首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kgbody weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por.  相似文献   

2.
Ellipticine is a potent antineoplastic agent whose mechanism of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Recently, we found that ellipticine also forms covalent DNA adducts and that the formation of the major adduct is dependent on the activation of ellipticine by cytochrome P450 (CYP). We examined a panel of genetically engineered V79 cell lines including the parental line V79MZ and recombinant cells expressing the human CYP enzymes CYP1A1, CYP1A2 or CYP3A4 for their ability to activate ellipticine. The extent of activation was determined by analysing DNA adducts by 32P-postlabelling. Ellipticine was found to be toxic to all V79 cell lines with IC(50) values ranging from 0.25 to 0.40 microM. The nuclease P1 version of the 32P-postlabelling assay yielded a similar pattern of ellipticine-DNA adducts with two major adducts in all cells, the formation of only one of which was dependent on CYP activity. This pattern is identical to that detected in DNA reacted with ellipticine and the reconstituted CYP enzyme system in vitro as confirmed by HPLC of the isolated adducts. Total adduct levels ranged from 2 to 337 adducts per 10(8) nucleotides, in the parental line and in V79 expressing CYP3A4, respectively. As in vitro, human CYP1A2 and CYP1A1 were less active. The results presented here are the first report showing the formation of CYP-mediated covalent DNA adducts by ellipticine in cells in culture, and confirm the formation of covalent DNA adducts as a new mechanism of ellipticine action.  相似文献   

3.
Ellipticine is a pro-drug, whose activation is dependent on its oxidation by cytochromes P450 (CYP) and peroxidases. Cytochrome b5 alters the ratio of ellipticine metabolites formed by isolated reconstituted CYP1A1 and 1A2, favoring formation of 12-hydroxy- and 13-hydroxyellipticine metabolites implicated in ellipticine–DNA adduct formation, at the expense of 9-hydroxy- and 7-hydroxyellipticine that are detoxication products. Cytochrome b5 enhances the production of 12-hydroxy and 13-hydroxyellipticine. The change in metabolite ratio results in an increased formation of covalent ellipticine–DNA adducts, one of the DNA-damaging mechanisms of ellipticine antitumor action. This finding explains previous apparent discrepancies found with isolated enzymes and in vivo, where CYP1A enzymatic activation correlated with ellipticine–DNA-adduct levels while isolated CYP1A1 or 1A2 in reconstituted systems were much less effective than CYP3A4. The effect of cytochrome b5 might be even more pronounced in vivo, since, as we show here, ellipticine increases levels of cytochrome b5 in rat liver. Our results demonstrate that both the native 3D structure of cytochrome b5 and the presence of the heme as an electron transfer agent in this protein enable a shift in ellipticine metabolites formed by CYP1A1/2.  相似文献   

4.
Ellipticine is an antineoplastic agent whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II, and formation of covalent DNA adducts mediated by cytochromes P450 (P450s) and peroxidases. Here, this drug was found to induce CYP1A1 and/or 1A2 enzymes and their enzymatic activities in livers, lungs, and kidneys of rats treated (i.p.) with ellipticine. The induction is transient. In the absence of repeated administration of ellipticine, the levels and activities of the induced CYP1A decreased almost to the basal level 2 weeks after treatment. The ellipticine-mediated CYP1A induction increases the DNA adduct formation by the compound. When microsomal fractions from livers, kidneys, and lungs of rats treated with ellipticine were incubated with ellipticine, DNA adduct formation, measured by (32)P-postlabeling analysis, was up to 3.8-fold higher in incubations with microsomes from pretreated rats than with controls. The observed stimulation of DNA adduct formation by ellipticine was attributed to induction of CYP1A1 and/or 1A2-mediated increase in ellipticine oxidative activation to 13-hydroxy- and 12-hydroxyellipticine, the metabolites generating two major DNA adducts in human and rat livers. In addition to these metabolites, increased formation of the excretion products 9-hydroxy- and 7-hydroxyellipticine was also observed in microsomes of rats treated with ellipticine. Taken together, these results demonstrate for the first time that by inducing CYP1A1/2, ellipticine increases its own metabolism, leading both to an activation of this drug to reactive species-forming DNA adducts and to detoxication metabolites, thereby modulating to some extent its pharmacological and/or genotoxic potential.  相似文献   

