首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of human population variation is an area of considerable interest in the forensic, medical genetics and anthropological fields. Several forensic single nucleotide polymorphism (SNP) assays provide ancestry-informative genotypes in sensitive tests designed to work with limited DNA samples, including a 34-SNP multiplex differentiating African, European and East Asian ancestries. Although assays capable of differentiating Oceanian ancestry at a global scale have become available, this study describes markers compiled specifically for differentiation of Oceanian populations. A sensitive multiplex assay, termed Pacifiplex, was developed and optimized in a small-scale test applicable to forensic analyses. The Pacifiplex assay comprises 29 ancestry-informative marker SNPs (AIM-SNPs) selected to complement the 34-plex test, that in a combined set distinguish Africans, Europeans, East Asians and Oceanians. Nine Pacific region study populations were genotyped with both SNP assays, then compared to four reference population groups from the HGDP-CEPH human diversity panel. STRUCTURE analyses estimated population cluster membership proportions that aligned with the patterns of variation suggested for each study population’s currently inferred demographic histories. Aboriginal Taiwanese and Philippine samples indicated high East Asian ancestry components, Papua New Guinean and Aboriginal Australians samples were predominantly Oceanian, while other populations displayed cluster patterns explained by the distribution of divergence amongst Melanesians, Polynesians and Micronesians. Genotype data from Pacifiplex and 34-plex tests is particularly well suited to analysis of Australian Aboriginal populations and when combined with Y and mitochondrial DNA variation will provide a powerful set of markers for ancestry inference applied to modern Australian demographic profiles. On a broader geographic scale, Pacifiplex adds highly informative data for inferring the ancestry of individuals from Oceanian populations. The sensitivity of Pacifiplex enabled successful genotyping of population samples from 50-year-old serum samples obtained from several Oceanian regions that would otherwise be unlikely to produce useful population data. This indicates tests primarily developed for forensic ancestry analysis also provide an important contribution to studies of populations where useful samples are in limited supply.  相似文献   

2.
A 31-plex SNaPshot assay, named ‘Global AIMs Nano’, has been developed by reassembling the most differentiated markers of the EUROFORGEN Global AIM-SNP set. The SNPs include three tri-allelic loci and were selected with the goal of maintaining a balanced differentiation of: Africans, Europeans, East Asians, Oceanians and Native Americans. The Global AIMs Nano SNP set provides higher divergence between each of the five continental population groups than previous small-scale AIM sets developed for forensic ancestry analysis with SNaPshot. Both of these characteristics minimise potential bias when estimating co-ancestry proportions in individuals with admixed ancestry; more likely to be observed when using markers disproportionately informative for only certain population group comparisons. The optimised multiplex is designed to be easily implemented using standard capillary electrophoresis regimes and has been used to successfully genotype challenging forensic samples from highly degraded material with low level DNA. The ancestry predictive performance of the Global AIMs Nano set has been evaluated by the analysis of samples previously characterised with larger AIM sets.  相似文献   

3.
Inference of biogeographic origin is an important factor in clinical, population and forensic genetics. The information provided by AIMs (Ancestry Informative Markers) can allow the differentiation of major continental population groups, and several AIM panels have been developed for this purpose. However, from these major population groups, Eurasia covers a wide area between two continents that is difficult to differentiate genetically. These populations display a gradual genetic cline from West Europe to South Asia in terms of allele frequency distribution. Although differences have been reported between Europe and South Asia, Middle East populations continue to be a target of further investigations due to the lack of genetic variability, therefore hampering their genetic differentiation from neighboring populations. In the present study, a custom-built ancestry panel was developed to analyze North African and Middle Eastern populations, designated the ‘NAME’ panel. The NAME panel contains 111 SNPs that have patterns of allele frequency differentiation that can distinguish individuals originating in North Africa and the Middle East when combined with a previous set of 126 Global AIM-SNPs.  相似文献   

