首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Triacsin C, a fatty acid analog, inhibits endothelial nitric oxide synthetase (eNOS) palmitoylation, increases nitric oxide synthesis and enhances methacholine-induced relaxation of vascular rings. The experiments presented here tested the hypothesis that triacsin C increases the synthesis of PGI(2) and/or endothelial-derived hyperpolarizing factor. METHODS: Long-chain fatty acyl CoA synthetase activity (LCFACoAS), agonist-induced prostacyclin synthesis and agonist-induced release of radioactivity in endothelial cells labeled with [(3)H]arachidonic acid were measured in the presence and absence of triacsin C. RESULTS: Inhibition by triacsin C of palmitoyl CoA formation was significantly greater than inhibition of arachidonoyl CoA formation in solubilized endothelial cell preparations. While 24-hour triacsin C treatment significantly reduced basal 6-keto synthesis, it had no effect on agonist-stimulated synthesis. The release of arachidonic acid metabolites was examined in [(3)H]arachidonate-labeled cells. Triacsin C treatment had no effect on basal or vasopressin-, angiotensin-II-, bradykinin- or ionomycin-induced release of radioactivity, but significantly reduced release in response to isoproterenol or phenylephrine. Expression of neither immunoreactive eNOS nor immunoreactive inducible nitric oxide synthetase (iNOS) was changed by triacsin C treatment, but the fraction of immunoreactive eNOS in the cytoplasm of treated cells was significantly greater as compared to vehicle control cells. Phorbol myristoyl acetate or fenofibrate significantly increased in vitro LCFACoAS activity, and significantly decreased the nitrite/eNOS ratio. CONCLUSIONS: These data indicate that, while triacsin C can inhibit arachidonoyl CoA synthetase in endothelial cells, it does not increase the availability of endogenous substrate for basal or agonist-induced PGI(2) synthesis, nor does it enhance release of arachidonic acid or its metabolites.  相似文献   

2.
The membrane association of endothelial nitric oxide synthase (eNOS) plays an important role in the biosynthesis of nitric oxide (NO) in vascular endothelium. Previously, we have shown that in cultured endothelial cells and in intact blood vessels, eNOS is found primarily in the perinuclear region of the cells and in discrete regions of the plasma membrane, suggesting trafficking of the protein from the Golgi to specialized plasma membrane structures. Here, we show that eNOS is found in Triton X-100-insoluble membranes prepared from cultured bovine aortic endothelial cells and colocalizes with caveolin, a coat protein of caveolae, in cultured bovine lung microvascular endothelial cells as determined by confocal microscopy. To examine if eNOS is indeed in caveolae, we purified luminal endothelial cell plasma membranes and their caveolae directly from intact, perfused rat lungs. eNOS is found in the luminal plasma membranes and is markedly enriched in the purified caveolae. Because palmitoylation of eNOS does not significantly influence its membrane association, we next examined whether this modification can affect eNOS targeting to caveolae. Wild-type eNOS, but not the palmitoylation mutant form of the enzyme, colocalizes with caveolin on the cell surface in transfected NIH 3T3 cells, demonstrating that palmitoylation of eNOS is necessary for its targeting into caveolae. These data suggest that the subcellular targeting of eNOS to caveolae can restrict NO signaling to specific targets within a limited microenvironment at the cell surface and may influence signal transduction through caveolae.  相似文献   

3.
目的:探讨西洛他唑(Cilostazol)对乳鼠心肌细胞PI3K-Akt-eNOS信号通路的影响。方法:观察西洛他唑对乳鼠心肌细胞NO影响的时效和量效关系,再用PI3K及eNOS抑制剂进行干预。检测NO的浓度,Western免疫印迹法检测总Akt、磷酸化Akt(p—Akt—ser473)及总eNOS、磷酸化eNOS(p-eNOS-Ser1177)表达水平。结果:西洛他唑升高心肌细胞NO浓度呈剂量和时间依赖性,不同浓度的西洛他唑均能升高Akt和eNOS磷酸化水平,但对Akt及eNOS总蛋白表达无明显影响。eNOS抑制剂L—NAME和P13K抑制剂Wortmannin均能抑制西洛他唑诱导的NO浓度升高,Wortmannin还能阻断西洛他唑诱导的Akt和eNOS的磷酸化。结论:西洛他唑可能激活乳鼠心肌细胞的PI3K—Akt—eNOS信号通路而促进NO的产生。  相似文献   

