首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the people infected with hepatitis C virus (HCV) develop chronic hepatitis, which in some cases progresses to cirrhosis and ultimately to hepatocellular carcinoma. Although various immunotherapies against the progressive disease status of HCV infection have been studied, a preventive or therapeutic vaccine against this pathogen is still not available. In this study, we constructed a DNA vaccine expressing an HCV structural protein (CN2), non-structural protein (N25) or the empty plasmid DNA as a control and evaluated their efficacy as a candidate HCV vaccine in C57BL/6 and novel genetically modified HCV infection model (HCV-Tg) mice. Strong cellular immune responses to several HCV structural and non-structural proteins, characterized by cytotoxicity and interferon-gamma (IFN-γ) production, were observed in CN2 or N25 DNA vaccine-immunized C57BL/6 mice but not in empty plasmid DNA-administered mice. The therapeutic effects of these DNA vaccines were also examined in HCV-Tg mice that conditionally express HCV proteins in their liver. Though a reduction in cellular immune responses was observed in HCV-Tg mice, there was a significant decrease in the expression of HCV protein in mice administered the N25 DNA vaccine but not in mice administered the empty plasmid DNA. Moreover, both CD8+ and CD4+ T cells were required for the decrease of HCV protein in the liver. We found that the N25 DNA vaccine improved pathological changes in the liver compared to the empty plasmid DNA. Thus, these DNA vaccines, especially that expressing the non-structural protein gene, may be an alternative approach for treatment of individuals chronically infected with HCV.  相似文献   

2.
Chagas disease is a major public health problem, with about 10 million infected people, and DNA vaccines are a promising alternative for the control of Trypanosoma cruzi, the causing agent of the disease. We tested here a new DNA vaccine encoding a combination of two leading parasite antigens, TSA-1 and Tc24, for the prevention and therapy of T. cruzi infection. Immunized Balb/c mice challenged by T. cruzi presented a significantly lower parasitemia and inflammatory cell density in the heart compared to control mice. Similarly, the therapeutic administration of the DNA vaccine was able to significantly reduce the parasitemia and inflammatory reaction in acutely infected Balb/c and C57BL/6 mice, and reduced cardiac tissue inflammation in chronically infected ICR mice. Therapeutic vaccination induced a marked increase in parasite-specific IFNγ producing CD4+ and CD8+ T cells in the spleen as well as an increase in CD4+ and CD8+ T cells in the infected cardiac tissue. In addition, some effect of the DNA vaccine could still be observed in CD4-knockout C57BL/6 mice, which presented a lower parasitemia and inflammatory cell density, but not in CD8-deficient mice, in which the vaccine had no effect. These results indicate that the activation of CD8+ T cells plays a major role in the control of the infection by the therapeutic DNA vaccine, and to a somewhat lesser extent CD4+ T cells. This observation opens interesting perspectives for the potentiation of this DNA vaccine candidate by including additional CD8+ T cell antigens/epitopes in future vaccine formulations.  相似文献   

3.
Pneumoviruses such as pneumonia virus of mice (PVM), bovine respiratory syncytial virus (bRSV) or human (h)RSV are closely related pneumoviruses that cause severe respiratory disease in their respective hosts. It is well-known that T-cell responses are essential in pneumovirus clearance, but pneumovirus-specific T-cell responses also are important mediators of severe immunopathology. In this study we determined whether memory- or pre-existing, transferred virus-specific CD8+ T-cells provide protection against PVM-induced disease. We show that during infection with a sublethal dose of PVM, both natural killer (NK) cells and CD8+ T-cells expand relatively late. Induction of CD8+ T-cell memory against a single CD8+ T-cell epitope, by dendritic cell (DC)-peptide immunization, leads to partial protection against PVM challenge and prevents Th2 differentiation of PVM-induced CD4 T-cells. In addition, adoptively transferred PVM-specific CD8+ T-cells, covering the entire PVM-specific CD8+ T-cell repertoire, provide partial protection from PVM-induced disease. From these data we infer that antigen-specific memory CD8+ T-cells offer significant protection to PVM-induced disease. Thus, CD8+ T-cells, despite being a major cause of PVM-associated pathology during primary infection, may offer promising targets of a protective pneumovirus vaccine.  相似文献   