5.
Ellipticine is a potent antineoplastic agent, whose mode of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Recently, we found that ellipticine also forms covalent DNA adducts and that the formation of the major adduct is dependent on the activation of ellipticine by cytochrome P450 (P450). We examined rat, rabbit, and human hepatic microsomal samples for their ability to activate ellipticine. The extent of activation was determined by binding of 3H-labeled ellipticine to DNA and by analyzing DNA adducts by 32P-postlabeling. We demonstrate that cytochrome P450 of human hepatic microsomes activating ellipticine to species binding to DNA is analogous to that of rats, but not of rabbits. Most of the ellipticine activation in rat and human hepatic microsomes is attributed to P450 enzymes of the same subfamily, P450 3A1/2 and P450 3A4, respectively, while the orthologous enzyme in rabbit hepatic microsomes, P450 3A6, is much less efficient. With purified enzymes, the major role of P450 3A1 and 3A4 in ellipticine-DNA adduct formation was confirmed. We identified deoxyguanosine as the target for P450-mediated ellipticine binding to DNA using polydeoxyribonucleotides and deoxyguanosine 3'-monophosphate. The results strongly suggest that rats are more suitable models than rabbits mimicking the metabolic activation of ellipticine in humans.  相似文献   

6.
Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of covalent DNA adducts mediated by cytochromes P450 and peroxidases. Here, the molecular mechanism of DNA-mediated ellipticine action in human neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cancer cell lines was investigated. Treatment of neuroblastoma cells with ellipticine resulted in apoptosis induction, which was verified by the appearance of DNA fragmentation, and in inhibition of cell growth. These effects were associated with formation of two covalent ellipticine-derived DNA adducts, identical to those formed by the cytochrome P450- and peroxidase-mediated ellipticine metabolites, 13-hydroxy- and 12-hydroxyellipticine. The expression of these enzymes at mRNA and protein levels and their ability to generate ellipticine-DNA adducts in neuroblastoma cells were proven, using the real-time polymerase chain reaction, Western blotting analyses and by analyzing ellipticine-DNA adducts in incubations of this drug with neuroblastoma S9 fractions, enzyme cofactors and DNA. The levels of DNA adducts correlated with toxicity of ellipticine to IMR-32 and UKF-NB-4 cells, but not with that to UKF-NB-3 cells. In addition, hypoxic cell culture conditions resulted in a decrease in ellipticine toxicity to IMR-32 and UKF-NB-4 cells and this correlated with lower levels of DNA adducts. Both these cell lines accumulated in S phase, suggesting that ellipticine-DNA adducts interfere with DNA replication. The results demonstrate that among the multiple modes of ellipticine antitumor action, formation of covalent DNA adducts by ellipticine is the predominant mechanism of cytotoxicity to IMR-32 and UKF-NB-4 neuroblastoma cells.  相似文献   

7.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), formed during the cooking of foods, induces colon cancer in rodents. PhIP is metabolically activated by cytochromes P450 (P450s). To evaluate the role of hepatic P450s in the bioactivation of PhIP, we used Reductase Conditional Null (RCN) mice, in which cytochrome P450 oxidoreductase (POR), the unique electron donor to P450s, can be specifically deleted in hepatocytes by pretreatment with 3-methylcholanthrene (3-MC), resulting in the loss of essentially all hepatic P450 function. RCN mice were treated orally with 50 mg/kg b.wt. PhIP daily for 5 days, with and without 3-MC pretreatment. PhIP-DNA adducts (i.e., N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [dG-C8-PhIP]), measured by liquid chromatography-tandem mass spectrometry, were highest in colon (1362 adducts/10(8) deoxynucleosides), whereas adduct levels in liver were ~3.5-fold lower. Whereas no differences in PhIP-DNA adduct levels were found in livers with active POR versus inactivated POR, adduct levels were on average ~2-fold lower in extrahepatic tissues of mice lacking hepatic POR. Hepatic microsomes from RCN mice with or without 3-MC pretreatment were also incubated with PhIP and DNA in vitro. PhIP-DNA adduct formation was ~8-fold lower with hepatic microsomes from POR-inactivated mice than with those with active POR. Most of the hepatic microsomal activation of PhIP in vitro was attributable to CYP1A. Our results show that PhIP-DNA adduct formation in colon involves hepatic N-oxidation, circulation of activated metabolites via the bloodstream to extrahepatic tissues, and further activation, resulting in the formation of dG-C8-PhIP. Besides hepatic P450s, PhIP may be metabolically activated mainly by a non-P450 pathway in liver.  相似文献   