4.
Hattori Y  Suzuki M  Hattori S  Kasai K 《Diabetologia》2003,46(11):1543-1549
Aims/hypothesis Adiponectin, also called ACRP30, is a novel adipose tissue-specific protein that has been shown to improve insulin sensitivity and to exert anti-atherogenic effects. It is known that knockout mice lacking endothelial NO synthase (eNOS) develop hypertension, insulin resistance, hyperlipidaemia, and show augmented ischaemia-reperfusion damage. Thus, we examined whether globular adiponectin activates eNOS to produce NO.Methods To analyze NO production in bovine aortic endothelial cells (BAE), NOx (nitrite and nitrate) was measured in the medium with an automated NO detector/high-performance liquid chromatography system. eNOS activation was assessed by phosphorylation of the enzyme and its activity was evaluated by citrulline synthesis in human umbilical vein endothelial cells (HUVEC). eNOS mRNA and protein expressions in HUVEC were evaluated by Realtime PCR and Western blot analysis.Results Gobular adiponectin increased NO production in BAE. It also caused eNOS phosphorylation and potentiated eNOS activity in HUVEC. In addition, globular adiponectin up-regulated the eNOS gene to increase protein expression in HUVEC.Conclusion/interpretation Globular adiponectin increases NO production through two mechanisms, namely, by activation of eNOS enzyme activity and via an increase in eNOS expression. Activation and up-regulation of eNOS could explain some of the observed vasoprotective properties of globular adiponectin, as well as its beneficial effects on the cardiovascular system.Abbreviations NO nitric oxide - eNOS endothelial NO synthase - BAE bovine aortic endothelial cells - HUVEC human umbilical vein endothelial cells - ACRP30 adipocyte complement-related protein of 30 kDa - GAPDH glyceraldehyde-3-phosphate dehydrogenase  相似文献   

5.
A system was developed for assay of acyl coenzyme A (acyl CoA) activity on medium-chain fatty acids in rat intestinal mucosa. Using this system, we compared the characteristics of octanoyl (C8:0) CoA synthetase activity and palmitoyl (C16:0) CoA synthetase activity. Palmitoyl CoA synthetase activity as a function of palmitate concentration followed Michaelis-Menten kinetics, but octanoyl CoA synthetase activity as a function of octanoate concentration showed a biphasic reaction curve. The distributions of octanoyl CoA synthetase activity and palmitoyl CoA synthetase activity along the gastrointestinal tract were similar, both activities being present mainly in the middle portion of the small intestine. Incubation of octanoate with a homogenate of intestinal mucosa revealed that octnoate, like palmitate, is incorporated into phospholipids and triglycerides after its CoA activation. Oral administration of medium chain triglycerides induced a nearly 2-fold increase in octanoyl CoA synthetase activity in rat intestinal mucosa, whereas oral administration of long chain triglycerides did not affect the palmitoyl CoA synthetase activity. These results indicate that acyl CoA synthetase for medium-chain fatty acids in rat intestinal mucosa plays a key role in the utilization of medium-chain fatty acids for lipid synthesis, and that it is regulated in a different manner from acyl CoA synthetase for long-chain fatty acids.  相似文献   

6.
目的:探讨秋水仙碱对大鼠主动脉氧化应激和内皮功能的影响。方法制备吸入烟草侧流烟雾的大鼠模型,同时通过管饲法给大鼠服用秋水仙碱。56d实验结束后,测定大鼠主动脉中超氧化物歧化酶(SOD)活力,丙二醛(MDA)、一氧化氮(NO)、内皮型一氧化氮合酶(eNOS)含量,以及进行内皮依赖的主动脉舒张实验,观察秋水仙碱对烟草烟雾导致的大鼠主动脉氧化应激和内皮功能改变的影响。结果与对照组相比,吸入烟草侧流烟雾大鼠组中MDA含量明显升高,NO、eNOS含量以及SOD活力下降,主动脉舒张功能受损,而服用秋水仙碱的大鼠可明显改善这些异常改变(P<0.05)。结论(1)吸入烟草侧流烟雾可引起大鼠主动脉内皮氧化应激和内皮功能不全;(2)经秋水仙碱治疗后,可改善大鼠主动脉内皮氧化应激和受损的内皮功能。  相似文献   