4.
Cervical cancer is the leading cause of cancer-related deaths among women worldwide. Current prophylactic vaccines based on HPV (Human papillomavirus) late gene protein L1 are ineffective in therapeutic settings. Therefore, there is an acute need for the development of therapeutic vaccines for HPV associated cancers. The HPV E7 oncoprotein is expressed in cervical cancer and has been associated with the cellular transformation and maintenance of the transformed phenotype. As such, E7 protein represents an ideal target for the development of therapeutic subunit vaccines against cervical cancer. However, the low antigenicity of this protein may require potent adjuvants for therapeutic efficacy. We recently generated a novel chimeric form of the 4-1BBL costimulatory molecule engineered with core streptavidin (SA-4-1BBL) and demonstrated its safe and pleiotropic effects on various cells of the immune system. We herein tested the utility of SA-4-1BBL as the immunomodulatory component of HPV-16 E7 recombinant protein based therapeutic vaccine in the E7 expressing TC-1 tumor as a model of cervical cancer in mice. A single subcutaneous vaccination was effective in eradicating established tumors in approximately 70% of mice. The therapeutic efficacy of the vaccine was associated with robust primary and memory CD4+ and CD8+ T cell responses, Th1 cytokine response, infiltration of CD4+ and CD8+ T cells into the tumor, and enhanced NK cell killing. Importantly, NK cells played an important role in vaccine mediated therapy since their physical depletion compromised vaccine efficacy. Collectively, these data demonstrate the utility of SA-4-1BBL as a new class of multifunctional immunomodulator for the development of therapeutic vaccines against cancer and chronic infections.  相似文献   

5.
《Vaccine》2016,34(41):4857-4865
The targeting of vaccine antigens to antigen presenting cells (APC), such as dendritic cells (DCs), is a promising strategy for boosting vaccine immunogenicity and, in turn, protective and/or therapeutic efficacy. However, in vivo systems are needed to evaluate the potential of this approach for testing human vaccines. To this end, we examined human CD8+ T-cell expansion to novel DC-targeting vaccines in vitro and in vivo in humanized mice. Vaccines incorporating the influenza matrix protein-1 (FluM1) antigen fused to human specific antibodies targeting different DC receptors, including DEC-205, DCIR, Dectin-1, and CD40, elicited human CD8+ T-cell responses, as defined by the magnitude of specific CD8+ T-cells to the targeted antigen. In vitro we observed differences in response to the different vaccines, particularly between the weakly immunogenic DEC-205-targeted and more strongly immunogenic CD40-targeted vaccines, consistent with previous studies. However, in humanized mice adoptively transferred (AT) with mature human T cells (HM-T), vaccines that performed weakly in vitro (i.e., DEC-205, DCIR, and Dectin-1) gave stronger responses in vivo, some resembling those of the strongly immunogenic CD40-targeted vaccine. These results demonstrate the utility of the humanized mouse model as a platform for studies of human vaccines.  相似文献   

6.
DNA vaccines contribute to a promising new approach for the generation of cytotoxic T lymphocytes (CTL). DNA vaccines do have several disadvantages, including poor immunogenicity and oncogene expression. We used the natural killer T-cell (NKT) ligand α-galactosylceramide (α-GalCer) as an adjuvant to prime initial DNA vaccination; and used the potent immune-stimulatory tumor antigen-expressing dendritic cells (DCs) as a booster vaccination. A DNA vaccine expressing human papillomavirus (HPV) type 16 E7 (pcDNA3-CRT/E7) was combined with α-GalCer at the prime phase, and generated a higher number of E7-specific CD8+ T-cells in vaccinated mice than vaccine used at boost phase. Therefore, priming with a DNA vaccine in the presence of α-GalCer and boosting with E7-pulsed DC-1 led to a significant enhancement of E7-specific CD8+ effector and memory T-cells as well as significantly improved therapeutic and preventive effects against an E7-expressing tumor model (TC-1) in vaccinated mice. Our findings suggested that the potency of a DNA vaccine combined with α-GalCer could be further enhanced by boosting with an antigen-expressing DC-based vaccine to generate anti-tumor immunity.  相似文献   

