weight in postmenopausal women; the influence of weight on BMD is blunted when the Novo Lab 22a DPA machine is used for measuring bone mineral.  相似文献   

3.
Summary Dual photon absorptiometry (DPA) is currently the most widely used method for noninvasive bone mineral density (BMD) measurement of the axial skeleton. Dual energy X-ray absorptimetry (DEXA) is a recently developed technique that uses an X-ray tube as a photon source; it has demonstrated several significant advantages over DPA in preliminary studies. We report here a quantitative comparison of the DEXA and DPA technologies using a Hologic DEXA (Hologic QDR model 1000, Waltham, MA) scanner and a Lunar DPA (Lunar Radiation DP3, gandolineum-153 source) scanner at both the proximal femur and lumbar spine sites using bone density measurements from a populationbased sample of older white men and women who had complete DEXA and DPA measurements of the hip (n=217) or the spine (n=176). To examine the relationship of BMD measured by the DPA scanner to BMD measured on the DEXA scanner, normal least squares linear regression was used to regress the DPA BMD on the DEXA BMD for each site. DEXA values were consistently lower than DPA values, with an average difference of 16%. The squared multiple correlation (R2) values were at or above 0.95 for almost all sites, with Ward's triangle having the lowest value (0.89). The slope for all sites was similar, ranging from 0.94 to 1.1. Research and clinical centers that wish to change to DEXA technology because of its shorter examination time and greater precision can therefore compare DEXA with DPA values using representative convesion factors.  相似文献   

4.
The effects of corticosteroid on bone were examined in female growing rabbits treated with 0.7 mg/kg per day prednisolone for 5 months. The evolution of whole-body total bone mineral measured by dual-photon absorptiometry showed a significant difference between the prednisolone-treated group and the control group from the first to the fifth month. The histomorphometric profile of corticosteroid-induced osteoporosis was observed, in particular the lower bone volume and thinner and fewer trabecular plates. Mechanical tests are possible on rabbit vertebrae and showed a very significant difference in bone strength between the prednisolone-treated and control groups, and a good correlation between mechanical tests and histomorphometric or densitometric results. This bone corticosteroid model shows that vertebral compression tests are possible on rabbit lumbar vertebrae. It may contribute to a better evaluation of corticosteroid treatments.  相似文献   

5.
Dual-photon absorptiometry (DPA) is a well-established procedure for measuring bone mineral density (BMD). Recently, dual-energy X-ray absorptiomery (DXA) has become available, which has the ability to measure BMD both regionally and in the total body (TB). We have evaluated the in vivo and in vitro precision of a DXA instrument and compared it with a DPA instrument with similar software characteristics.The short-term precision of BMD measurements using DXA was assessed in 65 postmenopausal women who had duplicate scans performed, with repositioning between scans. Precision was 0.9% in the lumbar spine and 1.4% in the femoral neck.The midterm precision of DXA was compared with DPA by scanning 10 volunteers a mean of four times over 24 weeks, on both instruments. The precision of the bone mineral content (BMC) and area measurements was significantly better (P<0.05) with DXA than with DPA. Long-term in vitro precision was assessed by scanning an aluminium spine phantom over 42 weeks, and a cadaveric sample over 52 weeks, on both instruments. Precision was similar using the aluminium phantom, but was significantly improved (P<0.001) when using DXA for scanning the cadaveric sample.Highly significant correlations (allP<0.001) of BMD, BMC and area measurements were observed when 70 volunteers were scanned on both instruments. However, there was a systematic difference in BMD values between the instruments. The precision of TB composition measurements assessed in 16 volunteers, over a 16-week period, were TB BMD 0.65%, TB lean tissue 1.47%, and TB fat tissue 2.73%. The correlation between weight measured by electronic scales and TB mass as measured by DXA, which was assessed in 70 volunteers, was excellent (r=0.99,p<0.001).We conclude that DXA offers improvements in measuring BMD over DPA in terms of faster scanning times and improved resolution, resulting in better precision, with the additional advantage of the ability to measure TB composition with high precision.  相似文献   

