首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand more fully the effects of bepridil, an antiarrhythmic and antianginal drug, on myocardial ischemia-reperfusion injury and systemic immune responses, its effect on intracellular Ca2+ levels ([Ca2+]i) in human neutrophils was investigated by using fura-2 as a fluorescent probe. Bepridil (10-200 microM) increased [Ca2+]i in a concentration-dependent fashion. This signal was partly inhibited by removal of extracellular Ca2+. In a Ca(2+)-free medium, pretreatment with bepridil (100 microM) abolished the Ca2+ release induced by thapsigargin (1 microM), an endoplasmic reticulum Ca2+ pump inhibitor, and by carbonylcyanide m-chlorophenylhydrazone (2 microM), a mitochondrial uncoupler. Pretreatment with carbonylcyanide m-chlorophenylhydrazone and thapsigargin, respectively, partly inhibited bepridil-induced Ca2+ release. Addition of Ca2+ (3 mM) increased [Ca2+]i after pretreatment with bepridil (100 microM) in a Ca(2+)-free medium. Bepridil (100 microM)-induced Ca2+ release was not altered when phospholipase C was inhibited by U73122 (2 microM). Both Ca2+ release and Ca2+ entry induced by bepridil (100 microM) were augmented by activating protein kinase C with phorbol 12-myristate 13-acetate (10 nM), and were suppressed by inhibiting protein kinase C with GF 109203X (2 microM). Treatment with bepridil (10-20 microM) for 30 min increased the production of reactive oxygen intermediates (ROI) by more than 50%. Collectively, it was found that bepridil increased [Ca2+]i concentration-dependently in human neutrophils by releasing Ca2+ from the endoplasmic reticulum, mitochondria and, possibly, other compartments in a phospholipase C-independent manner. Bepridil also activated Ca2+ influx. The activity of protein kinase C may regulate bepridil-induced Ca2+ release and Ca2+ entry.  相似文献   

2.
The effect of the ether lipid 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH3) on the intracellular free Ca2+ concentration ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was studied using fura-2 as the Ca2+ probe. In Ca2+ medium, ET-18-OCH3 induced a significant rise in [Ca2+]i at concentrations between 10-100 microM with a concentration-dependent delay of 45-175 s. The [Ca2+]i signal was composed of a gradual rise and a sustained plateau. In Ca2+-free medium, ET-18-OCH3 (10-100 microM) induced a Ca2+ release from internal Ca2+ stores with a concentration-dependent delay of 45-175 s. This discharge of internal Ca2+ triggered capacitative Ca2+ entry in a concentration-dependent manner. This capacitative Ca2+ entry was not inhibited by econazole (25 microM), 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF96365; 50 microM), nifedipine (10 microM), verapamil (10 microM), diltiazem (10 microM) and cadmium (0.5 microM). Methyl 2-(phenylthio)ethyl-1,4-dihydro-2,4,6-trimethylpyridine-3,5-dicarboxylat e (PCA-4248), a platelet-activating factor (PAF) receptor antagonist, inhibited 25 microM ET-18-OCH3-induced [Ca2+]i rise in a concentration-dependent manner between 1-20 microM, with 20 microM exerting a complete block. The [Ca2+]i rise induced by ET-18-OCH3 (25 microM) was not altered when the production of inositol 1,4,5-trisphosphate (IP3) was suppressed by the phospholipase C inhibitor U73122 (2 microM), but was partly inhibited by the phospholipase D inhibitor propranolol (0.1 mM) or the phospholipase A2 inhibitor aristolochic acid (20-40 microM). In Ca2+-free medium, pretreatment with 25 microM ET-18-OCH3 completely depleted the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin-sensitive Ca2+ store. In contrast, pretreatment with thapsigargin abolished 0.1 mM ATP-induced [Ca2+]i rise without altering the ET-18-OCH3-induced [Ca2+]i rise. This suggests that ET-18-OCH3 depleted thapsigargin-sensitive Ca2+ stores and also released Ca2+ from thapsigargin-insensitive stores. The thapsigargin-insensitive stores involve mitochondria because the mitochondria uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM) induced a release of mitochondrial Ca2+ which was abolished by pretreatment with 25 microM ET-18-OCH3. ET-18-OCH3 (25 microM) induced a significant Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength confirming that ET-18-OCH3 induced capacitative Ca2+ entry. La3+ (0.1 mM) or Gd3+ (50 microM) abolished the ET-18-OCH3-induced Mn2+ quench and [Ca2+]i rise. Our data imply that ET-18-OCH3 induced a [Ca2+]i rise in MDCK cells by activating PAF receptors leading to an internal Ca2+ release followed by capacitative Ca2+ entry. Phospholipase D and phospholipase A2, but not phospholipase C, might be involved in mediating the capacitative Ca2+ entry. La3+ abolished the ET-18-OCH3-induced [Ca2+]i rise presumably by inhibiting PAF receptors.  相似文献   

