首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The dorsolateral prefrontal cortex and the anterior cingulate cortex are critical components of the brain circuitry underlying executive control. The objective of this study was to investigate control-related dorsolateral prefrontal cortex functioning and conflict-related anterior cingulate cortex functioning in a group of never medicated first-episode schizophrenia patients to determine whether both regions show dysfunction at illness onset. A second objective was to assess short-term effects of atypical antipsychotic medication on dorsolateral prefrontal cortex and anterior cingulate cortex functioning. METHOD: First-episode schizophrenia patients (N=23) and healthy comparison subjects (N=24) underwent event-related fMRI and performed a cognitive task designed to functionally dissociate the two regions. Four weeks after initiation of pharmacotherapy for patients, a subset of 11 patients and 16 comparison subjects underwent a repeat assessment. RESULTS: At baseline, patients exhibited hypoactivation in the dorsolateral prefrontal cortex and anterior cingulate cortex. After 4 weeks of antipsychotic treatment, the patients demonstrated improved functioning in the anterior cingulate cortex but not in the dorsolateral prefrontal cortex. CONCLUSIONS: These findings confirm the presence of dorsolateral prefrontal cortex dysfunction early in the course of schizophrenia and suggest that anterior cingulate cortex functioning may be altered at illness onset as well. Results also suggest that anterior cingulate cortex functioning may be especially sensitive to remedial antipsychotic treatment effects. These findings are consistent with an emerging literature documenting short-term benefits of atypical antipsychotic medication for the neural circuitry underlying cognitive deficits in schizophrenia.  相似文献   

2.
BACKGROUND: Pathology of dorsolateral prefrontal cortex and dysregulation of dopaminergic neurons have been associated with the pathophysiology of schizophrenia, but how these phenomena relate to each other in patients has not been known. It has been hypothesized that prefrontal cortical pathology might induce both diminished steady-state and exaggerated responses of dopaminergic neurons to certain stimuli (e.g., stress). We examined the relationship between a measure of prefrontal neuronal pathology and striatal dopamine activity in patients with schizophrenia and in a nonhuman primate model of abnormal prefrontal cortical development. METHODS: In the patients, we studied in vivo markers of cortical neuronal pathology with NMR spectroscopic imaging and of steady-state striatal dopamine activity with radioreceptor imaging. In the monkeys, we used the same NMR technique and in vivo microdialysis. RESULTS: Measures of N-acetyl-aspartate concentrations (NAA) in dorsolateral prefrontal cortex strongly and selectively predicted D2 receptor availability in the striatum (n = 14, rho = -.64, p < .01), suggesting that the greater the apparent dorsolateral prefrontal cortex pathology, the less the steady-state dopamine activity in these patients. A similar relationship between NAA measures in dorsolateral prefrontal cortex and steady-state dopamine concentrations in the striatum was found in the monkeys (n = 5, rho = .70, p < .05). We then tested in the same monkeys the relationship of prefrontal NAA and striatal dopamine overflow following amphetamine infusion into dorsolateral prefrontal cortex. Under these conditions, the relationship was inverted, i.e., the greater the apparent dorsolateral prefrontal cortex pathology, the greater the dopamine release. CONCLUSIONS: These data demonstrate direct relationships between putative neuronal pathology in dorsolateral prefrontal cortex and striatal dopamine activity in human and nonhuman primates and implicate a mechanism for dopamine dysregulation in schizophrenia.  相似文献   