6.
Summary Interrelationships between percent of ideal body weight (%IBW), serum estrogen levels, and change in bone mineral density (BMD) and bone mineral content (BMC) were studied in 288 postmenopausal women aged 41–71 years who participated in a 2-year calcium supplement trial. The spine (L2–L4) and femoral neck were measured by dualphoton absorptiometry, and the radius was measured by single-photon absorptiometry. Years since menopause, calcium intake, and initial BMD or BMC were included as independent variables in two-phase regressions of BMD and BMC on %IBW. Increased %IBW protected against loss of spine BMD [regression slope estimate=0.05, 95% C.I.: (0.03, 0.26)] and BMC in women up through about 106 %IBW but not in heavier women. Increased %IBW was not significantly related to BMD or BMC at the femoral neck or radius. Women above 106%IBW had significant gains in spine and femoral neck area (P< 0.05). Serum estrone and estradiol were positively correlated with BMD and BMC at the femoral neck only.  相似文献   

7.
Summary Bone mineral content (BMC) and bone mineral density (BMD) of the spine (L2–L4) and hip (at femoral neck, Ward's triangle, and greater trochanter sites) were determined by dual-photon absorptiometry (DPA), and of the radius by single-photon absorptiometry (SPA) in healthy postmenopausal women aged 40–70 years. The relationships of BMC and BMD to years since menopause were examined separately in 97 women who were above 115% of ideal body weight (IBW) and in 128 women below. The heavier women had significantly greater mean BMC and BMD at each site than did the normal-weight women. In the normal-weight women, there was a significant negative correlation between BMD and years since menopause at each measurement site except the greater trochanter. In the obese women, BMD decreased with increasing years since menopause at the radius site only and BMC declined with increasing years after menopause at the hip (femoral neck and Ward's triangle region) as well as the radius. Thus, body size is a significant determinant of BMD in this population. The pattern of loss of BMD from Ward's triangle and femoral neck regions of hip are similar to that of the spine. The BMC and BMD findings in the hip suggest that remodeling occurs at this weight-bearing site which has a favorable effect on bone strength.  相似文献   

8.
Summary Noninvasive bone densitometry is an important aspect in the detection and management of osteoporosis and other forms of metabolic disease of calcified tissue. A system using quantitative dual-energy digital projection radiography (QDR) of the lumbar spine was systematically tested against dual-photon absorptiometry (DPA) of the lumbar spine in 131 women over 55 years of age and free from major risk factors for osteoporosis. All subjects were scanned by both QDR and DPA under the same conditions. Measurements for a given subject were made within 15 minutes of each other. Bone mineral densities (BMD) were determined for four individual levels in the lumbar spine (L1-L4). Regression equations for BMD vs. age, height, and weight were calculated. The results of this investigation indicate that DPA- and QDR-derived BMD values are comparable. BMD values derived by QDR were consistently lower than those obtained by DPA (DPA=1.115 QDR+0.137, r=0.942). The L2 lumbar region was the most strongly correlated determination.  相似文献   