4.
Ancestry informative markers (AIMs) can be useful to infer ancestry proportions of the donors of forensic evidence. The probability of success typing degraded samples, such as human skeletal remains, is strongly influenced by the DNA fragment lengths that can be amplified and the presence of PCR inhibitors. Several AIM panels are available amongst the many forensic marker sets developed for genotyping degraded DNA. Using a 46 AIM Insertion Deletion (Indel) multiplex, we analyzed human skeletal remains of post mortem time ranging from 35 to 60 years from four different continents (Sub-Saharan Africa, South and Central America, East Asia and Europe) to ascertain the genetic ancestry components. Samples belonging to non-admixed individuals could be assigned to their corresponding continental group. For the remaining samples with admixed ancestry, it was possible to estimate the proportion of co-ancestry components from the four reference population groups. The 46 AIM Indel set was informative enough to efficiently estimate the proportion of ancestry even in samples yielding partial profiles, a frequent occurrence when analyzing inhibited and/or degraded DNA extracts.  相似文献   

5.
Chen  Pengyu  Luo  Li  Gao  Hongyan  Wu  Jian  Wang  Yudan  He  Guanglin  Han  Yanyan 《International journal of legal medicine》2019,133(5):1389-1392

Binary markers of insertion and deletion (InDel) play an important role in forensic personal identification, parentage testing, and individual ancestry inference. We first genotyped 30 InDels included in the Investigator DIPplex in 403 unrelated healthy Zunyi Miao people and analyzed the genetic polymorphisms, as well as explored the genetic relationship between Miao and 32 Chinese reference populations. No departures from the HWE were observed. The combined power of discrimination and the combined probability of exclusion were 0.99999999998 and 0.9884, respectively. Forensic parameters demonstrated that 30 markers are polymorphic and informative in the Zunyi Miao population and can be used as a tool for forensic personal identification and parentage testing. Allele frequency divergence analysis found that 12 out of 30 displaying high allele frequency difference between Turkic-speaking populations and other Chinese populations can be used as candidates of ancestry informative markers for ancestry inference of sub-population in East Asia. Population genetic parameters in the comprehensive population comparison among 33 Chinese populations indicated that our studied Hmong-Mien-speaking Miao has a close genetic relationship with geographically adjacent Enshi Tujia and genetically differentiate from Turkic-speaking populations.

  相似文献   

6.
We have selected a set of single nucleotide polymorphisms (SNPs) with the specific aim of differentiating European and South Asian ancestries. The SNPs were combined into a 23-plex SNaPshot primer extension assay: Eurasiaplex, designed to complement an existing 34-plex forensic ancestry test with both marker sets occupying well-spaced genomic positions, enabling their combination as single profile submissions to the Bayesian Snipper forensic ancestry inference system. We analyzed the ability of Eurasiaplex plus 34plex SNPs to assign ancestry to a total 1648 profiles from 16 European, 7 Middle East, 13 Central-South Asian and 21 East Asian populations. Ancestry assignment likelihoods were estimated from Snipper using training sets of five-group data (three Eurasian groups, East Asian and African genotypes) and four-group data (Middle East genotypes removed). Five-group differentiations gave assignment success of 91% for NW European populations, 72% for Middle East populations and 39% for Central-South Asian populations, indicating Middle East individuals are not reliably differentiated from either Europeans or Central-South Asians. Four-group differentiations provided markedly improved assignment success rates of 97% for most continental Europeans tested (excluding Turkish and Adygei at the far eastern edge of Europe) and 95% for Central-South Asians, despite applying a probability threshold for the highest likelihood ratio above ‘100 times more likely’. As part of the assessment of the sensitivity of Eurasiaplex to analyze challenging forensic material we detail Eurasiaplex and 34-plex SNP typing to infer ancestry of a cranium recovered from the sea, achieving 82% SNP genotype completeness. Therefore, Eurasiaplex provides an informative and forensically robust approach to the differentiation of European and South Asian ancestries amongst Eurasian populations.  相似文献   