3.
The effect of tamoxifen on Ca(2+) signaling and viability in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Tamoxifen evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 1 and 50 microM with an EC50 of 10 microM. The response was decreased by extracellular Ca(2+) removal. In Ca(2+)-free medium, pretreatment with 5 microM tamoxifen abolished the [Ca(2+)](i) increase induced by the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM), but pretreatment with brefeldin A (50 microM; a Ca(2+) mobilizer of the Golgi complex), thapsigargin (an inhibitor of the endoplasmic reticulum Ca(2+) pump), and carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), only partly inhibited tamoxifen-induced [Ca(2+)](i) increases. This suggests that tamoxifen released Ca(2+) from multiple pools. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 5 microM tamoxifen in Ca(2+)-free medium. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) did not alter 5 microM tamoxifen-induced Ca(2+) release. The [Ca(2+)](i) increase induced by 5 microM tamoxifen was not altered by La(3+), nifedipine, verapamil, or diltiazem. Tamoxifen (1-10 microM) decreased cell viability in a concentration- and time-dependent manner. Tamoxifen (5 microM) also increased [Ca(2+)](i) in neutrophils, bladder cancer cells, and prostate cancer cells from humans and glioma cells from rats. Collectively, it was found that tamoxifen increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol 1,4, 5-trisphosphate and also by triggering Ca(2+) influx from extracellular space. The [Ca(2+)](i) increase was accompanied by cytotoxicity.  相似文献   

4.
Nordihydroguaiaretic acid (NDGA) is widely used as a pharmacological tool to inhibit lipoxygenases; however, recent evidence suggests that it increases renal intracellular [Ca2+]i via novel mechanisms. Here the effect of NDGA on Ca2+ signaling in MG63 osteoblastic cells was explored using fura-2 as a Ca2+ indicator. NDGA (2-50 microM) increased [Ca2+]i in a concentration-dependent manner. The signal comprised an initial rise and an elevated phase over a time period of 4 min. Removing extracellular Ca2+ reduced 2-50 microM NDGA-induced signals by 62+/-2%. After incubation with 50 microM NDGA in Ca2+-free medium for several minutes, addition of 3 mM CaCl2 induced an increase in [Ca2+]i. NDGA (50 microM)-induced [Ca2+]i increases were not changed by pretreatment with 10 microM of verapamil, diltiazem, nifedipine, nimodipine and nicardipine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (1 microM) inhibited 50 microM NDGA-induced [Ca2+]i increases by 69+/-3%. Inhibition of phospholipase C with 2 microM U73122 had little effect on 50 microM NDGA-induced Ca2+ release. Several other lipoxygenase inhibitors had no effect on basal [Ca2+]i. At a concentration that did not increase basal [Ca2+]i, NDGA (1 microM) did not alter 10 microM ATP- or 1 microM thapsigargin-induced [Ca2+]i increases. Alteration of protein kinase C activity with 1 nM phorbol 12-myristate 13-acetate or 2 microM GF 109203X did not affect 50 microM NDGA-induced [Ca2+]i increases. Together, the results show that NDGA increased [Ca2+]i in osteoblasts in a lipoxygenase-independent manner, by releasing stored Ca2+ in a fashion independent of phospholipase C activity, and by causing Ca2+ influx.  相似文献   