9.
Dual-energy X-ray absorptiometry (DXA) of the lumbar spine provides an estimation of the bone mineral content (BMC) corrected by the projected area of the spine and expressed in g/cm2. This two-dimensional estimate of the bone mineral density (BMD) is influenced by the skeletal size, assessed by the subject's height. In order to obtain an estimate of the volumetric BMD, we measured BMC with a new DXA device (Sophos L-XRA) equipped with 24 detectors and a rotating arm, thus allowing scanning of the lumbar spine in both an anteroposterior (AP) projection and a lateral (LAT) projection with the patient in a supine position. Comparison between the results obtained on the third (L3) and fourth (L4) lumbar vertebrae with automatic or manual analysis showed that the best precision was obtained with the lateral measurement of L3 alone with an automatic soft tissue baseline determination. Results were expressed in g/cm2 and in g/cm3 (by dividing the g/cm2 value by the width (AP area divided by the height of the vertebra) of L3), and were compared with those obtained by conventional AP scanning of L2–4 (g/cm2). The in vivo precision error evaluated by triplicate measurements on 10 controls was 17 mg/cm2 (1.96%) and 5.2 mg/cm3 (2.31%) for LAT L3 as compared with 13 mg/cm2 (1.15%) for AP L2–4. Volumetric BMD (g/cm3) measurement, assessed in vitro on a calibrated hydroxyapatite phantom, and the absolute values obtained in normal women were similar to those obtained by quantitative computed tomography (QCT). In 39 healthy adults (27±4 years) BMD expressed in g/cm2 was correlated with height (r=0.36 for AP L2–4 andr=0.39 for LAT L3;p<0.05 for both) but not with LAT L3 BMD expressed in g/cm3 (r=0.02; NS). The age-related bone loss between 30 and 80 years of age, derived from the normal values for 101 healthy women (age range 19–73 years) was 36% for AP L2–4, 52% for LAT L3 (g/cm2) and 60% for LAT L3 (g/cm3). In a group of 22 women with untreated postmenopausal vertebral osteoporosis (one or more non-traumatic vertebral crush fractures) the mean decrease in BMD, expressed as a percentage of the age-adjusted normal value, was more pronounced (p<0.001) for LAT L3 BMD (–21% in g/cm2,Z-score –1.08; –22% in g/cm3,Z-score –0.94) than for AP L2–4 BMD (–9%,Z-score –0.66). We conclude that: 1) BMD measurement restricted to the vertebral body of L3 can be achieved with a low precision error with this new DXA device; 2) it allows an estimate of the volumetric density (g/cm3) which does not seem to be influenced by skeletal size; 3) lateral BMD appears to be more sensitive than conventional AP scanning for assessing age-related bone loss and should be useful in the investigation of trabecular osteoporosis.  相似文献   

10.
The performance of a single X-ray absorptiometry (SXA) device incorporating an X-ray tube as a photon source was evaluated with respect to precision in vivo and in vitro, scan time, image quality, and correlation with an existing dual energy X-ray absorptiometry (DXA) device. SXA precision in vivo, expressed as a coefficient of variation (CV), was 0.66% for bone mineral content (BMC) and 1.05% for bone mineral density (BMD). Precision in vitro, based on 78 BMC measurements of a forearm phantom over 195 days, was 0.53%. Correlation with DXA at the 8 mm distal forearm site was high (r=0.97 for BMC and r=0.96 for BMD). A preliminary SXA reference database composed of 151 healthy Caucasian American women was developed to facilitate the interpretation of patient measurements. SXA scan time was 4 minutes and delivered a radiation exposure of 1.68 mrem. SXA image quality and spatial resolution were superior to SPA and comparable to DXA.  相似文献   

11.
The purpose of this study was to determine precision and diagnostic capability of bone mineral density measurements using lateral dual-energy X-ray absorptiometry (DXA) of the lumbar spine in supine position. Duplicate postero-anterior (PA) and lateral DXA measurements were performed in 60 women. Precision errors of the single vertebral levels using lateral DXA ranged from 3.3% to 4.9%. The combination of all levels improved the precision errors to 2.0%. Paired PA and lateral DXA measurements (Hologic QDR 2000) including the vertebral levels L2 to L4 were performed in 331 postmenopausal women. In 42 women an overlap of L4 by the pelvis was suspected on the lateral DXA images. Vertebral fractures were assessed as a fracture/non-fracture dichotomy. L4 and combinations of vertebrae including L4 showed the best discriminatory capabilities with respect to vertebral fractures in receiver operating characteristic (ROC) analyses,t-tests andZ-scores, with smaller variability of the results when multiple vertebral levels were used. The areas under the ROC curves were 0.662 and 0.639 for lateral and PA measurements of L2 to L4, respectively when all women were included. Excluding the women with pelvic overlap on lateral DXA scans improved the ROC area for lateral scans to 0.686 while that for PA scans remained almost constant (0.641). The differences between PA and lateral measurements were not statistically significant. In 162 women of our study cohort an additional quantitative computed tomography (QCT) measurement of the vertebral levels L2 to L4 was performed and overlapping bony structures at the three levels were studied. Overlapping bony structures were found on QCT slices in 96.9% at the L2 level and in 31.5% at the L3 level. At the L4 level an overlap was found in 5.6% of the women in addition to 31 women in whom L4 overlap had been suspected on DXA images. In total, the level L4 was overlapped in 24.7% of the women. Lateral DXA measurements of the lumbar spine with the patient in supine position are meaningful for diagnosis and follow-up of osteopenia. The inclusion of a maximum number of vertebrae, i.e. L2 to L4 (if L4 is not overlapped by pelvic bone), improves precision and diagnostic capability of the method.  相似文献   