7.
Role of tyrosine phosphatase in the modulation of pulmonary vascular tone.   总被引:5,自引:0,他引:5  
In the vascular system, synthesis of the potent vasodilator nitric oxide (NO) is tightly regulated by the constitutively expressed endothelial NO synthase (eNOS). Activity of eNOS is controlled by Ca2+/calmodulin and various seryl/threonyl protein kinases. Less is known about the importance of phosphorylation and dephosphorylation of tyrosyl residues. Therefore the role of tyrosine phosphatase on the modulation of isolated rat pulmonary artery tone has been assessed. Inhibition of tyrosine phosphatase by sodium orthovanadate (SOV, 1x10(-6) M) significantly: 1) increased phenylephrine-induced vasoconstriction and 2) decreased endothelium-dependent relaxation to acetylcholine, but had no effect on endothelium-independent relaxation to the NO donor, sodium nitroprusside. In phenylephrine-precontracted pulmonary arterial rings, SOV (1x10(-7)-1x10(-5) M) had no effect on vascular tone but significantly relaxed rings which were pretreated with the NO-synthase inhibitor, N(omega)-nitro-L-arginine-methyl ester (L-NAME). SOV-induced relaxation in the presence of L-NAME was, however, abolished by glibenclamide. In conclusion, inhibition of tyrosine phosphatase altered pulmonary vascular tone by increasing vasoconstrictor response to phenylephrine and decreasing endothelium-dependent relaxation to acetylcholine. Furthermore, the tyrosine phosphatase inhibitor, sodium orthovanadate, exhibited original vasodilator properties which were only observed when nitric oxide synthesis was inhibited. Thus a new pathway involving the inhibitory effect of nitric oxide on a glibenclamide-sensitive diffusible relaxing factor, that might play an important role in the control of pulmonary vascular tone is described.  相似文献   

8.
Endothelium-derived nitric oxide (NO) is a key determinant of blood pressure homeostasis and platelet aggregation and is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). In the vascular wall, eNOS is activated by diverse cell-surface receptors and by increases in blood flow, and the consequent generation of NO leads to vascular smooth-muscle relaxation. Endothelium-dependent vasorelaxation is deranged in a variety of disease states, including hypertension, diabetes, and atherosclerosis, but the roles of eNOS in endothelial dysfunction remain to be clearly defined. The past several years have witnessed important advances in understanding the molecular and cellular biology of eNOS regulation. In endothelial cells, eNOS undergoes a complex series of covalent modifications, including myristoylation, palmitoylation, and phosphorylation. Palmitoylation of eNOS dynamically targets the enzyme to distinct domains of the endothelial plasma membrane termed caveolae; caveolae may serve as sites for the sequestration of signal-transducing proteins and are themselves subject to dynamic regulation by ligands and lipids. Originally thought to be expressed only in endothelial cells, eNOS is now known to be expressed in a variety of tissues, including blood platelets, cardiac myocytes, and brain hippocampus. Paradigms established in endothelial cells for the molecular regulation and subcellular targeting of eNOS are being extended to the investigation of eNOS expressed in nonendothelial tissues. This review summarizes recent advances in understanding the molecular regulation of eNOS and the other NOS isoforms and identifies important parallels between eNOS and other cell-signaling molecules. ? 1997, Elsevier Science Inc. (Trends Cardiovasc Med 1997;7:28-37).  相似文献   