3.
OBJECTIVE: Working memory, a critical cognitive capacity that is affected in schizophrenia, can be divided into maintenance and manipulation processes. Previous behavioral research suggested that manipulation is more affected than maintenance in patients with chronic schizophrenia. In this study of first-episode schizophrenia patients, the authors evaluated the extent to which the two working memory processes are affected early in the course of schizophrenia. METHOD: Study subjects were 11 first-episode schizophrenia patients and 11 matched healthy comparison subjects. Each group performed two verbal working memory tasks while undergoing functional magnetic resonance imaging. One task required maintenance of information; the other required manipulation of information in addition to maintenance. RESULTS: Under behaviorally matched conditions, both groups activated a predominantly left-sided frontal-parietal network. The manipulation plus maintenance task elicited activation of greater magnitude and spatial extent. With both tasks, patients showed less bilateral dorsolateral prefrontal cortex activation and greater ventrolateral prefrontal cortex activation, relative to the comparison subjects. A group-by-task interaction was observed for activation at the left dorsolateral and ventrolateral prefrontal cortex. The increase in activation when patients engaged in the manipulation plus maintenance task was disproportionately less in the dorsolateral prefrontal cortex and greater in the ventrolateral prefrontal cortex. CONCLUSIONS: These functional neuroanatomical findings add support to earlier suggestions that manipulation of information is selectively more affected than maintenance of information in persons with schizophrenia. They also suggest the presence of interacting regions of dysfunctional and compensatory prefrontal responses in the dorsolateral and ventrolateral prefrontal cortex, respectively, that are more prominent when information is manipulated. This disrupted prefrontal network is present relatively early in the course of schizophrenia.  相似文献   

4.
OBJECTIVE: Pharmacological, clinical, and postmortem studies suggest altered gamma-aminobutyric acid (GABA)-ergic and glutamatergic function in patients with schizophrenia. The dorsolateral prefrontal cortex is one key locus of abnormality. The precise neurochemical mechanisms underlying neurotransmitter alterations, such as hypoglutamatergia or GABA dysfunction, are not well understood. This study investigated key biochemical elements of GABA and glutamate metabolism in brain specimens from schizophrenic patients. The activities of nine principal GABA and glutamate-associated metabolic enzymes were measured concurrently in the dorsolateral prefrontal cortex of antemortem-assessed and neuropathologically characterized schizophrenic and comparison subjects. METHOD: Postmortem dorsolateral prefrontal cortex specimens from schizophrenia, Alzheimer's disease, and normal nonpsychiatric comparison subjects were assayed to determine activities of the principal glutamate and GABA-metabolizing enzymes glutamine synthetase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, phosphate-activated glutaminase, alanine aminotransferase, aspartate aminotransferase, glutamic acid decarboxylase, GABA-transaminase, and succinic semialdehyde dehydrogenase. RESULTS: Glutamic acid decarboxylase activities were twofold greater and phosphate-activated glutaminase activities were fourfold greater in the schizophrenic group than in the comparison group. Differences in postmortem interval, tissue pH, inhibition of phosphate-activated glutaminase, and medication effects could not account for the differences. Differences in phosphate-activated glutaminase and glutamic acid decarboxylase activities in equivalent specimens from Alzheimer's patients were not observed. The activities of the remaining enzymes were unchanged. CONCLUSIONS: Greater phosphate-activated glutaminase and glutamic acid decarboxylase activities, specific to schizophrenia patients, provide additional biochemical evidence that dorsolateral prefrontal cortex glutamate and GABA metabolism is altered in schizophrenic subjects. These greater activities are consistent with models of a dysregulated glutamatergic/GABA-ergic state in schizophrenia.  相似文献   

5.
Research from a variety of methodologies is demonstrating a role for neuroanatomical structures in different aspects of sexual behavior. This article reviews the particular contribution of prefrontal-subcortical systems to sexual behavior, including regions of prefrontal cortex (i.e., dorsolateral, medial, and orbitofrontal cortex), and associated subcortical structures (i.e., basal ganglia and thalamus). Findings are integrated from functional neuroimaging and clinical studies in humans, as well as animal studies, which convergently illustrate the role of different prefrontal systems. In addition to providing a clearer understanding of normal sexual behavior, appreciation of prefrontal systems in sexual behavior has implications for disorders of sexual behavior. Consistent with their role in other forms of cognition, emotion, and behavior, prefrontal systems serve in an executive capacity to regulate sexual behavior.  相似文献   