12.
New developments in dual x-ray absorptiometry (DXA) allow the performance of high precision anteroposterior (AP) and lateral scans of spinal bone mineral density (BMD, units: g/cm2) without the patient moving from the supine position. Data from both projections may be combined to give an estimate of the true volumetric bone mineral density (VBMD, units: g/cm3) of the lumbar vertebral bodies. This report presents a cadaver study designed to validate DXA measurements of volumetric bone density. Sections of whole lumbar spine were scanned in AP and lateral projections in a water tank to simulate soft tissue. Individual vertebrae were then divided to separate the vertebral body from the neural arch, and vertebral body volume was measured using the displacement of sand. The bone mineral content (BMC) of vertebral bodies and neural arches was measured by ashing at 250°C for 60 hours followed by 500°C for a further 24 hours. The results showed that DXA scanning systematically underestimated ashing data by 14% for AP BMC, 33% for vertebral body BMC, 23% for vertebral body volume, and 12% for VBMD. Despite these significant systematic errors, the DXA measurements and ashing values were highly correlated (r=0.979-0.992). The results suggested that after allowing for the systematic errors, lateral DXA parameters related closely to true BMC, volume, and VBMD.  相似文献   

13.
Dual photon absorptiometry of the proximal tibia   总被引:2,自引:0,他引:2  
Summary Bone mineral content (BMC) and bone mineral density (BMD) of the proximal tibia were determined by dual photon absorptiometry on 44 women, aged 23–87 years. The area of the tibia measured was a 2.01 cm region immediately distal to the medial and lateral tuberosities. Values of BMC ranged between 5.09 and 14.57 g and BMD between 0.380 and 1.180 g/cm2. Both tibial BMC and BMD declined with age and tibial BMD was significantly correlated with lumbar spine (r=0.70), femoral neck (r=0.73), and femoral trochanter (r=0.74). However, the large standard errors of estimate (SEE) (0.08–0.14 g/cm2) do not allow for reliable prediction in an individual of other skeletal sites by the tibia. Repeated measurements demonstrated that dual photon absorptiometry of the proximal tibia is a reliable measurement and may be a useful tool in the monitoring of therapeutic or intervention modalities in those individuals with skeletal diseases in whom measurement of the lumbar spine or proximal femur may not be possible.  相似文献   

14.
Radiographic absorptiometry: A simple method for determination of bone mass   总被引:1,自引:0,他引:1  
Bone mass measurements have been shown to be useful determinants of the risk of development of osteoporotic fractures and may help identify individuals who are most likely to benefit from both primary and secondary prevention of osteoporosis. As standard bone density measurements are not available to all physicians, there is a need for a fast, inexpensive, and widely available technique to measure bone mass. Radiographic absorptiometry of the phalanges requires only routine radiography with processing of the films done at a special off-site laboratory. We performed a preliminary investigation to see whether this simple technique could be used to predict a low bone mass as defined by dual- and single-photon absorptiometry. Correlations between radiographic absorptiometry and the standard techniques were as good as those among the standard techniques themselves (r=0.58–0.9). Radiographic absorptiometry measurements predicted low bone mass of the lumbar spine and femoral neck with 90% and 82% sensitivity respectively. If further evaluation supports these initial conclusions, radiographic absorptiometry may be useful as a screening technique for primary care physicians and in research settings where dual-photon or dual-energy X-ray absorptiometry are impossible.  相似文献   