7.
When microsatellite profiles generated from crime scene samples do not match a known person, or eye-witness information is unreliable, highly informative uniparental and autosomal markers can help unveil biogeographical ancestry. However, as genetic admixture is becoming increasingly common in cosmopolitan societies, concern arises with their accuracy and suitability when dealing with samples from admixed individuals. Here we assess the ability to detect biogeographical ancestry in 85 individuals from self-declared Asian and European admixed families using a set of uniparental (Y and mitochondrial DNA) and autosomal single nucleotide polymorphisms, specifically selected to distinguish between these two biogeographical ancestries. Haplogroups and autosomal genotypes were investigated using STRUCTURE to detect levels of admixture. All haplogroups were characteristic of self-declared populations of origin. Overall, the autosomal markers inferred biogeographical ancestry more accurately in admixed individuals, showing no significant differences between observed and expected contribution from each population studied according to level of admixture, although some outliers were observed. We suggest a panel of highly informative autosomal and uniparental markers should be employed to infer biogeographical ancestry of an individual to help detect admixed ancestries.  相似文献   

8.
Inferring an individual's ancestry or group membership using a small set of highly informative genetic markers is very useful in forensic and medical genetics. However, given the huge amount of SNP data available from a diverse of populations, it is challenging to develop informative panels by exhaustively searching for all possible SNP combinations. In this study, we formulate it as an algorithm problem of selecting an optimal set of SNPs that maximizes the inference accuracy while minimizes the set size. Built on this conception, we develop a computational approach that is capable of constructing ancestry informative panels from multi-population genome-wide SNP data efficiently. We evaluated the performance of the method by comparing the panel size and membership inference accuracy of the constructed SNP panels to panels selected through empirical procedures in previous studies. For the membership inference of population groups including Asian, European, African, East Asian and Southeast Asian, a 36-SNP panel developed by our approach has an overall accuracy of 99.07%, and a 21-SNP subset of the panel has an overall accuracy of 95.36%. In comparison, an existing panel requires 74 SNPs to achieve an accuracy of 94.14% on the same set of population groups. We further apply the method to four subpopulations within Europe (Finnish, British, Spanish and Italian); a 175-SNP panel can discriminate individuals of those European subpopulations with an accuracy of 99.36%, of which a 68-SNP subset can achieve an accuracy of 95.07%. We expect our method to be a useful tool for constructing ancestry informative markers in forensic genetics.  相似文献   

9.
The use of ancestry informative markers (AIMs) in forensic analysis is of considerable utility since ancestry inference can progress an investigation when no identification has been made of DNA from the crime-scene. Short-amplicon markers, including insertion deletion polymorphisms, are particularly useful in forensic analysis due to their mutational stability, capacity to amplify degraded samples and straightforward amplification technique. In this study we report the completion of H952 HGDP–CEPH panel genotyping with a set of 46 AIM-Indels. The study adds Central South Asian and Middle Eastern population data, allowing a comparison of patterns of variation in Eurasia for these markers, in order to enhance their use in forensic analyses, particularly when combined with sets of ancestry informative SNPs. Ancestry analysis using principal component analysis and Bayesian methods indicates that a proportion of classification error occurs with European–Middle East population comparisons, but the 46 AIM-Indels have the capability to differentiate six major population groups when European–Central South Asian comparisons are made. These findings have relevance for forensic ancestry analyses in countries where South Asians form much of the demographic profile, including the UK, USA and South Africa. A novel third allele detected in MID-548 was characterized – despite a low frequency in the HGDP–CEPH panel samples, it appears confined to Central South Asian populations, increasing the ability to differentiate this population group. The H952 data set was implemented in a new open access SPSmart frequency browser – forInDel: Forensic Indel browser.  相似文献   