5.
1. Effects were studied of 6-(3-dimethylaminopropionyl) forskolin (NKH477), a water-soluble forskolin derivative and of dibutyryl-cyclic AMP, a membrane-permeable cyclic AMP analogue on noradrenaline (NA)-induced Ca2+ mobilization in smooth muscle strips of the rabbit mesenteric artery. The intracellular concentration of Ca2+ ([Ca2+]i), isometric force and cellular concentration of inositol 1,4,5-trisphosphate (InsP3) were measured. 2. NA (10 microM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force in a solution containing 2.6 mM Ca2+. NKH477 (0.01-0.3 microM) attenuated the phasic and the tonic increases in both [Ca2+]i and force induced by 10 microM NA, in a concentration-dependent manner. 3. In Ca(2+)-free solution containing 2 mM EGTA with 5.9 mM K+, NA (10 microM) produced only phasic increases in [Ca2+]i and force. NKH477 (0.01 microM) and dibutyryl-cyclic AMP (0.1 mM) each greatly inhibited these increases. 4. NA (10 microM) led to the production of InsP3 in intact smooth muscle strips and InsP3 (10 microM) increased Ca2+ in Ca(2+)-free solution after a brief application of Ca2+ in beta-escin-skinned smooth muscle strips. NKH477 (0.01 microM) or dibutyryl-cyclic AMP (0.1 mM) modified neither the NA-induced synthesis of InsP3 in intact muscle strips nor the InsP3-induced Ca2+ release in skinned strips. 5. In Ca(2+)-free solution, high K+ (40 and 128 mM) itself failed to increase [Ca2+]i but concentration-dependently enhanced the amplitude of the increase in [Ca2+]i induced by 10 microM NA with a parallel enhancement of the maximum rate of rise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Riluzole is an effective neuroprotective drug. Its effect on intracellular free Ca2+ levels ([Ca2+]i) has not been explored. This study examined the effect of riluzole on [Ca2+]i in IMR32 neuroblastoma cells using fura-2 as a Ca2+ probe. Riluzole 0.1-1 mM increased [Ca2+]i in a concentration-dependent manner. Removal of extracellular Ca2+ inhibited the response by 52 +/- 5%. The [Ca2+]i increase induced by 0.2 mM riluzole was unaltered by 0.1 mM La3+ or 10 microM verapamil, but was inhibited by 51 +/- 4% by 10 microM nifedipine. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) reduced the 0.2 mM riluzole-induced Ca2+ release by 44 +/- 3%; this reduction was augmented to 66 +/- 5% by additionally depleting the Ca2+ stores in the Golgi complex with 50 microM brefeldin A. Inhibition of inositol 1,4,5-trisphosphate formation by 2 microM U73122, a phospholipase C inhibitor, did not affect Ca2+ release induced by 0.2 microM riluzole. It was concluded that the neuroprotective agent riluzole increased [Ca2+]i in IMR32 neuroblastoma cells concentration-dependently by releasing Ca2+ from multiple stores in an inositol 1,4,5-trisphosphate-independent manner and also by inducing nifedipine-sensitive Ca2+ influx.  相似文献   