15.
A cross-sectional, population-based study of 238 randomly selected females and 224 males with German ethnic background (aged 20–80 years) was carried out to establish lumbar spine bone mineral density (BMD) values, using dual X-ray absorptiometry (DXA), for a German population. Comparison was made to the reference range provided by the manufacturer of the DXA equipment. No sex difference in peak spine BMD was found in our study (1.091±0.114 g/cm2 for males versus 1.070±0.113 g/cm2 for females, n.s.). Different patterns of bone loss could be detected in both sexes. In premenopausal women there was no significant correlation between age and BMD (y = 1.044 + 0.00047x, r=0.03, P=0.73) whereas reduction of female BMD at the spine was demonstrated in postmenopausal women (y = 1.189–0.0041x, r=-0.28, P=0.01), underscoring the important role of the menopause for later manifestation of spinal osteoporosis in women. In contrast, in males we found no significant change of BMD with aging (y = 1.071–0.0007x, r=-0.08, P=0.25). Employing commonly used exclusion criteria, BMD values of the study subjects were found mostly within the normal range of BMD. The major finding of our study was good concordance between female data of our study population and the reference data provided by the manufacturer. Clinically significant discrepancies between our data and the Hologic reference range for males could be detected. Our data on males (30–39 years of age) were up to 7% lower than those provided by the manufacturer, probably due to differences in sampling procedures.  相似文献   

16.
A high degree of uncertainty and irritation predominates in the assessment and comparison of radiation dose values resulting from measurements of bone mineral density of the lumbar spine by photon absorptiometry and X-ray computed tomography. The skin dose values which are usually given in the literature are of limited relevance because the size of the irradiated volumes, the relative sensitivity of the affected organs and the radiation energies are not taken into account. The concept of effective dose, sometimes called whole-body equivalent dose, has to be applied. A detailed analysis results in an effective dose value of about 1 µSv for absorptiometry and about 30 µSv for computed tomography when low kV and mAs values are used. Lateral localizer radiographs, which are necessary for slice selection in CT, mean an additional dose of 30 µSv. Lateral X-ray films of the spine which are frequently taken in combination with absorptiometry result in a dose of 700 µSv or more. The concept of effective dose, the basic data and assumptions used in its assessment and a comparison with other dose burdens (for example the natural background radiation, of typically 2400 µSv per year) are discussed in detail.  相似文献   

17.
Forearm bone mineral densitometry was performed initially by single-photon absorptiometry (SPA), but is now achievable by dual-energy X-ray absorptiometry (DXA) as well, with a good correlation between both measurements. However, it is still unknown whether: (1) short-term precision of DXA is superior to SPA and (2) identical regions of interest (ROT) are mandatory to correlate SPA with DXA. The aim of this study was to answer these questions using a commercial system for DXA (DXA-FAS) and to test an in-house system using spine DXA and a soft-tissue compensator (DXA-STC). In ten subjects, four measurements on the same day showed significantly lower (p < 0.05) coefficients of variation (CV) for bone mineral density (BMD) by DXA-FAS (proximal site: 0.74%; ultradistal site: 1.20%) than by SPA (1.26% and 2.25%). However, the CV for bone mineral content (BMC) were similar for DXA-FAS (0.73% and 1.58%) and SPA (0.79% and 1.34%). The significant difference (p < 0.05) for surface calculation by DXA-FAS (1.24% and 0.93%) compared with SPA (2.36% and 1.28%) explains all the advantages of DXA-FAS for short-term precision. The measurements taken on the same day on the ulna and the radius or on the radius alone by SPA, DXA-FAS, and DXA-STC on 108 subjects aged 18–80 years were highly correlated [r ranging from 0.925 to 0.995 (p < 0.0001) and standard error of the estimate from 3.15% to 8.89%]. The need for a manual adjustment of the ROT was found to be mandatory for BMC but not BMD assessment. The use of DXA-STC is a fast method for forearm bone densitometry and its correlation with SPA is very high. However, its short-term precision for BMC (3.00% and 1.54%), BMD (2.15% and 1.12%), and surfaces (1.99% and 1.12%) is significantly higher (p < 0.05) than that of DXA-FAS. We conclude that short-term precision of DXA is better than that of SPA only for BMD and surface measurement but not for BMC. ROT should be adjusted manually for the assessment of BMC but not for that of BMD.  相似文献   