8.
Cytochrome P450s (CYP) play a pivotal role in the metabolism of drugs and xenobiotics, and have been intensively studied over many years. Much of the work carried out on the role of hepatic cytochrome P450s in drug metabolism and disposition has been done in vitro, and has yielded vital information on P450 regulation and function. However, additional factors such as route of administration, absorption, drug transporters, renal clearance and extra-hepatic P450s, make it difficult to extrapolate from in vitro data to in vivo pharmacokinetics. A number of cytochrome P450s knockout mice have been generated, although many have been of limited usefulness due to either embryonic/perinatal lethality, or the functional redundancy inevitably found in a large family of isoenzymes. We have developed a mouse line (HRN) in which cytochrome P450 oxidoreductase (POR), the unique electron donor to cytochrome P450s is deleted specifically in the liver, resulting in the loss of essentially all hepatic P450 function. The HRN mouse, although having disturbances in lipid and bile acid homeostasis develops and breeds normally. We have used the HRN mouse as a model to establish the role of hepatic versus extra-hepatic metabolism in drug metabolism and disposition, and also to investigate the relationship between drug toxicokinetics and therapeutic effect, initially with the chemotherapeutic prodrug cyclophosphamide (CPA).  相似文献   

9.
Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN?) mice exhibit normal hepatic and extrahepatic biotransformation enzyme activities when compared to wild-type (WT) mice, but express no functional hepatic cytochrome P450 activities. When incubated in vitro with [14C]-diclofenac, liver microsomes from WT mice exhibited extensive biotransformation to oxidative and glucuronide metabolites and covalent binding to proteins was also observed. In contrast, whereas glucuronide conjugates and a quinone-imine metabolite were formed when [14C]-diclofenac was incubated with HRN? mouse liver, only small quantities of P450-derived oxidative metabolites were produced in these samples and covalent binding to proteins was not observed. Livers from vehicle-treated HRN? mice exhibited enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration and necrosis and inflammatory cell infiltration, which were not present in livers from WT mice. Elevated liver-derived alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities were also observed in plasma from HRN? mice. When treated orally with diclofenac for 7 days, at 30 mg/kg/day, the severities of the abnormal liver histopathology and plasma liver enzyme findings in HRN? mice were reduced markedly. Oral diclofenac administration did not alter the liver histopathology or elevate plasma enzyme activities of WT mice. These findings indicate that HRN? mice are valuable for exploration of the role played by hepatic P450s in drug biotransformation, but poorly suited to investigations of drug-induced liver toxicity. Nevertheless, studies in HRN? mice could provide novel insights into the role played by inflammation in liver injury and may aid the evaluation of new strategies for its treatment.  相似文献   

10.
The cytochrome P450 (P450 or CYP) is involved in both detoxification and metabolic activation of many carcinogens. In order to identify the role of hepatic P450 in the mutagenesis of genotoxic carcinogens, we generated a novel hepatic P450 reductase null (HRN) gpt delta mouse model, which lacks functional hepatic P450 on a gpt delta mouse background. In this study, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was used to treat HRN gpt delta mice and control littermates. Gene mutations in the liver and lungs were detected, and mutation spectra were analyzed. Pharmacokinetic analyses were performed, and tissue levels of NNK and metabolite were determined. NNK-induced mutant frequencies (MFs) were equivalent to spontaneous MFs in the liver, but increased more than 3 times in the lungs of HRN gpt delta mice compared to control mice. NNK-induced mutation spectra showed no difference between HRN gpt delta mice and control littermates. Toxicokinetic studies revealed reduced clearance of NNK with elevated tissue concentrations in HRN gpt delta mice. To our knowledge, these are the first data demonstrating that NNK cannot induce mutagenesis in the liver without P450 metabolic activation, but can induce mutagenesis in lungs by a hepatic P450-independent mechanism. Moreover, our data show that hepatic P450 plays a major role in the systemic clearance of NNK, thereby protecting the lungs against NNK-induced mutagenesis. Our model will be useful in establishing the role of hepatic versus extrahepatic P450-mediated mutagenesis, and the relative contributions of P450 compared to other biotransformation enzymes in the genotoxic carcinogens’ activation.  相似文献   