6.
Research from a variety of methodologies is demonstrating a role for neuroanatomical structures in different aspects of sexual behavior. This article reviews the particular contribution of prefrontal-subcortical systems to sexual behavior, including regions of prefrontal cortex (i.e., dorsolateral, medial, and orbitofrontal cortex), and associated subcortical structures (i.e., basal ganglia and thalamus). Findings are integrated from functional neuroimaging and clinical studies in humans, as well as animal studies, which convergently illustrate the role of different prefrontal systems. In addition to providing a clearer understanding of normal sexual behavior, appreciation of prefrontal systems in sexual behavior has implications for disorders of sexual behavior. Consistent with their role in other forms of cognition, emotion, and behavior, prefrontal systems serve in an executive capacity to regulate sexual behavior.  相似文献   

7.
BACKGROUND: The dopamine hypothesis remains a prominent influence on research into the pathogenesis of schizophrenia, yet the presence of consistent schizophrenia-linked abnormalities in the presynaptic components of the dopamine system or in dopamine receptors still remains a matter of debate. The present study focuses on a recently recognized group of dopamine receptor-interacting proteins as possible novel sites of dysfunction in schizophrenia. Specifically, we examined whether the D1 dopamine receptor-interacting protein calcyon and the D2 dopamine receptor-interacting proteins filamin-A and spinophilin are affected in the dorsolateral prefrontal cortex of patients with schizophrenia. METHODS: Slot blots of dorsolateral prefrontal cortical tissue were used to compare the levels of the 3 proteins of interest in control, schizophrenic, bipolar, and major depression groups (n = 15 per group). The nonschizophrenic psychiatric groups were included to determine the specificity of the detected abnormalities. RESULTS: The dorsolateral prefrontal cortex in schizophrenic patients displayed nearly twice the normal levels of calcyon, whereas filamin-A and spinophilin levels were unaltered. Patients with bipolar disorder or major depression showed no changes in all 3 proteins examined. CONCLUSION: Our findings provide the first evidence that abnormalities in the dopamine system of patients with schizophrenia may lie in altered levels of dopamine receptor-interacting proteins.  相似文献   

8.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

9.
The authors obtained a frontal functions profile for 81 schizophrenic patients using six neuropsychological tests that evaluate the dorsolateral prefrontal cortex functions, i.e., working memory, executive functions, and strategic performance. They then analyzed the test performances with a cluster analysis, which produced a four-cluster solution. The results support the hypothesis that neuropsychological dysfunctions in schizophrenia are heterogeneous. The performances on many of the neuropsychological tests were also strongly correlated with verbal and nonverbal IQ, as measured by the Wechsler Adult Intelligence Scale-Revised.  相似文献   

10.
OBJECTIVE: Numerous neuroimaging studies have examined the function of the dorsolateral prefrontal cortex in schizophrenia; although abnormalities usually are identified, it is unclear why some studies find too little activation and others too much. The authors' goal was to explore this phenomenon. METHOD: They used the N-back working memory task and functional magnetic resonance imaging at 3 T to examine a group of 14 patients with schizophrenia and a matched comparison group of 14 healthy subjects. RESULTS: Patients' performance was significantly worse on the two-back working memory task than that of healthy subjects. However, there were areas within the dorsolateral prefrontal cortex of the patients that were more active and areas that were less active than those of the healthy subjects. When the groups were subdivided on the basis of performance on the working memory task into healthy subjects and patients with high or low performance, locales of greater prefrontal activation and locales of less activation were found in the high-performing patients but only locales of underactivation were found in the low-performing patients. CONCLUSIONS: These findings suggest that patients with schizophrenia whose performance on the N-back working memory task is similar to that of healthy comparison subjects use greater prefrontal resources but achieve lower accuracy (i.e., inefficiency) and that other patients with schizophrenia fail to sustain the prefrontal network that processes the information, achieving even lower accuracy as a result. These findings add to other evidence that abnormalities of prefrontal cortical function in schizophrenia are not reducible to simply too much or too little activity but, rather, reflect a compromised neural strategy for handling information mediated by the dorsolateral prefrontal cortex.  相似文献   