18.
Summary Radial diaphyseal bone mineral density (BMD) was measured at the standard one-third site by dual-energy X-ray absorptiometry (DEXA) and by125I single photon absorptiometry (SPA) in 70 consecutive subjects, aged 12–86 years, with metabolic disorders of the skeleton. Each patient was measured once by the DEXA (Hologic QDR-1000) instrument and four times by the SPA (Norland 2780) instrument on the same day by one or the other of 2 technicians. The DEXA and SPA measurements were linearly related and highly correlated (r=0.975,P<0.0001) over a range from severe osteopenia to high normal BMD. Ninety-five percent of the variation in the BMD determined by SPA was accounted for by DEXA, so that the BMDSPA=1.035±0.027 (SEM)×BMDDEXA−0.007±0.019 (SEM). This permits continued use of previously accumulated SPA databases. The coefficient of variation for repeat measurements by DEXA was 1.2% and by SPA 1.6%. Examination time by DEXA was 6–7 minutes, about 45% shorter than the corresponding SPA determinations. DEXA is the superior method for evaluation of the radius, as it provides faster and more precise measurements in clinical practice.  相似文献   

19.
The UK National Osteoporosis Society (NOS) has recently issued new guidelines on the use of peripheral x-ray absorptiometry (pDXA) devices in managing osteoporosis. The NOS guidelines recommend a triage approach in which patients bone mineral density (BMD) measurements are interpreted using upper and lower thresholds specific to each type of pDXA device. The thresholds are defined so that patients with osteoporosis at the hip or spine are identified with 90% sensitivity and 90% specificity. Patients with a pDXA result below the lower threshold are likely to have osteoporosis at the hip or spine, patients with a result above the upper threshold are unlikely to have osteoporosis, while those between the two thresholds require a hip and spine BMD examination for a definitive diagnosis. This report presents data from a multicenter study to establish the triage thresholds for a range of pDXA devices in use in the UK. The subjects were white female patients aged 55–70 years who met the normal referral criteria for a BMD examination. For each device, at least 70 women with osteoporosis at the hip or spine and 70 women without osteoporosis were enrolled. All women had hip and spine BMD measurements using axial DXA systems that were interpreted using the National Health and Nutrition Examination Survey (NHANES) reference range for the hip and the manufacturers reference ranges for the spine. Data are presented for five different devices: the Osteometer DTX-200 (forearm BMD), the Schick AccuDEXA (hand BMD), the GE Lunar PIXI (heel BMD), the Alara MetriScan (hand BMD), and the Demetech Calscan (heel BMD). The clinical measurements were supplemented by theoretical modeling to estimate the age dependence of the triage thresholds and the effect of the correlation coefficient between pDXA and axial BMD on the percentage of women referred for an axial BMD examination. In summary, this study provides thresholds for implementing the new NOS guidelines for managing osteoporosis using pDXA devices. The figures reported apply to postmenopausal white women aged 55–70 years who meet the conventional criteria for a BMD examination. The results confirm that the thresholds are specific to each type of pDXA device and that the NOS triage algorithm requires 40% of women to have an axial DXA examination.On behalf of the National Osteoporosis Society Bone Densitometry Forum.  相似文献   

20.
Summary Forearm bone mineral density (BMD) was measured at proximal and distal sites by 125I single photon absorptiometry (SPA) and by dual energy X-ray absorptiometry (DXA) in 67 consecutive subjects, aged 18–75 years. Correlations and regression equations between these two techniques were determined. All forearm measurements were significantly correlated with each other (r=0.599–0.926; P0.0001). Although SPA and DXA correct for fat in different ways, we found similar correlation and regression equations in women with body mass index measurements above and below the mean. In addition, forearm measurements by both techniques were moderately correlated with vertebral spine and hip BMD. We conclude that overall, SPA forearm measurements in a population can be calibrated to DXA measurements if necessary, and that DXA forearm measurements are as predictive of the remainder of the skeleton as SPA measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号