10.
The VISAGE Enhanced Tool for Appearance and Ancestry (ET) has been designed to combine markers for the prediction of bio-geographical ancestry plus a range of externally visible characteristics into a single massively parallel sequencing (MPS) assay. We describe the development of the ancestry panel markers used in ET, and the enhanced analyses they provide compared to previous MPS-based forensic ancestry assays. As well as established autosomal single nucleotide polymorphisms (SNPs) that differentiate sub-Saharan African, European, East Asian, South Asian, Native American, and Oceanian populations, ET includes autosomal SNPs able to efficiently differentiate populations from Middle East regions. The ability of the ET autosomal ancestry SNPs to distinguish Middle East populations from other continentally defined population groups is such that characteristic patterns for this region can be discerned in genetic cluster analysis using STRUCTURE. Joint cluster membership estimates showing individual co-ancestry that signals North African or East African origins were detected, or cluster patterns were seen that indicate origins from central and Eastern regions of the Middle East. In addition to an augmented panel of autosomal SNPs, ET includes panels of 85 Y-SNPs, 16 X-SNPs and 21 autosomal Microhaplotypes. The Y- and X-SNPs provide a distinct method for obtaining extra detail about co-ancestry patterns identified in males with admixed backgrounds. This study used the 1000 Genomes admixed African and admixed American sample sets to fully explore these enhancements to the analysis of individual co-ancestry. Samples from urban and rural Brazil with contrasting distributions of African, European, and Native American co-ancestry were also studied to gauge the efficiency of combining Y- and X-SNP data for this purpose. The small panel of Microhaplotypes incorporated in ET were selected because they showed the highest levels of haplotype diversity amongst the seven population groups we sought to differentiate. Microhaplotype data was not formally combined with single-site SNP genotypes to analyse ancestry. However, the haplotype sequence reads obtained with ET from these loci creates an effective system for de-convoluting two-contributor mixed DNA. We made simple mixture experiments to demonstrate that when the contributors have different ancestries and the mixture ratios are imbalanced (i.e., not 1:1 mixtures) the ET Microhaplotype panel is an informative system to infer ancestry when this differs between the contributors.  相似文献   

11.
Current forensic ancestry-informative panels are limited in their ability to differentiate populations in the Asia-Pacific region. MAPlex (Multiplex for the Asia-Pacific), a massively parallel sequencing (MPS) assay, was developed to improve differentiation of East Asian, South Asian and Near Oceanian populations found in the extensive cross-continental Asian region that shows complex patterns of admixture at its margins. This study reports the development of MAPlex; the selection of SNPs in combination with microhaplotype markers; assay design considerations for reducing the lengths of microhaplotypes while preserving their ancestry-informativeness; adoption of new population-informative multiple-allele SNPs; compilation of South Asian-informative SNPs suitable for forensic AIMs panels; and the compilation of extensive reference and test population genotypes from online whole-genome-sequence data for MAPlex markers. STRUCTURE genetic clustering software was used to gauge the ability of MAPlex to differentiate a broad set of populations from South and East Asia, the West Pacific regions of Near Oceania, as well as the other globally distributed population groups. Preliminary assessment of MAPlex indicates enhanced South Asian differentiation with increased divergence between West Eurasian, South Asian and East Asian populations, compared to previous forensic SNP panels of comparable scale. In addition, MAPlex shows efficient differentiation of Middle Eastern individuals from Europeans. MAPlex is the first forensic AIM assay to combine binary and multiple-allele SNPs with microhaplotypes, adding the potential to detect and analyze mixed source forensic DNA.  相似文献   

12.
Ancestry inference is traditionally done using autosomal SNPs that present great allele frequency differences among populations from different geographic regions. These ancestry informative markers (AIMs) are useful for determining the most likely biogeographic ancestry or population of origin of an individual. Due to the growing interest in AIMs and their applicability in different fields, commercial companies have started to develop AIM multiplexes targeted for Massive Parallel Sequencing platforms.This project focused on the study of three main ethnic groups from Ecuador (Kichwa, Mestizo, and Afro-Ecuadorian) using the Precision ID Ancestry panel (Thermo Fisher Scientific). In total, 162 Ecuadorian individuals were investigated. The Afro-Ecuadorian and Mestizo showed higher average genetic diversities compared to the Kichwa. These results are consistent with the highly admixed nature of the first two groups. The Kichwa showed the highest proportion of Native Amerindian (NAM) ancestry relative to the other two groups. The Mestizo had an admixed ancestry of NAM and European with a larger European component, whereas the Afro-Ecuadorian were highly admixed presenting proportions of African, Native Amerindian, and European ancestries. The comparison of our results with previous studies based on uniparental markers (i.e. Y chromosome and mtDNA) highlighted the sex-biased admixture process in the Ecuadorian Mestizo.Overall, the data generated in this work represent one important step to assess the application of ancestry inference in admixed populations in a forensic context.  相似文献   