11.
Studies of high-risk offspring (HR) of schizophrenic patients have found abnormalities in attention, working memory and executive functions, suggesting impaired integrity of the prefrontal cortex and related brain regions. The authors conducted a preliminary high-field (3 T) functional magnetic resonance imaging (fMRI) study to assess performance and activation during a memory-guided saccade (MGS) task, which measures spatial working memory. HR subjects showed significant decreases in fMRI-measured activation in the dorsolateral prefrontal cortex (Brodmann's areas 8 and 9/46) and the inferior parietal cortex (Brodmann's area 40) compared to age- and sex-matched healthy controls (HC). Abnormal functional integrity of prefrontal and parietal regions of the heteromodal association cortical (HAC) regions in subjects at genetic risk for schizophrenia is consistent with findings observed in adults with the illness [Callicott et al., Cereb. Cortex 10 (2000) 1078; Manoach et al., Biol. Psychiatry 48 (2000) 99.]. These abnormalities need to be prospectively investigated in nonpsychotic individuals at risk for schizophrenia in order to determine their predictive value for eventual emergence of schizophrenia or related disorders.  相似文献   

12.
Involvement of the prefrontal cortex in schizophrenia has been implicated by neuropsychological, as well as neuropathological and imaging studies. Reductions of N-acetylaspartate (NAA), an in vivo marker of neuronal integrity, have repeatedly been detected in the frontal lobes of patients with schizophrenia by proton magnetic resonance spectroscopy (1H-MRS). In chronic medicated patients, a positive correlation between NAA levels of the prefrontal cortex and cognitive functioning has been observed, but to date, there have been no studies in first-episode neuroleptic-naive patients. In this study, single-voxel 1H-MRS was used to investigate neuronal function of the dorsolateral prefrontal cortex in 15 first-episode and 20 chronic schizophrenic patients. Outcomes were compared to 20 age-matched healthy controls to assess the relationship between prefrontal metabolism and neuropsychological performance. Patients with chronic schizophrenia had significant reductions of NAA, glutamate/glutamine, and choline levels compared to first-episode patients and healthy controls. Furthermore, creatine and phosphocreatine were significantly reduced in both patient groups compared to healthy controls. In the neuropsychological tests, chronic schizophrenic patients performed significantly poorer in the Auditory Verbal Learning Task (AVLT) compared to first-episode patients. In both patient groups, NAA levels of the left frontal lobe significantly correlated with performances in verbal learning and memory. These results corroborate data from recent structural and spectroscopic imaging studies of the frontal lobes in schizophrenia, in which cortical gray matter reductions after onset of symptoms as well as reduced levels of NAA in chronic, but not in first-episode schizophrenic patients have been reported.  相似文献   

13.
14.
Disturbance of prenatal brain development and/or postnatal brain maturation in the context of the etiology and pathophysiology of schizophrenic psychoses is increasingly recognized as the developmental hypothesis of schizophrenia. This hypothesis is based on findings in neuroimaging and neuroanatomical findings in schizophrenic disorders. Cell adhesion molecules, such as the cadherins, are of critical importance for morphogenesis in the CNS during embryonic development. Recent investigations of the genomic organization and chromosomal localization of cadherins show a remarkable association with linkage results in affected multiplex pedigrees. Taken together, these findings should lead to an investigation of the role of cadherins in complex psychiatric disorders.  相似文献   