7.
The major antigenic component of licensed influenza vaccines, hemagglutinin (HA), elicits predominantly type-specific antibody responses, thus necessitating frequent antigenic updates to the annual vaccine. However, accumulating evidence suggests that influenza vaccines can also induce significant cross-reactive T-cell responses to highly divergent, heterosubtypic HA antigens not included in the vaccine. Influenza vaccines are less effective among the elderly and studies that characterize cross-reactive T-cell immunity in this vulnerable population are much needed. Here, we systematically compare the ex vivo frequency, cytokine profile and phenotype of vaccine-elicited HA-specific T-cell responses among a cohort of young (18-49 years old) and elderly (≥70 years old) vaccinees, as well as the maturation and activation phenotype of total CD4+ and CD8+ T-cells. IFN-γ production after in vitro expansion and HA-specific Ab titers were also determined. We find that vaccine-elicited ex vivo frequencies of CD4+ T-cells elicited by vaccination reactive to any given homo- or heterosubtypic Ag were comparable across the two age groups. While, no differences were observed between age groups in the phenotype of Ag-specific or total CD4+ T-cells, PBMC from young adults were superior at producing IFN-γ after short-term Ag-specific culture. Significantly, while vaccine-elicited T-cell responses were durable among the younger vaccinees, they were short-lived among the elderly. These results have important ramifications for our understanding of vaccine-induced changes in the magnitude and functionality of HA-specific CD4+ T-cells, as well as age-related alterations in response kinetics.  相似文献   

8.
The human immunodeficiency virus type-1 (HIV-1) vaccine candidate F4/AS01 has previously been shown to induce potent and persistent polyfunctional CD4+ T-cell responses in HIV-1-seronegative volunteers. This placebo-controlled study evaluated two doses of F4/AS01 1-month apart in antiretroviral treatment (ART)-experienced and ART-naïve HIV-1-infected subjects (1:1 randomisation in each cohort). Safety, HIV-1-specific CD4+ and CD8+ T-cell responses, absolute CD4+ T-cell counts and HIV-1 viral load were monitored for 12 months post-vaccination. Reactogenicity was clinically acceptable and no vaccine-related serious adverse events were reported. The frequency of HIV-1-specific CD4+ T-cells 2 weeks post-dose 2 was significantly higher in the vaccine group than in the placebo group in both cohorts (p < 0.05). Vaccine-induced HIV-1-specific CD4+ T-cells exhibited a polyfunctional phenotype, expressing at least CD40L and IL-2. No increase in HIV-1-specific CD8+ T-cells or change in CD8+ T-cell activation marker expression profile was detected. Absolute CD4+ T-cell counts were variable over time in both cohorts. Viral load remained suppressed in ART-experienced subjects. In ART-naïve subjects, a transient reduction in viral load from baseline was observed 2 weeks after the second F4/AS01 dose, which was concurrent with a higher frequency of HIV-1-specific CD4+ T-cells expressing at least IL-2 in this cohort. In conclusion, F4/AS01 showed a clinically acceptable reactogenicity and safety profile, and induced polyfunctional HIV-1-specific CD4+ T-cell responses in ART-experienced and ART-naïve subjects. These findings support further clinical investigation of F4/AS01 as a potential HIV-1 vaccine for therapeutic use in individuals with HIV-1 infection.  相似文献   