7.
1. Zooxanthellatoxin-A (ZT-A), a novel polyhydroxylated long chain compound, isolated from a symbiotic marine alga Simbiodinium sp., caused aggregation in rabbit washed platelets in a concentration-dependent manner (1-4 microM), accompanied by an increase in cytosolic Ca2+ concentration ([Ca2+]i). 2. ZT-A did not cause platelet aggregation or increase [Ca2+]i in a Ca(2+)-free solution, and Cd2+ (0.1-1 mM), Co2+ (1-10 mM) and Mn2+ (1-10 mM) inhibited ZT-A-induced aggregation. SK&F96365 (1-100 microM), a receptor operated Ca2+ channel antagonist, and mefenamic acid (0.1-10 microM), a non-specific divalent cation channel antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 3. Indomethacin (0.1-10 microM), a cyclo-oxygenase inhibitor, and SQ-29548 (0.1-10 microM), a thromboxane A2 (TXA2) receptor antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 4. Methysergide (0.01-1 microM), a 5-HT2 receptor antagonist, inhibited ZT-A-induced platelet aggregation but did not affect the increase in [Ca2+]i induced by ZT-A. 5. Tetrodotoxin (1 microM), a Na+ channel blocker and chlorpheniramine (1 microM), a H1-histamine receptor antagonist, neither affected ZT-A-induced platelet aggregation nor the increase in [Ca2+]i induced by ZT-A. 6. Genistein (1-100 microM), a protein tyrosine kinase inhibitor, and staurosporine (0.01-1 microM), a protein kinase C inhibitor, also inhibited ZT-A-induced platelet aggregation. 7. The present results suggest that ZT-A elicits Ca(2+)-influx from platelet plasma membranes. The resulting increase in [Ca2+]i subsequently stimulates the secondary release of TXA2 from platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of the estrogen diethylstilbestrol (DES) on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteoblasts was explored by using fura-2 as a Ca(2+) indicator. DES at concentrations between 5--20 microM induced an immediate increase in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) of 10 microM. Removing extracellular Ca(2+) reduced the Ca(2+) signal by 70%. Pretreatment with 50 microM La(3+) or 10 microM of nifedipine, verapamil and diltiazem did not change 20 microM DES-induced [Ca(2+)](i) increases. Addition of 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 20 microM DES in Ca(2+)-free medium. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store partly inhibited 20 microM DES-induced Ca(2+) release, but addition of carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and thapsigargin together abolished DES-induced Ca(2+) release. Conversely, pretreatment with 20 microM DES abrogated CCCP- and thapsigargin-induced Ca(2+) release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 20 microM DES-induced Ca2+ release. Another estrogen 17beta-estradiol also increased [Ca(2+)](i) in a concentration-dependent manner with an EC50 of 7 microM. Together, the data indicate that in human osteoblasts, DES increased [Ca(2+)](i) via causing Ca(2+) release from both mitochondria and the endoplasmic reticulum in a phospholipase C-independent manner, and by causing Ca(2+) influx.  相似文献   

9.
The main in-vivo metabolite of amiodarone, N-desethylamiodarone (DEAM), possesses clinically relevant class-II antiarrhythmic and vasodilator activities. Vasodilation by DEAM is endothelium dependent and involves a sustained and biphasic increase in cytosolic free Ca2+ concentration ([Ca2+]i). The aims of this study were to explore the mechanisms mediating the DEAM-induced increase in [Ca2+]i in endothelial cells and to determine whether this increase in [Ca2+]i was associated with altered cell proliferation. Cultured bovine aortic endothelial cells were loaded with the Ca2+-sensitive fluorescent dye Fura-2/AM, and [Ca2+]i measured spectrofluorimetrically. DEAM increased [Ca2+]i concentration dependently (EC50 approximately 6 microM) both in the presence and absence of extracellular Ca2+. In the presence of extracellular Ca2+, the response of [Ca2+]i to DEAM (10 microM) consisted of an initial rise to a plateau followed by a second increase to micromolar levels. The initial plateau was reduced by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (200 nM) and by the antioxidant ascorbic acid (100 microM). The initial rate of rise in [Ca2+]i was decreased by blocking mitochondrial Ca2+ release with cyclosporine A (1 microM). Under Ca2+-free conditions, the response of [Ca2+]i to DEAM (10 microM) was also biphasic, consisting of an initial transient peak and a second slow increase. When extracellular Ca2+ was restored, [Ca2+]i rose to micromolar concentrations. The initial peak was abolished by thapsigargin, but not altered by ascorbic acid or cyclosporine A. Both the second [Ca2+]i increase and that due to restoring extracellular Ca2+ were reduced by ascorbic acid but not affected by thapsigargin or cyclosporine A. The DEAM-induced generation of free radicals and sustained increase in [Ca2+]i might alter cell proliferation and endothelial cell proliferation was indeed concentration-dependently inhibited by DEAM (IC50 approximately 2.5 microM). In conclusion, the DEAM-induced [Ca2+]i increase in endothelial cells is due to Ca2+ influx from the extracellular space and to Ca2+ release from endoplasmic reticulum and mitochondria and involves enhanced generation of free radicals.  相似文献   