9.
BACKGROUND/AIM: Under pathological conditions the nitric oxide synthase (NOS)-mediated nitric oxide production of sinusoidal endothelial cells might be altered. Therefore, studies were performed to evaluate the nitrite formation by cultured sinusoidal endothelial cells from rat livers chronically injured by thioacetamide and the effect of endogenously or exogenously generated nitric oxide on their proliferative activity. METHODS: Basal and stimulated nitrite formation, expression of NOS and DNA synthesis were examined in sinusoidal endothelial cells isolated and cultivated from livers with incipient or advanced chemically-induced cirrhosis. RESULTS: Cultured sinusoidal endothelial cells from injured livers exhibited a reduced basal and an increased lipopolysaccharide-stimulated nitrite production when compared with controls. Western blot analysis revealed a markedly reduced protein expression of endothelial NOS (eNOS) and inducible NOS (iNOS) in sinusoidal endothelial cells from both experimental groups when compared with controls. Lipopolysaccharide stimulated iNOS expression in sinusoidal endothelial cells from control livers only marginally, and from those with cirrhosis more strongly. There was no clear correlation between the amount of enzyme and nitrite formation. Cultured sinusoidal endothelial cells from livers with incipient cirrhosis showed a higher proliferative activity than controls. Endogenously-produced nitric oxide inhibited DNA synthesis in all groups in a cGMP-independent way. Exogenously-generated nitric oxide affected DNA synthesis differently in sinusoidal endothelial cells from controls and injured livers. CONCLUSION: The results provide evidence that cultured sinusoidal endothelial cells from controls and livers with incipient or advanced cirrhosis differ with respect to basal and lipopolysaccharide-stimulated nitrite production. The data can be taken as evidence that in sinusoidal endothelial cells from livers chronically injured by thioacetamide, eNOS and iNOS are aberrantly expressed and differently regulated.  相似文献   

10.
To determine if there are differences in nitric oxide activity between pre- and postcapillary microvessels, we studied cultured rat mesenteric arteriolar and venular endothelial cells (RMAEC, RMVEC). We measured expression of endothelial nitric oxide synthase (eNOS), the activity of eNOS, and L-arginine transport in live RMAEC and RMVEC and the L-arginine content of RMAEC and RMVEC lysates. The abundance of eNOS was significantly greater in RMVEC vs RMAEC; this was also true for freshly harvested, pooled microvessels. Baseline NOS activity was higher in RMVEC than in RMAEC. NG-monomethyl-L-arginine (L-NMA; 5 mM) inhibited NOS activity by approximately 70-80% in both RMAEC and RMVEC, indicating that metabolism of l-arginine is largely via NOS. Intracellular L-arginine levels were higher in RMVEC vs RMAEC and well above the eNOS Km in both cell types. L-arginine levels increased with L-NMA in both RMAEC and RMVEC, presumably due to reduced substrate utilization. Since L-arginine transport was not higher in RMVEC vs RMAEC, this may reflect higher intracellular arginine synthesis. A higher intrinsic level of baseline NO production in the postcapillary microvascular endothelium may reflect both the contribution of venular derived NO to control of arteriolar tone and a key role of venular-derived NO in local thrombosis control.  相似文献   

11.
BACKGROUND: Endothelial function is impaired in atherosclerosis, hypertension, diabetes and aging, and this may be associated with an attenuated ability of endothelial cells to generate nitric oxide (NO). OBJECTIVES: To evaluate possible alterations in endothelium-dependent relaxation in rat aortic rings, the activity of constitutive NO synthase and endothelial electrical responses to acetylcholine (Ach) in rat aorta, and the effect of one month of treatment with the angiotensin-converting enzyme inhibitor enalapril on endothelial function. METHODS: Endothelial membrane potential was measured in excised rat aorta using the perforated patch-clamp technique. Enzyme activity was determined by measuring the rate of formation of L-citrulline from L-arginine. RESULTS: In old rats and rats with experimental diabetes, the relaxation response to Ach and the activity of constitutive NO synthase were significantly depressed compared with control rats, and the endothelial resting membrane potential was significantly depolarized (-32.7+/-0.8 mV and -28.4+/-3.1 mV, respectively) compared with the control rats (-42.9+/-0.6 mV). The membrane potential attained during peak hyper-polarization to Ach in the arteries of diabetic and old rats (-57.6+/-1.1 mV and -55.7+/-2.1 mV, respectively) did not reach the level attained in the arteries of control rats (-63.1+/-0.6 mV). Enalapril treatment restored the relaxation response to Ach and increased the activity of constitutive NO synthase in aortic rings from diabetic and old rats. CONCLUSIONS: Altered electrical properties of endothelial cells and attenuated NO synthase activity underpin the suppressed relaxation to Ach in aging and experimental diabetes. Enalapril treatment improves endothelium-dependent relaxation and the activity of constitutive NO synthase.  相似文献   