9.
Halting the spread of hepatitis C virus (HCV) and also eradicating HCV in subjects with chronic infection are major goals for global health. To this end, several years of research on HCV vaccine development have led to the conclusion that multi-antigenic and multi-functional vaccine types are necessary for effectiveness against HCV infection. In this study, we evaluated lentiviral vectors (LV) expressing clusters of HCV structural (LV-HCV-S) and non-structural (LV-HCV-NS) genes for future vaccine development. Batches of high titer LV were used to transduce differentiated dendritic cells (DC) and monocytes. We report successful delivery of HCV gene clusters, particularly into monocytes, leading to >80% LV-HCV-NS and >70% LV-HCV-S and transduced cells, respectively. Intracellular expression of HCV proteins in monocyte-derived DC resulted in immunophenotypic changes, such as downregulation of CD83 and CD86. Monocytes expressing NS proteins and differentiated into DC stimulated allogeneic and autologous CD8+ and CD4+ T cells in vitro and resulted in antigen-specific CD8+ T cell responses against NS3, NS4a and NS5b. Hence, lentiviral-mediated expression of the multi-antigenic HCV-NS cluster in monocytes subsequently differentiated into DC is a novel potential anti-HCV vaccine modality.  相似文献   

10.
《Vaccine》2020,38(32):5036-5048
BackgroundViral genetic variability presents a major challenge to the development of a prophylactic hepatitis C virus (HCV) vaccine. A promising HCV vaccine using chimpanzee adenoviral vectors (ChAd) encoding a genotype (gt) 1b non-structural protein (ChAd-Gt1b-NS) generated high magnitude T cell responses. However, these T cells showed reduced cross-recognition of dominant epitope variants and the vaccine has recently been shown to be ineffective at preventing chronic HCV. To address the challenge of viral diversity, we developed ChAd vaccines encoding HCV genomic sequences that are conserved between all major HCV genotypes and adjuvanted by truncated shark invariant chain (sIitr).MethodsAge-matched female mice were immunised intramuscularly with ChAd (108 infectious units) encoding gt-1 and -3 (ChAd-Gt1/3) or gt-1 to -6 (ChAd-Gt1-6) conserved segments spanning the HCV proteome, or gt-1b (ChAd-Gt1b-NS control), with immunogenicity assessed 14-days post-vaccination.ResultsConserved segment vaccines, ChAd-Gt1/3 and ChAd-Gt1-6, generated high-magnitude, broad, and functional CD4+ and CD8+ T cell responses. Compared to the ChAd-Gt1b-NS vaccine, these vaccines generated significantly greater responses against conserved non-gt-1 antigens, including conserved subdominant epitopes that were not targeted by ChAd-Gt1b-NS. Epitopes targeted by the conserved segment HCV vaccine induced T cells, displayed 96.6% mean sequence homology between all HCV subtypes (100% sequence homology for the majority of genotype-1, -2, -4 sequences and 94% sequence homology for gt-3, -6, -7, and -8) in contrast to 85.1% mean sequence homology for epitopes targeted by ChAd-Gt1b-NS induced T cells. The addition of truncated shark invariant chain (sIitr) increased the magnitude, breadth, and cross-reactivity of the T cell response.ConclusionsWe have demonstrated that genetically adjuvanted ChAd vectored HCV T cell vaccines encoding genetic sequences conserved between genotypes are immunogenic, activating T cells that target subdominant conserved HCV epitopes. These pre-clinical studies support the use of conserved segment HCV T cell vaccines in human clinical trials.  相似文献   

11.
The live-attenuated yellow fever vaccine (YF17D) is one of the safest and most effective vaccines available today. Here, YF17D was genetically altered to express the circumsporozoite protein (CSP) from the murine malarial parasite Plasmodium yoelii. Reconstituted recombinant virus was viable and exhibited robust CSP expression. Immunization of naïve mice resulted in extensive proliferation of adoptively transferred CSP-specific transgenic CD8+ T-cells. A single immunization of naïve mice with recombinant YF17D resulted in robust production of IFN-γ by CD8+ T-cells and IFN-γ and IL-2 by CD4+ T-cells. A prime-boost regimen consisting of recombinant virus followed by a low-dose of irradiated sporozoites conferred protection against challenge with P. yoelii. Taken together, these results show that recombinant YF17D can efficiently express CSP in culture, and prime a protective immune response in vivo.  相似文献   