10.
The histamine-induced biphasic increase of the intracellular free [Ca2+] ([Ca2+]i) was studied in bovine adrenal chromaffin cells using fura-2 microfluorimetry and the whole-cell patch-clamp technique. Both the rapid, transient Ca2+ rise and the sustained plateau component of elevated [Ca2+]i were independent of extracellular Ca2+. Incubation with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) blocker thapsigargin diminished histamine-induced changes in [Ca2+]i. When Ca2+ release was either stimulated by IP3 or blocked with the competitive inhibitor heparin, histamine was unable to elicit the typical Ca2+ rise. Ryanodine, tetracaine and ruthenium red, all blockers of Ca2+ release from caffeine-sensitive stores, had only minor effects on the agonist-induced Ca2+ changes. The contribution of mitochondria in shaping the histamine-induced Ca2+ increase was studied using ruthenium red and the two proton ionophores carbonylcyanide m-chlorophenylhydrazone (CCCP) and carbonylcyanide p-(trifluoromethoxy)phenylhydrazone (FCCP). Both mitochondrial uncouplers reversibly increased [Ca2+]i and induced an inward current leading to cell membrane depolarisation. In summary, these results indicate that Ca2+ from IP3-sensitive stores is essential for the generation of both the transient increase and secondary elevation in [Ca2+]i.  相似文献   

11.
Riluzole is a drug used in the treatment of amyotrophic lateral sclerosis; however, its in vitro action is unclear. In this study, the effect of riluzole on intracellular Ca2+ concentration ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells was investigated using the Ca2+ -sensitive fluorescent dye, fura-2. Riluzole (100-500 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50 = 150 microM). Some 40 and 50% of this [Ca2+]i increase was prevented by the removal of extracellular Ca2+ and the addition of La3+, respectively, but was unchanged by dihydropyridines, verapamil and diltiazem. In Ca2+ -free medium, thapsigargin - an inhibitor of the endoplasmic reticulum (ER) Caz+ -ATPase--caused a monophasic [Ca2+]i increase, after which the increasing effect of riluzole on [Ca2+]i was attenuated by 70%; in addition, pre-treatment with riluzole abolished thapsigargin-induced [Ca2+]i increases. U73122, an inhibitor of phospholipase C (PLC), abolished ATP (but not riluzole)-induced [Ca2+]i increases. At concentrations of 250 and 500 microM, riluzole killed 40 and 95% cells, respectively. The cytotoxic effect of riluzole (250 microM) was unaltered by pre-chelating cytosolic Ca2+ with BAPTA. Collectively, in MDCK cells, riluzole rapidly increased [Ca2+]i by stimulating extracellular Ca2+ influx via an La3+ -sensitive pathway and intracellular Ca2+ release from the ER via, as yet, unidentified mechanisms. Furthermore, riluzole caused Ca2+ -unrelated cytotoxicity in a concentration-dependent manner.  相似文献   