13.
Insertion-deletions have been reported very useful markers for forensic purposes. To further deepen in this matter, 38 non-coding bi-allelic autosomal indels were analyzed in 575 individuals representing six populations from the northern fringe of the Iberian Peninsula. Autochthonous populations from the Basque Country, northern Navarre, the Pas Valley in Cantabria and Aragon were analyzed, together with non-autochthonous populations from the Basque Country and northern Navarre. At the intra-population level, all loci analyzed were in Hardy-Weinberg equilibrium except for marker rs33917182 in autochthonous Basques. Linkage disequilibrium (LD) test did not reveal statistically significant allelic association between the different loci pairs in all six populations. Forensic parameters proved to be highly informative in the six populations analyzed, even if a scenario with population substructure and local inbreeding was considered for match probability calculations, and the potential of this indels set to be used in combination with other genetic markers is remarkable. As for inter-population analyses, in general terms the six populations showed low but statistically significant genetic distances. However, though this indels set efficiently differentiate between main ancestries, it does not allow an accurate separation at a local level and, for the time being, their combination with other informative markers is needed to maximize the power to accurately differentiate populations with close genetic ancestry.  相似文献   

14.
15.
Genetic analyses of geographically and ethno-linguistically different populations are essential for understanding population stratification and genomic structure in medical Genome-Wide Association Studies (GWAS) and genetic variation and diversity related to forensic and population genetics studies. Here, we genotyped 30 autosomal insertion/deletion (Indel) markers from 502 Tai-Kadai-speaking Gelao individuals residing in the rugged topographical area in Southeastern China. In addition, two comprehensive population genetic comparisons of 15,327 individuals from 95 worldwide populations and of 6122 individuals from Asia and adjoining populations were conducted based on allele frequency data and raw genotype data, respectively. All studied markers were found to be in Hardy-Weinberg equilibrium. The combined power of discrimination in the Gelao minority group was 0.999999999975, and the combined probability of exclusion was 0.9879. Our results from the forensic statistical parameters indicated that this Indel panel can be independently used as a powerful tool in forensic individual identification but can only be used as a complementary tool in paternity cases involving East Asians. We also found significant allele frequency differences between the Gelao and other continental populations with respect to the markers grouped in clusters ∼Ⅳ, suggesting that these can be used as forensic ancestry informative Indel markers to distinguish the Gelao from other continental populations. Genetic ancestry analyses demonstrated that Tai-Kadai-speaking Gelao share a dominant ancestry component with Hmong-Mien-speaking Miao. Our population genetic results from multidimensional scaling plots, principal component analysis, neighboring-joining tree construction and hierarchical clustering also suggested that the Zunyi Gelao are genetically closer to their linguistically or geographically close populations, such as the Han Chinese, Guizhou Bouyei and the Hubei Tujia, than to Turkic and Tibeto-Burman speakers.  相似文献   

16.

DNA can provide forensic intelligence regarding a donor’s biogeographical ancestry (BGA) and other externally visible characteristics (EVCs). A number of algorithms have been proposed to assign individual human genotypes to a BGA using ancestry informative marker (AIM) panels. This study compares the BGA assignment accuracy of the population clustering program STRUCTURE and three generic classification approaches including a Bayesian algorithm, genetic distance, and multinomial logistic regression (MLR). A selection of 142 ancestry informative single nucleotide polymorphisms (SNPs) were chosen from existing marker panels (SNPforID 34-plex, Eurasiaplex, Seldin, and Kidd’s AIM panels) to assess BGA classification at the continental level for Africans, Europeans, East Asians, and Amerindians. A training set of 1093 individuals with self-declared BGA from the 1000 Genomes phase 1 database was used by each classifier to predict BGA in a test set of 516 individuals from the HGDP-CEPH (Stanford) cell line panel. Tests were repeated with 0, 10, 50, 70, and 90% of the genotypes missing. Comparison of the area under the receiver operating characteristic curves (AUROCs) showed high accuracy in STRUCTURE and the generic Bayesian approach. The latter algorithm offers a computationally simpler alternative to STRUCTURE with little loss in accuracy and is suitable for phenotype prediction while STRUCTURE is not.