12.
The lipid core peptide (LCP) system has successfully been used in development of peptide-based vaccines against cancer and infectious diseases (such as group A streptococcal infection). CD8+ T cells are important targets for vaccines, however developing a vaccine that activates long-lasting immunity has proven challenging. The ability of LCP vaccines to activate antigen-specific CD8+ and/or CD4+ T cell responses was tested using compounds that contained two or four copies of OVA257–264 and/or OVA323–339 peptides conjugated to LCP, which are recognised by OTI (CD8+ specific) and OTII (CD4+ specific) T cells, respectively. The LCP–ovalbumin vaccines developed in this study were synthesised in 30% yields and showed no significant haemolytic effect on red blood cells (below 4% haemolysis when tested with compounds at up to 100 μM concentrations). Promising in vivo data in mice suggested that this LCP–ovalbumin vaccine system could act as a novel and potent vehicle for the stimulation of robust antigen-specific CD8+ T cell responses.  相似文献   

13.
《Vaccine》2018,36(2):313-321
BackgroundHepatitis C virus (HCV) genomic variability is a major challenge to the generation of a prophylactic vaccine. We have previously shown that HCV specific T-cell responses induced by a potent T-cell vaccine encoding a single strain subtype-1b immunogen target epitopes dominant in natural infection. However, corresponding viral regions are highly variable at a population level, with a reduction in T-cell reactivity to these variants. We therefore designed and manufactured second generation simian adenovirus vaccines encoding genomic segments, conserved between viral genotypes and assessed these for immunogenicity.MethodsWe developed a computer algorithm to identify HCV genomic regions that were conserved between viral subtypes. Conserved segments below a pre-defined diversity threshold spanning the entire HCV genome were combined to create novel immunogens (1000–1500 amino-acids), covering variation in HCV subtypes 1a and 1b, genotypes 1 and 3, and genotypes 1–6 inclusive. Simian adenoviral vaccine vectors (ChAdOx) encoding HCV conserved immunogens were constructed. Immunogenicity was evaluated in C57BL6 mice using panels of genotype-specific peptide pools in ex-vivo IFN-ϒ ELISpot and intracellular cytokine assays.ResultsChAdOx1 conserved segment HCV vaccines primed high-magnitude, broad, cross-reactive T-cell responses; the mean magnitude of total HCV specific T-cell responses was 1174 SFU/106 splenocytes for ChAdOx1-GT1-6 in C57BL6 mice targeting multiple genomic regions, with mean responses of 935, 1474 and 1112 SFU/106 against genotype 1a, 1b and 3a peptide panels, respectively. Functional assays demonstrated IFNg and TNFa production by vaccine-induced CD4 and CD8 T-cells. In silico analysis shows that conserved immunogens contain multiple epitopes, with many described in natural HCV infection, predicting immunogenicity in humans.ConclusionsSimian adenoviral vectored vaccines encoding genetic segments that are conserved between all major HCV genotypes contain multiple T-cell epitopes and are highly immunogenic in pre-clinical models. These studies pave the way for the assessment of multi-genotypic HCV T-cell vaccines in humans.  相似文献   

14.
《Vaccine》2018,36(11):1414-1422
DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-TEXO capable of stimulating HER2-specific CD8+ T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdVHuRt expressing HuRt fusion protein composed of NH2-HER21-407 (Hu) and COOH-neu408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-TEXO using polyclonal CD4+ T-cells uptaking exosomes released by AdVHuRt-transfected dendritic cells. We found that the HuRt-TEXO vaccine stimulates enhanced CD4+ T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-TEXO vaccine. By using PE-H-2Kd/HER223-71 tetramer, we determined that HuRt-TEXO stimulates stronger HER2-specific CD8+ T-cell responses eradicating 90% of HER2-specific target cells, while HER2-TEXO-induced CD8+ T-cell responses only eliminating 53% targets. Furthermore, HuRt-TEXO, but not HER2-TEXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10A2/HER2 melanoma. HuRt-TEXO-stimulated HER2-specific CD8+ T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-TEXO, circumventing HER2 tolerance, may provide a new therapeutic alternative for patients with trastuzumab-resistant HER2+ breast tumor.  相似文献   