12.
1. The mechanisms underlying the vasodilatation induced by (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2, 2-dimethyl-2H-1-benzopyran-3-ol (Y-26763) were investigated by measuring membrane potential, intracellular Ca2+ concentration ([Ca2+]i) and isometric force in smooth muscle cells of the rabbit mesenteric artery. 2. Y-26763 (0.03-1 microM) concentration-dependently hyperpolarized the membrane and glibenclamide (1-10 microM) inhibited this hyperpolarization. Noradrenaline (NA, 10 microM) depolarized the membrane and generated spike potentials. Y-26763 (1 microM) inhibited these NA-induced electrical responses. 3. In thin smooth muscle strips in 2.6 mM Ca2+ containing (Krebs) solution, 10 microM NA produced a large phasic, followed by a small tonic increase in [Ca2+]i and force with associated oscillations. In Ca(2+)-free solution (containing 2 mM EGTA), NA produced only phasic increases in [Ca2+]i and force. In ryanodine-treated strips, NA could not produce the phasic increases in [Ca2+]i and force even in the presence of 2.6 mM Ca2+, suggesting that ryanodine functionally removes the NA-sensitive intracellular storage sites. 4. Nicardipine (1 microM) partly inhibited the NA-induced tonic increases in [Ca2+]i and force but had no effect on either the resting [Ca2+]i or the NA-activated phasic increases in [Ca2+]i and force. By contrast, Y-26763 (10 microM) lowered the resting [Ca2+]i and also inhibited both the phasic and the tonic increases in [Ca2+]i and force induced by NA. All these actions of Y-26763 were inhibited by glibenclamide (10 microM). 5. In ryanodine-treated strips, nicardipine partly, but Y-26763 completely inhibited the NA-induced increases in [Ca2+]i, suggesting that Y-26763 inhibits both the nicardipine-sensitive and -insensitive Ca2+ influxes activated by NA. Y-26763 attenuated the phasic increase in [Ca2+]i and force in a Ca(2+)-free solution containing 5.9 mM K+, but not in one containing 50 mM K+, suggesting that Y-26763 inhibits NA-induced Ca2+ release, probably as a result of its membrane hyperpolarizing action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. The effects of P2 agonists, adenosine-5'-triphosphate (ATP), alpha, beta-methylene-adenosine-5'-triphosphate (alpha, beta-me-ATP) and adenosine 5-O-(3-thiotriphosphate) (ATP gamma S), on the intracellular free Ca2+ level ([Ca2+]i), myosin light chain (MLC) phosphorylation and force of contraction were examined in vascular smooth muscle of rat aorta. 2. ATP (0.1 microM-1 mM), alpha, beta-me-ATP (0.1-100 microM) and ATP gamma S (1-100 microM) induced transient increases followed by sustained increase in [Ca2+]i. The effects of these agonists were concentration-dependent. Compared with the effects of a high concentration of KCl (17.5-72.4 mM), the contractions induced by these P2 purinoceptor agonists were smaller at a given [Ca2+]i. 3. In the absence of extracellular Ca2+ (with 0.5 mM EGTA), ATP gamma S (10 microM) induced large transient increase in [Ca2+]i with only small contraction in Ca(2+)-free solution. In contrast, alpha, beta-me-ATP (10 microM) induced only a very small increase in [Ca2+]i and contraction. 4. ATP (1 mM), alpha, beta-me-ATP (10 microM) and ATP gamma S (10 microM), added during stimulation with 0.1 microM noradrenaline, induced additional and transient increases in [Ca2+]i which were also not associated with contraction. 5. High K+ (72.4 mM) increased MLC phosphorylation with a similar time course to that of the increase in [Ca2+]i (peak phosphorylation was 56% when [Ca2+]i increased to 100%). In contrast, the time course of the increase in MLC phosphorylation due to ATP (1 mM) did not coincide with that of the large increases in [Ca2+]i; MLC phosphorylation increased to only 31% when [Ca2+]i increased to 163%. The MLC phosphorylation due to alpha, beta-me-ATP (10 microM) and ATP gamma S (10 microM), measured at peak [Ca2+]i, were only 19% and 14%, respectively, irrespective of a large increase in [Ca2+]i (138% and 188%, respectively). 6. The absence of a clear relationship between P2-purinoceptor-mediated increase in [Ca2+]i (either by Ca2+ influx or Ca2+ release) and MLC phosphorylation or force generation appears to imply that elevation in [Ca2+]i does not contribute to these responses.  相似文献   

14.
The effect of fluoxetine on Ca2+ signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca2+ probe. Fluoxetine increased [Ca2+]i concentration-dependently between 5 microM and 200 microM with an EC50 value of 40 microM. The response was reduced by external Ca2+ removal by 30%40%. In Ca2+-free medium pretreatment with 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, abolished 100 microM fluoxetine-induced Ca2+ release. Addition of 3 mM Ca2+ to Ca2+-free medium increased [Ca2+]i when cells were pretreated with 100 microM fluoxetine. Suppression of 1,4,5-trisphosphate (IP3) formation by 2 microM U73122 (a phospholipase C inhibitor) did not affect 100 microM fluoxetine-induced Ca2+ release. Fluoxetine (5-100 microM) also increased [Ca2+]i in neutrophils, prostate cancer cells and bladder cancer cells from human and rat glioma cells.  相似文献   