15.
Basic perceptual skills involving the central nervous system require the orderly temporal integration of internal as well as external information. Current research in schizophrenia increasingly centers on the accompanying neurocognitive deficits. In association with schizophrenic psychoses, there have been frequent reports of altered temporal processes, but explicit research on the perception of temporal relationship is still rare. Using concrete operationalized neuropsychological procedures, the present pilot study addressed the question whether schizophrenic patients (n = 27) differ from a healthy control group (n = 18) concerning their ability to judge correctly the temporal order of visual stimuli. We found a significant impairment in basal temporal perception among patients. Moderating variables such as antipsychotic medication, attention deficits, or motivation effects did not appear to be essential explanatory factors for this finding. Thus, our findings indicate a fundamental disturbance in the temporal coordination of neuronal network functions in association with schizophrenic psychoses and are in line with neurophysiological, neuroanatomical, and neuropsychological overlappings of schizophrenia and temporal perception.  相似文献   

16.
OBJECTIVE: The identification of neurobiological intermediate phenotypes may hasten the search for susceptibility genes in complex psychiatric disorders such as schizophrenia. Earlier family studies have suggested that deficits in executive cognition and working memory may be related to genetic susceptibility for schizophrenia, but the biological basis for this behavioral phenotype has not been identified. METHOD: The authors used functional magnetic resonance imaging (fMRI) during performance of the N-back working memory task to assess working memory-related cortical physiology in nonschizophrenic, cognitively intact siblings of patients with schizophrenia. They compared 23 unaffected siblings of schizophrenic patients to 18 matched comparison subjects. As a planned replication, they studied another 25 unaffected siblings and 15 comparison subjects. RESULTS: In both cohorts, there were no group differences in working memory performance. Nevertheless, both groups of siblings showed an exaggerated physiological response in the right dorsolateral prefrontal cortex that was qualitatively similar to results of earlier fMRI studies of patients with schizophrenia. CONCLUSIONS: These fMRI data provide direct evidence of a primary physiological abnormality in dorsolateral prefrontal cortex function in individuals at greater genetic risk for schizophrenia, even in the absence of a manifest cognitive abnormality. This exaggerated fMRI response implicates inefficient processing of memory information at the level of intrinsic prefrontal circuitry, similar to earlier findings in patients with schizophrenia. These data predict that inheritance of alleles that contribute to inefficient prefrontal information processing will increase risk for schizophrenia.  相似文献   

17.
OBJECTIVE: Abnormal activation of the dorsolateral prefrontal cortex and a related cortical network during working memory tasks has been demonstrated in patients with schizophrenia, but the responsible mechanism has not been identified. The present study was performed to determine whether neuronal pathology of the dorsolateral prefrontal cortex is linked to the activation of the working memory cortical network in patients with schizophrenia. METHOD: The brains of 13 patients with schizophrenia and 13 comparison subjects were studied with proton magnetic resonance spectroscopic ((1)H-MRS) imaging (to measure N-acetylaspartate as a marker of neuronal pathology) and with [(15)O]water positron emission tomography (PET) during performance of the Wisconsin Card Sorting Test (to measure activation of the working memory cortical network). An independent cohort of patients (N=7) was also studied in a post hoc experiment with (1)H-MRS imaging and with the same PET technique during performance of another working memory task (the "N-back" task). RESULTS: Measures of N-acetylaspartate in the dorsolateral prefrontal cortex strongly correlated with activation of the distributed working memory network, including the dorsolateral prefrontal, temporal, and inferior parietal cortices, during both working memory tasks in the two independent groups of patients with schizophrenia. In contrast, N-acetylaspartate in other cortical regions and in comparison subjects did not show these relationships. CONCLUSIONS: These findings directly implicate a population of dorsolateral prefrontal cortex neurons as selectively accounting for the activity of the distributed working memory cortical network in schizophrenia and complement other evidence that dorsolateral prefrontal cortex connectivity is fundamental to the pathophysiology of the disorder.  相似文献   