12.
OBJECTIVES: The present study aimed to investigate the influence of endogenous tumor necrosis factor-alpha (TNF-alpha) that was synthesized during ischemia and exogenous TNF-alpha on endothelial and inducible nitric oxide synthase (eNOS and iNOS) messenger ribonucleic acid (mRNA) expression and nitric oxide (NO) production in the isolated rat heart. BACKGROUND: Tumor necrosis factor-alpha is recognized as being a proinflammatory cytokine with a significant cardiodepressant effect. One of the proposed mechanisms for TNF-alpha-induced cardiac contractile dysfunction is increased NO production via iNOS mRNA upregulation, but the role of NO in TNF-alpha-induced myocardial dysfunction is highly controversial. METHODS: Isolated rat hearts studied by a modified Langendorff model were randomly divided into subgroups to investigate the effect of 1-h global cardioplegic ischemia or the effect of 1-h perfusion with exogenous TNF-alpha on the expression of eNOS mRNA and iNOS mRNA and on NO production. RESULTS: After 1 h of ischemia, there were significant increases in TNF levels in the effluent (from hearts), and eNOS mRNA expression had declined (from 0.91 +/- 0.08 to 0.68 +/- 0.19, p < 0.001); but there were no changes in iNOS mRNA expression, and NO was below detectable levels. Perfusion of isolated hearts with TNF-alpha had a cardiodepressant effect and decreased eNOS mRNA expression to 0.67 +/- 0.04 (p < 0.002). Inducible nitric oxide synthase mRNA was unchanged, and NO was below detectable levels. CONCLUSIONS: We believe this is the first study to directly show that TNF-alpha does not increase NO synthesis and release but does downregulate eNOS mRNA in the ischemic and nonischemic isolated rat heart.  相似文献   

13.
Reduction of nitrite (NO(2)(-)) provides a major source of nitric oxide (NO) in the circulation, especially in hypoxemic conditions. Our previous studies suggest that xanthine oxidoreductase (XOR) is an important nitrite reductase in the heart and kidney. Herein, we have demonstrated that conversion of nitrite to NO by blood vessels and RBCs was enhanced in the presence of the XOR substrate xanthine (10 micromol/L) and attenuated by the XOR inhibitor allopurinol (100 micromol/L) in acidic and hypoxic conditions only. Whereas endothelial nitric oxide synthase (eNOS) inhibition had no effect on vascular nitrite reductase activity, in RBCs L-NAME, L-NMMA, and L-arginine inhibited nitrite-derived NO production by >50% (P<0.01) at pH 7.4 and 6.8 under hypoxic conditions. Western blot and immunohistochemical analysis of RBC membranes confirmed the presence of eNOS and abundant XOR on whole RBCs. Thus, XOR and eNOS are ideally situated on the membranes of RBCs and blood vessels to generate intravascular vasodilator NO from nitrite during ischemic episodes. In addition to the proposed role of deoxyhemoglobin, our findings suggest that the nitrite reductase activity within the circulation, under hypoxic conditions (at physiological pH), is mediated by eNOS; however, as acidosis develops, a substantial role for XOR becomes evident.  相似文献   

14.
15.
Activation of endothelial nitric oxide synthase (eNOS) and subsequent nitric oxide production (NO) are events that mediate the effect of important angiogenic, vasopermeability, and vasorelaxation factors, including vascular endothelial growth factor (VEGF), bradykinin (BK), and acetylcholine (ACh). The N-terminal 16-kDa fragment of prolactin (16K-PRL) acts on endothelial cells to inhibit angiogenesis both in vivo and in vitro. Here, we show that 16K-PRL inhibits VEGF-induced eNOS activation in endothelial cells. Inhibition of eNOS activation may mediate the antiangiogenic properties of 16K-PRL, because the NO donor (Z)-1-[2-(2-aminoethyl)- N-(2-ammonio-ethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate) prevented 16K-PRL from blocking the VEGF-induced proliferation of endothelial cells. In addition, 16K-PRL inhibited eNOS activation by BK and blocked the BK-evoked transient increase in intracellular Ca(2+) in endothelial cells. This finding suggests that 16K-PRL interferes with the mobilization of intracellular Ca(2+), thereby inhibiting the Ca(2+)-dependent activation of eNOS. Blockage of eNOS activation can lead to inhibition of vasodilation. Consistently, 16K-PRL inhibited BK-induced relaxation of coronary vessels in isolated perfused guinea pig hearts. Moreover, 16K-PRL inhibited eNOS activation induced by ACh, and this action resulted in the inhibition of both ACh-evoked relaxation of coronary vessels in isolated perfused rat hearts and ACh-induced, endothelium-dependent relaxation of rat aortic segments. In conclusion, 16K-PRL can block the Ca(2+)-mediated activation of eNOS by three different vasoactive substances, and this action results in the inhibition of both angiogenesis and vasorelaxation.  相似文献   