11.
Ellipticine is an antineoplastic agent, whose mode of antitumor and/or toxic side effects is based on DNA intercalation, inhibition of topoisomerase II and formation of DNA adducts mediated by cytochromes P450 and peroxidases. We investigated the formation and persistence of DNA adducts generated in rat, the animal model mimicking the bioactivation of ellipticine in human. Using (32)P-postlabeling, ellipticine-DNA adducts were found in liver, kidney, lung, spleen, heart and brain of female and male rats exposed to ellipticine (4, 40 and 80 mg/kg body weight, i.p.). The two major adducts were identical to the deoxyguanosine adducts generated in DNA by 13-hydroxy- and 12-hydroxyellipticine in vitro as confirmed by HPLC of the isolated adducts. At four post-treatment times (2 days, 2, 10 and 32 weeks) DNA adducts in rats treated with 80 mg/kg of ellipticine were analyzed in each tissue to study their long-term persistence. In all organs maximal adduct levels were found 2 days after administration. At all time points highest total adduct levels were in liver (402 adducts/10(8) nucleotides after 2 days and 3.6 adducts/10(8) nucleotides after 32 weeks), kidney and lung followed by spleen, heart and brain. Total adduct levels decreased over time to 0.8-8.3% of the initial levels till the latest time point and showed a biphasic profile, a rapid loss during the first 2 weeks was followed by a much slower decline till 32 weeks. These results, the first characterization of persistence of ellipticine-DNA adducts in vivo, are necessary to evaluate genotoxic side effects of ellipticine.  相似文献   

12.
Lin Y  Yao Y  Liu S  Wang L  Moorthy B  Xiong D  Cheng T  Ding X  Gu J 《Toxicology letters》2012,212(2):97-105
Microsomal cytochrome P450 (P450) enzymes, which are important in the metabolism of carcinogens, are expressed in both epithelial and stromal cells in the mammary gland. The aim of this study was to investigate the roles of mammary epithelial P450 enzymes in the bioactivation and disposition of 7,12-dimethylbenz(a)anthracene (DMBA), a breast carcinogen, in the mammary gland. A new mouse model (named MEpi-Cpr-null) was produced, wherein P450 activities in the mammary epithelial cells are suppressed through tissue-specific deletion of the gene for P450 reductase (Cpr), an enzyme required for the activities of all microsomal P450 enzymes. Comparisons between wild-type and MEpi-Cpr-null mice showed that the tissue-specific deletion of Cpr in the mammary epithelial cells was accompanied by significant increases in the levels of DMBA and DMBA-DNA adduct in the mammary gland following a single intraperitoneal injection of DMBA at 50mg/kg. Immunohistochemical and immunoblot analysis further revealed greater induction of CYP1B1 expression by the DMBA treatment in the mammary stroma of the MEpi-Cpr-null mice than in that of the WT mice. These findings not only demonstrate that the epithelial P450 enzymes play important roles in the clearance of DMBA, but also suggest that P450 enzymes in both mammary epithelial and stromal cells contribute to carcinogen-mediated DNA damage.  相似文献   

13.
Ellipticine is a potent antitumor agent whose mechanism of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Using [3H]-labeled ellipticine, we observed substantial microsome (cytochrome P450)-dependent binding of ellipticine to DNA. In rat, rabbit, minipig, and human microsomes, in reconstituted systems with isolated cytochromes P450 and in Supersomes containing recombinantly expressed human cytochromes P450, we could show that ellipticine forms a covalent DNA adduct detected by [32P]-postlabeling. The most potent human enzyme is CYP3A4, followed by CYP1A1, CYP1A2, CYP1B1, and CYP2C9. Another minor adduct is formed independent of enzymatic activation. The [32P]-postlabeling analysis of DNA modified by activated ellipticine confirms the covalent binding to DNA as an important type of DNA modification. The DNA adduct formation we describe is a novel mechanism for the ellipticine action and might in part explain its tumor specificity.  相似文献   

14.
Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.  相似文献   

15.
细胞色素P450调节剂对DNA加合物形成的影响   总被引:1,自引:0,他引:1  
人羊膜上皮细胞FL系分别接触a-萘黄酮(0.6mmol·L ̄(-1))β-萘黄酮(20pmol·L ̄(-1))24h后,再用苯并(a)芘[B(a)P,10umol·L ̄(-1)]处理24h,用32P后标记技术测定以B(a)-DNA加合物。结果发现,阳性对照组,a-萘黄酮预处理组及β-萘黄酮预处理组加合物的量分别为(加合物个数/10’个核苷酸):4.7±0.2(100%),1.8±0.9(38.3%),16.0±2.2(340.1%).该实验结果直接显示了纳胞色素P450调节剂对肿瘤发生影响的作用水平。亦为药物对致癌物代谢影响的研究提供了一种方法.  相似文献   