18.
Hypofrontality or reduced activity in the prefrontal cortex, measured as reduced frontal perfusion or glucose uptake, has gained the status of an established finding in the medical literature on schizophrenia. Many relevant studies, however, have potential sources of bias, such as small subject numbers, or unreliable performance of activation tasks by the patients during the scanning procedure. Seventy patients with non-affective and non-organic psychoses were recruited--most qualifying for DSM III-R schizophrenia or schizophreniform psychosis (n = 60)--together with 20 healthy volunteers. They underwent single photon emission computed tomography with 99mTc-exametazime, carried out at rest. Tracer uptake was normalised to the occipital cortex. Group differences in tracer uptake were predicted in anterior regions of interest (prefrontal cortex and mesial frontal/cingulate cortex). Actively psychotic (including schizophrenic) patients not taking any drugs showed increased uptake in the prefrontal cortex. Reduced tracer uptake occurred in the mesial frontal cortex of schizophrenic patients, particularly if they were taking drugs. Relatively increased prefrontal tracer uptake associated with relatively decreased mesial frontal uptake characterised the patients in comparison with the controls. Generalised hypofrontality is, therefore, not a feature of schizophrenic patients at rest whether taking drugs or not.  相似文献   

19.
OBJECTIVE: The dorsolateral prefrontal cortex has been implicated in both working memory and the pathophysiology of schizophrenia. A relationship among dorsolateral prefrontal cortex activity, working memory dysfunction, and symptoms in schizophrenia has not been firmly established, partly because of generalized cognitive impairments in patients and task complexity. Using tasks that parametrically manipulated working memory load, the authors tested three hypotheses: 1) patients with schizophrenia differ in prefrontal activity only when behavioral performance differentiates them from healthy comparison subjects, 2) dorsolateral prefrontal cortex dysfunction is associated with poorer task performance, and 3) dorsolateral prefrontal cortex dysfunction is associated with cognitive disorganization but not negative or positive symptoms. METHOD: Seventeen conventionally medicated patients with schizophrenia and 16 healthy comparison subjects underwent functional magnetic resonance imaging while performing multiple levels of the "n-back" sequential-letter working memory task. RESULTS: Patients with schizophrenia showed a deficit in physiological activation of the right dorsolateral prefrontal cortex (Brodmann's area 46/9) in the context of normal task-dependent activity in other regions, but only under the condition that distinguished them from comparison subjects on task performance. Patients with greater dorsolateral prefrontal cortex dysfunction performed more poorly. Dorsolateral prefrontal cortex dysfunction was selectively associated with disorganization symptoms. CONCLUSIONS: These results are consistent with the hypotheses that working memory dysfunction in patients with schizophrenia is caused by a disturbance of the dorsolateral prefrontal cortex and that this disturbance is selectively associated with cognitive disorganization. Further, the pattern of behavioral performance suggests that dorsolateral prefrontal cortex dysfunction does not reflect a deficit in the maintenance of stimulus representations per se but points to deficits in more associative components of working memory.  相似文献   

20.
BACKGROUND: A large number of studies suggest the presence of deficits in dorsolateral prefrontal cortex function during performance of working memory tasks in individuals with schizophrenia. However, working memory deficits may also present in other psychiatric disorders, such as major depression. It is not clear whether people with major depression also demonstrate impaired prefrontal activation during performance of working memory tasks. METHODS: We used functional magnetic resonance imaging to assess the patterns of cortical activation associated with the performance of a 2-back version of the N-Back task (working memory) in 38 individuals with schizophrenia and 14 with major depression. RESULTS: We found significant group differences in the activation of dorsolateral prefrontal cortex associated with working memory performance. Consistent with prior research, participants with schizophrenia failed to show activation of right dorsolateral prefrontal cortex in response to working memory tasks demands, whereas those with major depression showed clear activation of right and left dorsolateral prefrontal cortex as well as bilateral activation of inferior and superior frontal cortex. CONCLUSIONS: During performance of working memory tasks, deficits in prefrontal activation, including dorsolateral regions, are more severe in participants with schizophrenia (most of whom were recently released outpatients) than in unmedicated outpatients with acute nonpsychotic major depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号