15.
The effect of Zn2+ on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated by measuring the changes in the fluorescence of the Ca2+-sensitive dye fura-2. Zn2+ significantly increased cytoplasmic free Ca2+ levels ([Ca2+]i) at concentrations of 2-100 microM. The maximum response was obtained at concentrations of 25-100 microM. The [Ca2+]i rise induced by 100 microM Zn2+ consisted of a gradual rise and a plateau phase, and was primarily mediated by La3+-sensitive extracellular Ca2+ influx because the [Ca2+]i rise was abolished by pretreatment with 100 microM La3+ or removal of extracellular Ca2+, and that Zn2+ induced Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength which was prevented by pretreatment with 100 microM La3+. Pretreatment with 100 microM Zn2+ for 220 s did not reduce the [Ca2+]i rise induced by the endoplasmic reticulum (ER) Ca2+ pump inhibitor, thapsigargin, suggesting that Ca2+ release from the ER played a minor role in the Zn2+-induced [Ca2+]i rise. Zn2+ (100 microM) nearly abolished the capacitative Ca2+ entry induced by ATP (100 microM). We also investigated the effect of Zn2+ pretreatment on the [Ca2+]i rise induced by ATP. Zn2+ (100 microM) affected ATP-induced [Ca2+]i rise by abolishing capacitative Ca2+ entry and increasing [Ca2+]i on its own without altering Ca2+ release from intracellular sources. The effect of Zn2+ on [Ca2+]i was dissociated from changes in membrane potential.  相似文献   

16.
The effect of the phospholipase A2 inhibitor palmitoyl trifluoromethyl ketone (PACOCF3) on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was examined using fura-2 as the fluorescent Ca2+ indicator. At a concentration of 20 microM, PACOCF3 did not change basal cytosolic free calcium concentrations ([Ca2+]i), but at concentrations of 50-250 microM PACOCF3 induced an increase in [Ca2+]i by activating extracellular Ca2+ entry which was partly suppressed by 50 microM La3+. The effect of PACOCF3 was abolished by removal of extracellular Ca2+. PACOCF3 (10 microM) enhanced both the peak value and the area under the curve of the [Ca2+]i increase induced by 10 microM ATP and 1 microM bradykinin by potentiating extracellular Ca2+ influx without affecting internal Ca2+ release. Several other phospholipase A2 inhibitors had no effect on basal [Ca2+]i or agonist-induced [Ca2+]i increases. Collectively, the results suggest that PACOCF3 alters Ca2+ signaling in renal tubular cells in a manner independent of phospholipase A2 inhibition.  相似文献   

17.
Ca2+ influx through voltage sensitive Ca2+ channels produces a rise in intracellular-free Ca2+, [Ca2+]i, that serves as a trigger for the release of neurotransmitters. We measured [Ca2+]i in primary cultures of superior cervical ganglion (SCG) neurons of the rat using 2-(6-(bis(carboxymethyl)amino)-5-methylphenoxy)ethoxy-2-benzofuranyl)5- oxazole carboxylic acid-based microfluorimetry. Recordings were obtained from either single or small bundles of neuronal processes and compared with recordings from single neuronal cell bodies. Depolarization with 50 mM K+ produced a rapid increase in [Ca2+]i consisting of both transient and sustained components. This response pattern was seen in recordings from both the soma and processes of SCG neurons. The entire response could be reversibly blocked by 30 microM La3+. Nitrendipine, 1 microM, inhibited the response by 52 +/- 7% and 49 +/- 7% in the soma and processes, respectively. The dihydropyridine (DHP) agonist 1,4-dihydro-2,-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylic acid methyl ester enhanced depolarization-induced increases in [Ca2+]i in both regions of the neuron. The transient component of the response was greatly reduced by predepolarization, and the remaining sustained component was inhibited 77 +/- 7% by nitrendipine (1 microM). These data demonstrate that both DHP-sensitive and -insensitive Ca2+ channels are present in processes as well as cell bodies of SCG neurons. The importance of these findings is discussed in relation to the insensitivity of neurotransmitter release from sympathetic neurons to DHP antagonists.  相似文献   

18.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in human hepatoma cells (HA22/VGH) has been investigated. NDGA (5-50 microM) increased [Ca(2+)](i) concentration-dependently. The [Ca(2+)](i) increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced 10-50 microM NDGA induced [Ca(2+)](i) signals by 45+/-5%. Consistently, the 50 microM NDGA-induced [Ca(2+)](i) increase in Ca(2+)-containing medium was reduced by 41+/-2% by 10 microM of La(3+), nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with 20 microM NDGA for 6 min abolished the [Ca(2+)](i) increase induced by the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM). