首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RasGRP is a recently described guanine nucleotide exchange factor (GEF) that possesses a single C1 domain homologous to that of protein kinase C (PKC). The phorbol ester [(3)H]phorbol 12, 13-dibutyrate ([(3)H]PDBu) bound to this C1 domain (C1-RasGRP) with a dissociation constant of 0.58 +/- 0.08 nM, similar to that observed previously for PKC. Likewise, the potent PKC activator bryostatin 1, a compound currently in clinical trials, showed high affinity binding for C1-RasGRP. Structure activity analysis using several phorbol ester analogs showed both similarities and differences in ligand selectivity compared with PKC; the differences were comparable in magnitude to those between different PKC isoforms. Similarly, the potency of the PKC inhibitor calphostin C to inhibit [(3)H]PDBu binding to C1-RasGRP was similar to that observed for PKC. In contrast to the relative similarities in ligand recognition, the lipid cofactor requirements differed between RasGRP and PKC. The C1 domain plus the EF-hand motif of RasGRP (C1EF-RasGRP) was markedly less dependent on acidic phospholipids than was PKCalpha. The differences in lipid requirements were reflected in differential ligand selectivity under conditions of limiting lipid. Despite the presence of twin EF-hand like motifs, calcium did not affect the binding of [(3)H]PDBu to C1EF-RasGRP. We conclude that RasGRP is a high affinity receptor for phorbol esters and diacylglycerol. RasGRP thus provides a direct link between diacylglycerol generation or phorbol ester/bryostatin treatment and Ras activation.  相似文献   

2.
The phorbol ester tumor promoters and related analogs are widely used as potent activators of protein kinase C (PKC). The phorbol esters mimic the action of the lipid second messenger diacylglycerol (DAG). The aim of this commentary is to highlight a series of important and controversial concepts in the pharmacology and regulation of phorbol ester receptors. First, phorbol ester analogs have marked differences in their biological properties. This may be related to a differential regulation of PKC isozymes by distinct analogs. Moreover, it seems that marked differences exist in the ligand recognition properties of the C1 domains, the phorbol ester/DAG binding sites in PKC isozymes. Second, an emerging theme that we discuss here is that phorbol esters also target receptors unrelated to PKC isozymes, a concept that has been largely ignored. These novel receptors lacking kinase activity include chimaerins (a family of Rac-GTPase-activating proteins), RasGRP (a Ras exchange factor), and Unc-13/Munc-13 (a family of proteins involved in exocytosis). Unlike the classical and novel PKCs, these "non-kinase" phorbol ester receptors possess a single copy of the C1 domain. Interestingly, each receptor class has unique pharmacological properties and biochemical regulation. Lastly, it is well established that phorbol esters and related analogs can translocate each receptor to different intracellular compartments. The differential pharmacological properties of the phorbol ester receptors can be exploited to generate specific agonists and antagonists that will be helpful tools to dissect their cellular function.  相似文献   

3.
In recent years, there have been great advances in our understanding of the pharmacology and biology of the receptors for the phorbol ester tumor promoters and the second messenger diacylglycerol (DAG). The traditional view of protein kinase C (PKC) as the sole receptor for the phorbol esters has been challenged with the discovery of proteins unrelated to PKC that bind phorbol esters with high affinity, suggesting a high degree of complexity in the signaling pathways activated by DAG. These novel "nonkinase" phorbol ester receptors include chimaerins (a family of Rac GTPase activating proteins), RasGRPs (exchange factors for Ras/Rap1), and Munc13 isoforms (scaffolding proteins involved in exocytosis). In all cases, phorbol ester binding occurs at the single C1 domain present in these proteins and, as in PKC isozymes, ligand binding is a phospholipid-dependent event. Moreover, the novel phorbol ester receptors are also subject to subcellular redistribution or "translocation" by phorbol esters, leading to their association to different effector and/or regulatory molecules. Clearly, the use of phorbol esters as specific activators of PKC in cellular models is questionable. Alternative pharmacological and molecular approaches are therefore needed to dissect the involvement of each receptor class as a mediator of phorbol ester/DAG responses.  相似文献   

4.
N-Benzyladriamycin-14-valerate (AD 198) is a semisynthetic anthracycline with experimental antitumor activity superior to that of doxorubicin (DOX). AD 198, unlike DOX, only weakly binds DNA, is a poor inhibitor of topoisomerase II, and circumvents anthracycline-resistance mechanisms, suggesting a unique mechanism of action for this novel analogue. The phorbol ester receptors, protein kinase C (PKC) and beta2-chimaerin, were recently identified as selective targets for AD 198 in vitro. In vitro, AD 198 competes with [3H]PDBu for binding to a peptide containing the isolated C1b domain of PKC-delta (deltaC1b domain). In the present study molecular modeling is used to investigate the interaction of AD 198 with the deltaC1b domain. Three models are identified wherein AD 198 binds into the groove formed between amino acid residues 6-13 and 21-27 of the deltaC1b domain in a manner similar to that reported for phorbol-13-acetate and other ligands of the C1 domain. Two of the identified models are consistent with previous experimental data demonstrating the importance of the 14-valerate side chain of AD 198 in binding to the C1 domain as well as current data demonstrating that translocation of PKC-alpha to the membrane requires the 14-valerate substituent. In this regard, the carbonyl of the 14-valerate participates in hydrogen bonding to the deltaC1b while the acyl chain is positioned for stabilization of the membrane-bound protein-ligand complex in a manner analogous to the acyl chains of the phorbol esters. These studies provide a structural basis for the interaction of AD 198 with the deltaC1b domain and a starting point for the rational design of potential new drugs targeting PKC and other proteins with C1 domains.  相似文献   

5.
The bryostatins represent a unique class of activators of protein kinase C (PKC) which induce only a subset of the responses typical of the phorbol esters and block those responses to the phorbol esters which they themselves do not induce. To better understand the interaction of the bryostatins with PKC, we have synthesized [26-3H]bryostatin 4 and characterized its binding to PKC. [3H]Bryostatin 4 and [3H]phorbol 12,13-dibutyrate ([3H]PDBu) differed markedly in their binding to PKC reconstituted with phosphatidylserine (PS). The binding affinity of [3H]bryostatin 4 under these conditions was too high to measure and the rate of release of bound bryostatin was much slower than that of the phorbol esters, with a half-time of several hours. These properties caused bryostatin 1 to appear to inhibit [3H]PDBu binding under these conditions in a non-competitive fashion. Both the high potency and the slow rate of release of the bryostatins may contribute to their unique pattern of biological activity. By reconstituting PKC in a mixture of 1.5% Triton X-100:0.3% PS, we were able to establish reversible conditions for [3H]bryostatin 4 binding. Under these latter conditions, binding of [3H]bryostatin 4 was competitively inhibited by PDBu, consistent with both the bryostatin and phorbol esters binding to PKC in a qualitatively similar fashion. Binding affinities to PKC isozymes alpha, beta, and gamma were compared and little difference was found, suggesting that differential recognition by these isozymes does not account for the unique biological activity of the bryostatins.  相似文献   

6.
We investigated the effects that phorbol ester and diacylglycerol protein kinase C (PKC) activators had on the chemosensitivity of the human colon cancer cell line KM12L4a to Adriamycin (ADR), vincristine (VCR), and vinblastine (VLB) and on the intracellular accumulation of those drugs. Exposure of the cells to the PKC activator phorbol-12,13-dibutyrate (PDBu) (15 nM) during a 96-hr in vitro chemosensitivity assay significantly reduced the sensitivity of KM12L4a cells to ADR, VCR, and VLB, but not to 5-fluorouracil. Because a 96-hr treatment with 15 nM PDBu did not down-regulate PKC activity in KM12L4a cells, activation of PKC appeared to be responsible for the observed protection conferred by PDBu. PDBu-induced alterations in drug accumulation may account for its protective effects against these cytotoxic drugs, because both PDBu and the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate significantly reduced accumulation of [3H] VCR and [14C]ADR in the cultured human colon cancer cells. Unsaturated diacylglycerols are structural and functional analogues of phorbol ester PKC activators that are present in the lumen of the colon. We found that treatment of KM12L4a human colon cancer cells with the diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol (OAG) significantly reduced [14C]ADR and [3H]VCR accumulation in the cells. The effects of OAG were dose dependent at physiological diacylglycerol concentrations and were completely reversed by the protein kinase inhibitor H7. OAG, which is rapidly metabolized in cultured cells, did not protect KM12L4a cells against the cytotoxic drugs in our 96-hr in vitro chemosensitivity assay. However, rapid metabolism of diacylglycerols should not limit their capacity to activate PKC in the colonic epithelium in vivo, because that tissue is chronically exposed to replenished supplies of unsaturated diacylglycerols in the intestinal tract. Our results provide evidence that unsaturated diacylglycerols may be environmental factors that contribute to the intrinsic drug resistance of colon cancer in vivo by reducing drug accumulation in the cancer cells.  相似文献   

7.
Divergence and complexities in DAG signaling: looking beyond PKC   总被引:11,自引:0,他引:11  
For many years protein kinase C (PKC) has been the subject of extensive studies as a molecular target for the treatment of cancer and other diseases. To better define the role of PKC isozymes in the control of cell proliferation, survival and transformation, the examination of PKC-mediated signal transduction pathways by isozyme-specific intervention has become essential. However, issues related to the selectivity of activators and inhibitors of PKC isozymes, in addition to convoluted cross-talks between phorbol ester-regulated pathways, have greatly complicated our understanding of PKC-mediated responses. An additional level of complexity is provided by the fact diacylglycerol (DAG) signals can be transduced by phorbol ester receptors other than PKC. These receptors include chimaerins, RasGRPs, MUNC13s, PKD (PKC mu) and DAG kinases beta and gamma. Thus, it is conceivable that some of the effects that were originally attributed to PKC isozymes in response to phorbol esters might be mediated by PKC-independent pathways. A key issue for the design of novel therapeutic strategies that target PKC isozymes is a comprehensive analysis of isozyme-specific signal transduction pathways in different cell types and the development of pharmacological and molecular tools that can distinguish between the various PKC and 'non-PKC' phorbol ester receptors.  相似文献   

8.
Conventional (alpha, betaI, betaII, gamma) and novel (delta, epsilon, eta, theta) protein kinase C (PKC) isozymes are main targets of tumor promoters, such as phorbol esters and indolactam-V (ILV). We have recently found that 1-hexyl derivatives of indolinelactam-V (2, 3), in which the indole ring of ILV was replaced with the indoline ring, showed a binding preference for novel PKCs over conventional PKCs. To develop a new ILV analogue displaying increased synthetic accessibility and improved binding selectivity for novel PKCs, we have designed 8-octyl-benzolactam-V9 (4), a simple analogue without the pyrrolidine moiety of 2 and 3. Compound 4 showed significant binding selectivity for isolated C1B domains of novel PKCs. Moreover, 4 translocated PKC epsilon and eta from the cytoplasm to the plasma membrane of HeLa cells at 1 microM, whereas other PKC isozymes did not respond even at 10 microM. These results indicate that 4 could be a selective activator for PKC epsilon and eta.  相似文献   

9.
Since 1990, the National Cancer Institute has performed extensive in vitro screening of compounds for anticancer activity. To date, more than 70 000 compounds have been screened for their antiproliferation activities against a panel of 60 human cancer cell lines. We probed this database to identify novel structural classes with a pattern of biological activity on these cell lines similar to that of the phorbol esters. The iridals form such a structural class. Using the program Autodock, we show that the iridals dock to the same position on the C1b domain of protein kinase C delta as do the phorbol esters, with the primary hydroxyl group of the iridal at the C3 position forming two hydrogen bonds with the amide group of Thr12 and with the carbonyl group of Leu 21 and the aldehyde oxygen of the iridal forming a hydrogen bond with the amide group of Gly23. Biological analysis of two iridals, NSC 631939 and NSC 631941, revealed that they bound to protein kinase C alpha with K(i) values of 75.6 +/- 1.3 and 83.6 +/- 1.5 nM, respectively. Protein kinase C is now recognized to represent only one of five families of proteins with C1 domains capable of high-affinity binding of diacylglycerol and the phorbol esters. NSC 631939 and NSC 631941 bound to RasGRP3, a phorbol ester receptor that directly links diacylglycerol/phorbol ester signaling with Ras activation, with K(i) values of 15.5 +/- 2.3 and 41.7 +/- 6.5 nM, respectively. Relative to phorbol 12,13-dibutyrate, they showed 15- and 6-fold selectivity for RasGRP3. Both compounds caused translocation of green fluorescent protein tagged RasGRP3 expressed in HEK293 cells, and both compounds induced phosphorylation of ERK1/2, a downstream indicator of Ras activation, in a RasGRP3-dependent fashion. We conclude that the iridals represent a promising structural motif for design of ligands for phorbol ester receptor family members.  相似文献   

10.
Protein kinase C (PKC) is known to play an important role in many signal transduction pathways involved in hormone release, mitogenesis, and tumor promotion. In continuation of our efforts to find highly potent activators of PKC for possible use as Alzheimer's disease therapeutics, we designed and synthesized molecules containing two binding moieties (amides of benzolactams or esters of naphthylpyrrolidones) connected by a flexible spacer chain, which could theoretically bind to both the C1a and C1b activator binding domains of the catalytic region or to the C1 domains of two adjacent PKC molecules. The dimers 2a-g of benzolactam showed a 200-fold increase in affinity to PKCalpha and -delta as the spacer length increased from 4 to 20 carbon atoms. Replacement of the oligomethylene chain with an oligoethylene glycol unit (compounds 2h, 2i) showed a 4000- to 7000-fold decrease in affinity to PKCalpha. The dimers of naphthylpyrrolidones 4a-g did not show any marked improvement in binding affinities to PKC in comparison to the monomers synthesized earlier. The dimer of benzolactam 2e did not show much selectivity for PKCalpha, -betaIota, -delta, -epsilon, and -gamma. The high binding affinity of compounds 2d-g to PKCs gives us the impetus to design additional molecules that would retain this enhanced activity and would also show selectivity for the PKC isoforms.  相似文献   

11.
Keratinocytes undergo a distinct pattern of proliferation and differentiation that is essential for the function of the skin as a protective barrier. Defects in the equilibrium between proliferation and differentiation compromise the skin's barrier function and give rise to human diseases such as psoriasis and nonmelanoma skin cancer. The identification of protein kinase C (PKC) as a major cellular target for tumor-promoting phorbol esters suggested the involvement of this enzyme in the regulation of keratinocyte proliferation and tumorigenesis; however, results have demonstrated the existence in keratinocytes and other cell types of another diacylglycerol/phorbol ester-responsive protein kinase: protein kinase D (PKD) in mouse, also known as PKC micro in humans. Although numerous data suggest the importance of PKD/PKC micro in processes related to proliferation in many cell types, including keratinocytes, there are no specific inhibitors of PKD currently available. Current treatment strategies for hyperproliferative skin disorders are often suboptimal, either because of lack of efficacy or because of contraindications due to deleterious side effects or aesthetic considerations. Thus, PKD/PKC micro may represent a novel target for the development of new and more efficacious drug treatments for hyperproliferative skin disorders.  相似文献   

12.
This review focuses on the effects of phorbol esters and the role of phorbol ester receptors in the secretion of neurotransmitter substances. We begin with a brief background on the historical use of phorbol esters as tools to decipher the role of the enzyme protein kinase C in signal transduction cascades. Next, we illustrate the structural differences between active and inactive phorbol esters and the mechanism by which the binding of phorbol to its recognition sites (C1 domains) on a particular protein acts to translocate that protein to the membrane. We then discuss the evidence that the most important nerve terminal receptor for phorbol esters (and their endogenous counterpart diacylglycerol) is likely to be Munc13. Indeed, Munc13 and its invertebrate homologues are the main players in priming the secretory apparatus for its critical function in the exocytosis process.  相似文献   

13.
Sustained exposure of vascular smooth muscle to catecholamines results in desensitization of alpha 1-adrenoreceptor-mediated vascular smooth muscle contraction. The present study was designed to determine the effects of prolonged exposure of blood vessels to catecholamines on protein kinase C (PKC) activity. Incubation of rat aortic smooth muscle with 10 microM norepinephrine (NE) for 4 h resulted in a threefold decrease in sensitivity of the contractile response of rat aortic smooth muscle to the phorbol ester 4 beta-phorbol 12,13-dibutyrate (PDBu); this loss in sensitivity was dependent on the presence of endothelium. NE induced a 45% decrease in enzymatic activity of the soluble and particulate forms of PKC. With [3H]PDBu used to label phorbol ester receptor binding sites in the aorta, there was a 34% decrease in [3H]PDBu binding sites in NE-treated blood vessels without change in binding affinity for the ligand. To determine whether this loss in enzymatic activity and [3H]PDBu binding resulted from a decrease in the quantity of the enzyme, Western blot analyses were performed using a monoclonal antibody (MoAb) against PKC. This approach confirmed the presence of an 80-Kd immunoreactive PKC in the soluble fraction of rat aortic smooth muscle and demonstrated a 44% decrease in the amount of PKC in blood vessels after sustained exposure to catecholamines. Our results demonstrate that prolonged activation of alpha-adrenoceptors in blood vessels leads to down-regulation of PKC which may contribute to desensitization of contraction mediated by vasoconstrictors.  相似文献   

14.
Protein kinase C (PKC) isozymes (alpha, betaI, betaII, gamma, delta, epsilon, eta, theta) are major receptors of tumor promoters and also play a crucial role in cellular signal transduction via the second messenger, 1,2-diacyl-sn-glycerol (DG). Each isozyme of PKC is involved in diverse biological events, indicating that it serves as a novel therapeutic target. Since PKC isozymes contain two possible binding sites of tumor promoters and DG (C1A and C1B domains), the design of agents with binding selectivity for individual PKC C1 domains is a pressing need. We developed a synthetic C1 peptide library of all PKC isozymes for high-throughput screening of new ligands with such binding selectivity. This peptide library enabled us to determine that indolactam and benzolactam compounds bound to the C1B domains of novel PKC isozymes (delta, epsilon, eta, theta) in some selective manner, unlike phorbol esters and DG. Simpler in structure and higher in stability than the other potent tumor promoters, a number of indolactam and benzolactam derivatives have been synthesized to develop new PKC isozyme modulators by several groups. We focused on the amide function of these compounds because recent investigations revealed that both the amide hydrogen and carbonyl oxygen of indolactam-V (ILV) are involved in hydrogen bonding with the C1B domains of PKCdelta. Synthesis of several conformationally fixed analogues of ILV led to the conclusion that the trans-amide restricted analogues with a hydrophobic chain at an appropriate position (2,7) are promising leads with a high binding selectivity for novel PKC isozyme C1B domains. We also developed a new lactone analogue of benzolactam-V8 (17) which shows significant binding selectivity for the C1B domains of PKCepsilon and PKCeta. Furthermore, our synthetic approach with the PKC C1 homology domains clarified that diacylglycerol kinase beta and gamma are new targets of phorbol esters.  相似文献   

15.
蛋白激酶C(protein kinase C,PKC)是一个多基因家族,包含多种同工酶,分布广泛且功能复杂,在许多信号转导通路发挥重要作用。磷脂酰肌醇(4,5)二磷酸(PIP2)是分布在细胞膜中的磷脂类信号分子,在细胞中的分布和含量处于动态变化中。PIP2的水解后生成DAG和IP3。DAG可以直接激活PKC,而IP3通过调节细胞内钙离子的浓度从而改变钙依赖型PKCs的活性。同时,PKC通过激活PI4K或PIP5K可以调节细胞膜PIP2水平。PKCs使离子通道蛋白发生磷酸化,改变通道蛋白与PIP2的亲和力,从而影响PIP2对离子通道的调节。该文对PKCs和PIP2在细胞信号转导过程中相互调节的相关研究进展进行综述。  相似文献   

16.
The effects of two co-carcinogenic phorbol esters (phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBu] and a synthetic diacylglycerol (OAG, 1-oleoyl-2-acetyl-glycerol), which all stimulate protein kinase C, were compared with two inactive phorbol compounds (4 alpha-phorbol and 4 alpha-phorbol didecanoate (4 alpha-PDD)) on three functional properties of stimulated human polymorphonuclear leukocytes (PMNs): release of granular enzymes lysozyme and beta-glucuronidase, chemokinesis, and changes in cytoplasmic free calcium [Ca2+]i. PMA, PDBu and the diacylglycerol, OAG, all caused a dose-dependent and slow (max by 15 min) release of small amounts of lysozyme with much less beta-glucuronidase and no release of cytoplasmic lactate dehydrogenase. Release was unaffected by removal of extracellular Ca2+. PMA, PDBu and OAG inhibited random movement of the cells, did not cause chemokinesis and induced a slow reduction in the basal [Ca2+]i, as measured by the quin-2 method. PMA, PDBu and OAG increased the capacity of five independently-acting stimulants (N-formyl-Met-Leu-Phe, leukotriene B4, C5a des-Arg, platelet activating factor and A23187) to cause release of lysozyme and beta-glucuronidase but strongly inhibited PMN chemokinesis induced by the same five agents and reduced the stimulant-induced increases in [Ca2+]i. PMA was always more potent than PDBu and much more potent than OAG in eliciting these stimulatory or inhibitory effects on human PMNs. In all tests, 4 alpha-phorbol and 4 alpha-PDD were inactive. The results confirm that stimulation of the diacylglycerol/protein kinase C system in human PMN, either by active phorbol esters or the synthetic diacylglycerol, causes bidirectional effects on human PMN function. In particular, activation of the C-kinase causes inhibition of stimulated neutrophil motility, whereas the secretory functions of the cells are enhanced.  相似文献   

17.
Stimulation of cells with protein kinase C (PKC)-specific activators such as phorbol esters increased in a reversible manner the rate of adherence of [3H]leucine-labelled L1210 cells to cultured bovine cerebral cortex capillary endothelial cells (CEC). This effect was not specific for L1210 cells since 12-O-tetradecanoyl phorbol 13-acetate (TPA) strongly increased the binding of various other tumor cell lines. Phorbol esters increased the rate of L1210 cell adhesion to CEC by enhancing their binding capacity without affecting the apparent affinity of L1210 cells for CEC. This stimulation was specific to the phorbol analogs which activate PKC since it was not effected by 4 alpha-phorbol didecanoate, known to be inactive for PKC. Down-regulation experiments showed that adhesion enhancement was entirely attributable to an effect on tumor cells without contribution of CEC intracellular PKC. PKC inhibitors like staurosporine, sphingosine and H-7 showed strong antagonistic activity towards TPA-induced L1210 cell adherence to CEC (IC50 = 0.5 nM, 160 nM and 10 microM, respectively). Adhesive proteins such as vitronectin, fibrinogen, fibronectin and the tetrapeptide RGDS, an active sequence from their cell-binding domains, exhibited potent, dose-dependent inhibition of PKC-induced tumor cell adhesion.  相似文献   

18.
1. The role of protein kinase C (PKC) in agonist-induced contractions of guinea-pig ileum longitudinal smooth muscle has been investigated. 2. The phorbol esters, phorbol 12,13-dibutyrate (PDBu), phorbol 12,13-diacetate (PDA) and phorbol 12-myristate 13-acetate (PMA), relaxed tissues precontracted by submaximal concentrations of carbachol, histamine or substance P. 3. This inhibitory action of the phorbol esters was reversed following the application of ouabain, a specific inhibitor of Na(+)-K(+)-ATPase. Similarly, pretreatment with ouabain inhibited the ability of phorbol esters to relax tissues precontracted by the above agonists. 4. The slow relaxation of the tonic component of contraction induced by submaximal concentrations of carbachol and histamine, and all concentrations of substance P, was abolished in the presence of ouabain. 5. In Na(+)-loaded tissues, PDBu and carbachol caused a concentration-dependent increase of Na(+)-K(+)-ATPase activity, assessed by ouabain-sensitive 86Rb(+)-uptake. Extrusion of Na+, assessed by the cellular content of the ion, was also stimulated by PDBu (the effect of carbachol was not investigated). 6. We conclude that phorbol esters inhibit the tonic component of contractions induced by submaximal concentrations of these agonists through activation of Na(+)-K(+)-ATPase. We suggest that PKC may exert feedback control over the tonic component of agonist contractions through stimulation of the pump.  相似文献   