16.
Exposure to aristolochic acid I (AAI) is associated with aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial cancer. Individual differences in xenobiotic-metabolizing enzyme activities are likely to be a reason for interindividual susceptibility to AA-induced disease. We evaluated the reductive activation and oxidative detoxication of AAI by cytochrome P450 (P450) 1A1 and 1A2 using the Cyp1a1(-/-) and Cyp1a2(-/-) single-knockout and Cyp1a1/1a2(-/-) double-knockout mouse lines. Incubations with hepatic microsomes were also carried out in vitro. P450 1A1 and 1A2 were found to (i) activate AAI to form DNA adducts and (ii) detoxicate it to 8-hydroxyaristolochic acid I (AAIa). AAI-DNA adduct formation was significantly higher in all tissues of Cyp1a1/1a2(-/-) than Cyp1a(+/+) wild-type (WT) mice. AAI-DNA adduct levels were elevated only in selected tissues from Cyp1a1(-/-) versus Cyp1a2(-/-) mice, compared with those in WT mice. In hepatic microsomes, those from WT as well as Cyp1a1(-/-) and Cyp1a2(-/-) mice were able to detoxicate AAI to AAIa, whereas Cyp1a1/1a2(-/-) microsomes were less effective in catalyzing this reaction, confirming that both mouse P450 1A1 and 1A2 are both involved in AAI detoxication. Under hypoxic conditions, mouse P450 1A1 and 1A2 were capable of reducing AAI to form DNA adducts in hepatic microsomes; the major roles of P450 1A1 and 1A2 in AAI-DNA adduct formation were further confirmed using selective inhibitors. Our results suggest that, in addition to P450 1A1 and 1A2 expression levels in liver, in vivo oxygen concentration in specific tissues might affect the balance between AAI nitroreduction and demethylation, which in turn would influence tissue-specific toxicity or carcinogenicity.  相似文献   

17.
The effects of six Thai fruits, namely banana, guava, mangosteen, pineapple, ripe mango and ripe papaya, on cytochrome P450 (P450) activities were investigated. The median inhibitory concentrations (IC50) of each of the fruit juices on CYP1A1, CYP1A2, CYP2E1 and CYP3A11 activities were determined. Pineapple juice showed the strongest inhibitory effect against all the evaluated P450 isozyme activities in mouse hepatic microsomes, followed by mangosteen, guava, ripe mango, ripe papaya and banana. The study was further performed in male ICR mice given pineapple juice intragastrically at doses of 10, 20 and 40 mg kg?1 per day for 7 or 28 days. In a concentration‐dependent fashion, the pineapple juice raised ethoxyresorufin O‐deethylase, aniline hydroxylase and erythromycin N‐demethylase activities, which are marker enzymatic reactions responsible for CYP1A1, CYP2E1 and CYP3A11, respectively. The effect of pineapple juice on the expression of CYP1A1, CYP2E1 and CYP3A11 mRNAs corresponded to their enzymatic activities. However, the pineapple juice significantly decreased methoxyresorufin O‐demethylase activity. These observations supported that the six Thai fruits were a feasible cause of food–drug interaction or adverse drug effects owing to their potential to modify several essential P450 activities. Individuals consuming large quantities of pineapple for long periods of time should be cautioned of these potential adverse effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the (32)P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential.  相似文献   

19.
The aim of the present study was to estimate the relative contribution of cytochrome P450 isoforms (P450s), including P450s of the CYP2C subfamily, to the metabolism of caffeine in human liver. The experiments were carried out in vitro using cDNA-expressed P450s, liver microsomes and specific P450 inhibitors. The obtained results show that (1) apart from the 3-N-demethylation of caffeine - a CYP1A2 marker reaction and the main oxidation pathway of caffeine in man - 1-N-demethylation is also specifically catalyzed by CYP1A2 (not reported previously); (2) 7-N-demethylation is catalyzed non-specifically, mainly by CYP1A2 and, to a smaller extent, by CYP2C8/9 and CYP3A4 (and not by CYP2E1, as suggested previously); (3) C-8-hydroxylation preferentially involves CYP1A2 and CYP3A4 and, to a smaller degree, CYP2C8/9 and CYP2E1 (and not only CYP3A, as suggested previously) at a concentration of 100 microM corresponding to the maximum therapeutic concentration in humans. At a higher caffeine concentration, the contribution of CYP1A2 to this reaction decreases in favour of CYP2C8/9. The obtained data show for the first time the contribution of CYP2C isoforms to the metabolism of caffeine in human liver and suggest that apart from 3-N-demethylation, 1-N-demethylation may also be used for testing CYP1A2 activity. Moreover, they indicate that the C-8-hydroxylation is not exclusively catalyzed by CYP3A4.  相似文献   

20.
The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号