15.
Hepatitis C virus (HCV) is a major cause of liver disease. Spontaneous resolution of infection is associated with broad, MHC class I- (CD8+) and class II-restricted (CD4+) T cell responses to multiple viral epitopes. Only 20% of patients clear infection spontaneously, however, most develop chronic disease. The response to chemotherapy varies; therapeutic vaccination offers an additional treatment strategy. To date, therapeutic vaccines have demonstrated only limited success in clinical trials. Vector-mediated vaccination with multi-epitope-expressing DNA constructs provides an improved approach. Highly-conserved, HLA-A2-restricted HCV epitopes and HLA-DRB1-restricted immunogenic consensus sequences (ICS, each composed of multiple overlapping and highly conserved epitopes) were predicted using bioinformatics tools and synthesized as peptides. HLA binding activity was determined in competitive binding assays. Immunogenicity and the ability of each peptide to stimulate naïve human T cell recognition and IFN-γ production were assessed in cultures of total PBMCs and in co-cultures composed of peptide-pulsed dendritic cells (DCs) and purified T lymphocytes, cell populations derived from normal blood donors. Essentially all predicted HLA-A2-restricted epitopes and HLA-DRB1-restricted ICS exhibited HLA binding activity and the ability to elicit immune recognition and IFN-γ production by naïve human T cells. The ability of DCs pulsed with these highly-conserved HLA-A2- and -DRB1-restricted peptides to induce naïve human T cell reactivity and IFN-γ production ex vivo demonstrates the potential efficacy of a multi-epitope-based HCV vaccine targeted to dendritic cells.  相似文献   

16.
《Vaccine》2018,36(29):4198-4206
There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4+ T cells, whereby depletion of CD4+ T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4+ T cells were needed for early antibody production and CD8+ T cell recall responses. Furthermore, influenza-specific CD4+ T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4+ and CD8+ T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza.  相似文献   

17.
《Vaccine》2021,39(39):5589-5599
Bacteria biohybrid-based vaccine delivery systems, which integrate a vaccine carrier with live non-pathogenic bacteria, are hypothesized to have improved immunostimulating potential. The aim of this study was to develop oral bacteria biohybrid-based vaccines to treat a mouse model of colorectal cancer. E. coli were combined with tumor antigen- and adjuvant-containing emulsions or liposomes. Emulsion and liposome biohybrid vaccines demonstrated in vitro and in vivo therapeutic potential. Bacteria biohybrid vaccines significantly increased the expression of CD40+, CD80+ and CD86+ on murine bone marrow-derived dendritic cells. Mice vaccinated with emulsion biohybrid vaccines had an increased CD8+ T cell infiltration into tumors and developed three-fold smaller tumors compared to the mice that received emulsion vaccine without E. coli.  相似文献   

18.
Jang MJ  Kim JE  Chung YH  Lee WB  Shin YK  Lee JS  Kim D  Park YM 《Vaccine》2011,29(13):2400-2410
Gram-negative bacterial outer membrane proteins (Omps) have an important role in pathogenesis and signal reception. We previously reported that Acinetobacter OmpA (AbOmpA) induced maturation of bone marrow-derived dendritic cells (BMDCs) and that AbOmpA-primed DCs produced IL-12 which generated Th1 CD4+ T-cells. We analyzed the effects of Salmonella typhimurium OmpA (OmpA-Sal) on dendritic cell (DC) maturation in the present study, and determined that tumor antigen-pulsed DCs stimulated with OmpA-Sal induced anti-tumor responses in a mouse model. OmpA-Sal activated BMDCs by augmenting expression of MHC class II and of the co-stimulatory molecules CD80 and CD86. RT-PCR revealed that IL-12(p40) gene expression is highly augmented in OmpA-Sal-stimulated BMDCs. DNA (CRT/E7) vaccination combined with OmpA-Sal stimulation generated more antigen-specific CD8+ T-cells in the present study. Certain antigen-pulsed BMDCs stimulated with OmpA-Sal induced strong PADRE-specific CD4+ and E7-specific CD8+ T-cell responses. In addition, BMDCs stimulated with OmpA-Sal (OmpA-Sal-BMDCs) and pulsed with both E7 and PADRE peptide generated greater numbers of E7-specific CD8+ effector and memory T-cells than those pulsed with E7 peptide alone. E7- and PADRE-expressing OmpA-Sal-BMDC vaccines resulted in significant long-term protective anti-tumor effects in vaccinated mice. Our data suggested that E7- and PADRE-expressing BMDCs that were matured in the presence of OmpA-Sal might enhance anti-tumor immunity and support the therapeutic use of OmpA-Sal in DC-based immunotherapy.  相似文献   