  相似文献   

17.
Isolated populations present a constant threat to the correctness of forensic genetic casework. In this review article we present several examples of how analyzing samples from isolated populations can bias the results of the forensic statistics and analyses. We select our examples from isolated populations from central and southeastern Europe, namely the Valachs and the European Roma. We also provide the reader with general strategies and principles to improve the laboratory practice (best practice) and reporting of samples from supposedly isolated populations. These include reporting the precise population data used for computing the forensic statistics, using the appropriate θ correction factor for calculating allele frequencies, typing ancestry informative markers in samples of unknown or uncertain ethnicity and establishing ethnic-specific forensic databases.  相似文献   

18.
Ancestry informative single-nucleotide polymorphism (AISNP) panels for differentiating between East and Southeast Asian populations are scarce. This study aimed to identify AISNPs for ancestry assignment of five East and Southeast Asian populations, and Caucasians. We analyzed 145 autosomal SNPs of the 627 DNA samples from individuals of six populations (234 Taiwanese Han, 91 Filipinos, 79 Indonesians, 60 Thais, 71 Vietnamese, and 92 Caucasians) using arrays. The multiple logistic regression model and a multi-tier approach were used for ancestry classification. We observed that 130 AISNPs were effective for classifying the ethnic origins with fair accuracy. Among the 130 AISNPs, 122 were useful for stratification between these five Asian populations and 64 were effective for differentiating between Caucasians and these Asian populations. For differentiation between Caucasians and Asians, an accuracy rate of 100% was achieved in these 627 subjects with 50 optimal AISNPs among the 64 effective SNPs. For classification of the five Asian populations, the accuracy rates of ancestry inference using 20 to 57 SNPs for each of the two Asian populations ranged from 74.1% to 100%. Another 14 degraded DNA samples with incomplete profiling were analyzed, and the ancestry of 12 (85.7%) of those subjects was accurately assigned. We developed a 130-AISNP panel for ethnic origin differentiation between the five East and Southeast Asian populations and Caucasians. This AISNP set may be helpful for individual ancestral assignment of these populations in forensic casework.  相似文献   

19.
Ancestry inference through population stratification plays an important role in forensic applications. Specifically, ancestry information inferred from forensic DNA evidence can provide vital clues for criminal investigations. Current advances in ancestry inference mostly focus on ancestry informative markers. Hereinto, multi-InDel was proposed as one of the compound markers performing well in complex ancestral classification in the subpopulation of Asia. However, research on analytical methods necessary to make reliable predictions is lacking. The newly proposed compound markers could be assessed with alternative methods. In this study, promising discriminant methods were explored using multi-InDel markers for forensic ancestry inference. As a prerequisite, the adopted multi-InDel markers were assessed by classical methods for population genetics, such as FST analysis, MDS and STRUCTURE. In addition, dimensionality reduction methods and serial reduction strategies were applied for data visualization. Subsequently, machine learning methods, including logistic regression (LR), support vector machine (SVM), k-nearest neighbors (KNN) and extreme gradient boosting (XGBoost), were evaluated by diverse approaches. As the result of multifarious analyses through comparisons and estimations, XGBoost with one-hot encoding was shown to be more effective in population stratification and ancestry inference for challenging cases with admixed populations.  相似文献   

20.
The use of microhaplotypes (MHs) for ancestry inference has added to an increasing number of ancestry-informative markers (AIMs) for forensic application that includes autosomal single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). This study compares bi-allelic and tri-allelic SNPs as well as MH markers for their ability to differentiate African, European, South Asian, East Asian, and American population groups from the 1000 Genomes Phase 3 database. A range of well-established metrics were applied to rank each marker according to the population differentiation potential they measured. These comprised: absolute allele frequency differences (δ); Rosenberg’s informativeness for (ancestry) assignment (In); the fixation index (FST); and the effective number of alleles (Ae). A panel consisting of all three marker types resulted in the lowest mean divergence per population per individual (MDPI = 2.16%) when selected by In. However, when marker types were not mixed, MHs were the highest performing markers by most metrics (MDPI < 4%) for differentiation between the five continental populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号