16.
Phosphatidylinositol 3-kinase (PI3-K) has been shown to mediate insulin and insulin-like growth factor-1 (IGF-1)-induced nitric oxide (NO) generation and, thus, vascular tone. A role for PI3-K in G-protein-coupled receptor signal transduction has also been reported. As beta2 -adrenergic vascular actions are partly dependent on NO, this study the role of PI3-K on in vitro isoproterenol (Iso)-induced endothelial cell (EC) nitric oxide synthase (NOS) activation and rat aortic vascular relaxation. Cell lysates of rat aortic EC (RAEC), exposed to Iso (10 micromol/L) for 5 minutes, were immunoprecipitated with an antiphosphotyrosine antibody prior to assay for Western blot for the p85-kd regulatory subunit of PI3-K. Endothelial NOS activity was determined by measuring nitrite production. Endothelium-intact aortic rings from male Wistar rats were preincubated with the PI3-K inhibitors, wortmannin (WT), or LY294002 (LY), precontracted with phenylepinephrine (PE), and relaxation to graded doses of Iso was measured. NO contribution to vascular relaxation was assessed by L-N(G)-nitroarginine methyl ester (L-NAME), a NOS inhibitor. Both Iso and IGF-1 induced an increase in p85 subunit phosphorylation as demonstrated by Western analysis, effects inhibited by preincubation with WT. Iso also enhanced association of p85 with the Triton X-100-insoluble fraction of RAEC, reflecting translocation of this enzyme to a cytoskeletal fraction. In addition, Iso as well as IGF-1 significantly increased eNOS activity measured by nitrite production. Both WT and LY markedly inhibited relaxation to Iso, while L-NAME nearly abolished this beta-adrenergic-mediated vasorelaxation. These data indicate that both Iso and IGF-1 activate the EC PI3-K pathway which mediates, in part, the release of NO and subsequent vasorelaxation in response to this beta-agonist Iso as well as to IGF-1.  相似文献   

17.
Endothelial dysfunction, considered as a defective vascular dilatation after certain stimuli, is characteristic of different pathological conditions, such as hypertension, atherosclerosis, or diabetes. A decreased synthesis or an increased degradation of nitric oxide (NO) has been postulated as the mechanism responsible for this alteration. The present experiments were designed to test the hypothesis that the presence of an abnormal extracellular matrix in vessel walls could be responsible for the decreased NO synthesis observed in these pathological conditions. Experiments were performed in cultured human umbilical vein endothelial cells (HUVECs) grown on type IV (Col. IV) or type I (Col. I) collagen. Cells seeded on Col. I showed decreased nitrite synthesis, nitric oxide synthase activity, eNOS protein content, and eNOS mRNA expression when compared with cells grown on Col. IV. Moreover, cells grown on Col. I failed to respond to glucose oxidase activation of the eNOS system. In both cases, the changes in the eNOS mRNA expression seemed to depend on the modulation of eNOS promoter activity. The downregulation of eNOS induced by Col. I was blocked by D6Y, a peptide that interferes with the Col. I-dependent signals through integrins, as well as by specific anti-integrin antibodies. Moreover, a decreased activation of integrin-linked kinase (ILK) may explain the effects observed in Col. I-cultured cells because the activity of this kinase was decreased in these cells and ILK modulation prevented the Col. I-induced changes in HUVECs. Taken together, these findings may contribute to explaining the basis of endothelial dysfunction in some vascular diseases.  相似文献   