19.
Moorman JP  Zhang CL  Ni L  Ma CJ  Zhang Y  Wu XY  Thayer P  Islam TM  Borthwick T  Yao ZQ 《Vaccine》2011,29(17):3169-3176
Vaccination for hepatitis B virus (HBV) in the setting of hepatitis C virus (HCV) infection is recommended, but responses to vaccination are blunted when compared to uninfected populations. The mechanism for this failure of immune response in HCV-infected subjects remains unknown but is thought to be a result of lymphocyte dysfunction during chronic viral infection. We have recently demonstrated that PD-1, a novel negative immunomodulator for T cell receptor (TCR) signaling, is involved in T and B lymphocyte dysregulation during chronic HCV infection. In this report, we further investigated the role of the PD-1 pathway in regulation of CD4+ T cell responses to HBV vaccination in HCV-infected individuals. In a prospective HCV infected cohort, a poor response rate to HBV vaccination as assayed by seroconversion was observed in HCV-infected subjects (53%), while a high response rate was observed in healthy or spontaneously HCV-resolved individuals (94%). CD4+ T cell responses to ex vivo stimulations of anti-CD3/CD28 antibodies or hepatitis B surface antigen (HBsAg) were found to be lower in HBV vaccine non-responders compared to those responders in HCV-infected individuals who had received a series of HBV immunizations. PD-1 expression on CD4+ T cells was detected at relatively higher levels in these HBV vaccine non-responders than those who responded, and this was inversely associated with the cell activation status. Importantly, blocking the PD-1 pathway improved T cell activation and proliferation in response to ex vivo HBsAg or anti-CD3/CD28 stimulation in HBV vaccine non-responders. These results suggest that PD-1 signaling may be involved in impairing CD4+ T cell responses to HBV vaccination in subjects with HCV infection, and raise the possibility that blocking this negative signaling pathway might improve success rates of immunization in the setting of chronic viral infection.  相似文献   

20.

Background and aims

Persons who inject drugs (PWID) are at highest risk for acquiring and transmitting hepatitis C (HCV) infection. The recent availability of oral direct-acting antiviral (DAA) therapy with reported cure rates >90% can prevent HCV transmission, making HCV elimination an attainable goal among PWID. The World Health Organization (WHO) recently proposed a 90% reduction in HCV incidence as a key objective. However, given barriers to the use of DAAs in PWID, including cost, restricted access to DAAs, and risk of reinfection, combination strategies including the availability of effective vaccines are needed to eradicate HCV as a public health threat. This study aims to model the cost and efficacy of a dual modality approach using HCV vaccines combined with DAAs to reduce HCV incidence by 90% and prevalence by 50% in PWID populations.

Methods

We developed a mathematical model that represents the HCV epidemic among PWID and calibrated it to empirical data from metropolitan Chicago, Illinois. Four medical interventions were considered: vaccination of HCV naive PWID, DAA treatment, DAA treatment followed by vaccination, and, a combination of vaccination and DAA treatment.

Results

The combination of vaccination and DAAs is the lowest cost-expensive intervention for achieving the WHO target of 90% incidence reduction. The use of DAAs without a vaccine is much less cost-effective with the additional risk of reinfection after treatment. Vaccination of naïve PWID alone, even when scaled-up to all reachable PWID, cannot achieve 90% reduction of incidence in high-prevalence populations due to infections occurring before vaccination. Similarly, the lowest cost-expensive way to halve prevalence in 15?years is through the combination of vaccination and DAAs.

Conclusions

The modeling results underscore the importance of developing an effective HCV vaccine and augmenting DAAs with vaccines in HCV intervention strategies in order to achieve efficient reductions in incidence and prevalence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号