19.
The Ras guanyl releasing protein RasGRP belongs to the CDC25 class of guanyl nucleotide exchange factors that regulate Ras-related GTPases. These GTPases serve as switches for the propagation and divergence of signaling pathways. One interesting feature of RasGRP is the presence of a C-terminal C1 domain, which has high homology to the PKC C1 domain and binds to diacylglycerol (DAG) and phorbol esters. RasGRP thus represents a novel, non-kinase phorbol ester receptor. In this paper, we investigate the binding of indolactam(V) (ILV), 7-(n-octyl)-ILV, 8-(1-decynyl)benzolactam(V) (benzolactam), and 7-methoxy-8-(1-decynyl)benzolactam(V) (methoxylated benzolactam) to RasGRP through both experimental binding assays and molecular modeling studies. The binding affinities of these lactams to RasGRP are within the nanomolar range. Homology modeling was used to model the structure of the RasGRP C1 domain (C1-RasGRP), which was subsequently used to model the structures of C1-RasGRP in complex with these ligands and phorbol 13-acetate using a computational docking method. The structural model of C1-RasGRP exhibits a folding pattern that is nearly identical to that of C1b-PKCdelta and is comprised of three antiparallel-strand beta-sheets capped against a C-terminal alpha-helix. Two loops A and B comprising residues 8-12 and 21-27 form a binding pocket that has some positive charge character. The ligands phorbol 13-acetate, benzolactam, and ILV are recognized by C1-RasGRP through a number of hydrogen bonds with loops A and B. In the models of C1-RasGRP in complex with phorbol 13-acetate, benzolactam, and ILV, common hydrogen bonds are formed with two residues Thr12 and Leu21, whereas other hydrogen bond interactions are unique for each ligand. Furthermore, our modeling results suggest that the shallower insertion of ligands into the binding pocket of C1-RasGRP compared to C1b-PKCdelta may be due to the presence of Phe rather than Leu at position 20 in C1-RasGRP. Taken together, our experimental and modeling studies provide us with a better understanding of the structural basis of the binding of PKC ligands to the novel phorbol ester receptor RasGRP.  相似文献   

20.
The effect of tumor promoter phorbol esters on cell proliferation was investigated in human breast cancer cell line MCF-7. During a 4-day culture period, the various phorbol ester derivatives TPA, PDD, PDBu, PDBz and PDA inhibited the proliferation of MCF-7 cells in a dose-dependent manner, with respective IC50 of 0.06, 0.75, 2.4, 3.6 and 15 X 10(-9) M. The 4-O-met-TPA, alpha PDD and alph PHR were ineffective at 2 X 10(-7) M, the highest concentration tested. Using a 3H-PDBu probe, we demonstrated the presence of specific, high affinity binding sites in intact cultured cells, with a Kd of about 9 X 10(-9) M. Unlabelled TPA, PDD, PDBU and PDBz competed with 3H-PDBu with respective IC50 of 35, 12.5, 150 and 220 X 10(-9) M. High concentrations of PDA, 4-O-met-TPA and alpha PDD slightly inhibited the 3H PDBu binding, whereas alpha PHR did not until 10(-5) M. The correlation that we observed between the relative potencies of the various phorbol derivatives for inhibiting both PDBu binding and cell proliferation, suggests that tumor promoter phorbol esters may induce growth arrest in MCF-7 cells by the mediation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号