18.
BACKGROUND & AIMS: A reduction in nitric oxide (NO) has been implicated as a cause of intrahepatic vasoconstriction in cirrhosis, but the regulatory mechanisms remain undefined. The aim of this study was to examine a contributory role for caveolin-1, a putative negative regulator of endothelial NO synthase, in mediating deficient intrahepatic NO production in the intact cirrhotic liver. METHODS: Cirrhosis was induced by carbon tetrachloride inhalation. Flow regulation of NO production and perfusion pressure was examined in the perfused rat liver. Protein expression of endothelial NO synthase (eNOS), caveolin, and calmodulin was examined by Western blotting and immunohistochemistry. NOS activity and NO production were assessed by citrulline generation and chemiluminescence, respectively. Protein-protein interactions were examined using whole tissue protein immunoprecipitation. RESULTS: In response to incremental increases in flow, cirrhotic animals produced significantly less NO(x) than control animals. NOS activity was significantly reduced in liver tissue from cirrhotic animals compared with control animals in the presence of similar eNOS protein levels. Deficient eNOS activity was associated with a severalfold increase in binding of eNOS with caveolin. Protein levels of caveolin-1 were markedly increased in the cirrhotic liver. CONCLUSIONS: These studies provide evidence that enhanced expression and interaction of caveolin with eNOS contribute to impaired NO production, reduced NOS activity, and vasoconstriction in the intact cirrhotic liver.  相似文献   

19.
BACKGROUND: The effect of dietary pomace olive oil, which has the same concentration of oleic acid but a higher proportion of oleanolic acid (OA) than olive oil, was examined on animal models of hypertension for the first time. METHODS: During 12 weeks, Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were fed with either a control 2% corn oil diet (BD), or high-fat diets containing 15% of refined olive oil (OL), pomace olive oil (POM), or pomace olive oil supplemented in OA (up to 800 ppm) (POMO). Then, vascular reactivity and endothelial nitric oxide (NO) synthase (eNOS) expression were studied in aortic rings. Plasma nitrite + nitrate levels were also determined. RESULTS: Diets had no effects on blood pressure (BP). In contrast to the BD and OL dietary groups, POM intake improved relaxation evoked by acetylcholine in SHR aorta. The POMO intake increased vasodilatation to acetylcholine and attenuated phenylephrine-induced contractions in both strains of rats associated with a major NO participation revealed by inhibition of NOS. The enhanced relaxation shown in POM and POMO SHR aorta was attributed to an increased eNOS protein expression. Plasma nitrite levels were also increased in these groups. Although olive and pomace oils used in diets contained similar fatty acid composition, beneficial effects on endothelial function were absent in the OL group. Therefore, these effects must be associated with some minor components from pomace olive oil such as OA. CONCLUSIONS: Chronic intake of diets rich in pomace olive oil improves endothelial dysfunction in SHR aorta by mechanisms associated with enhanced eNOS expression. Important evidence is provided regarding the effects of pomace olive oil and OA on endothelial function in hypertensive animals.  相似文献   

20.
Objective: Resveratrol, a polyphenol of natural compounds, has beneficial cardiovascular effects, many of which are mediated by nitric oxide (NO). Resveratrol increases intracellular calcium and activates AMP-activated protein kinase (AMPK), all of which could increase NO production. We hypothesized that resveratrol via a calcium-dependent NO production lowers blood pressure (BP) in spontaneously hypertensive rats (SHR). Methods: Acetylcholine (Ach)-induced endothelium-dependent relaxations in rat aortas were examined by organ chamber. Blood pressures were determined by radiotelemetry methods. Results: Incubation of isolated aortas from SHR with resveratrol dramatically improved vasorelaxation induced by Ach. Preincubation of aortas with endothelial NO synthase (eNOS) inhibitor or calcium chelant blunted the effects of resveratrol on Ach-induced relaxation, as wells as NO production and eNOS phosphorylation. In animal studies, administration of resveratrol significantly lowered systemic BP in SHR. Conclusion: Resveratrol increases endothelial NO production to improve endothelial dysfunction and lowers BP in hypertensive rats, which depends on calcium-eNOS activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号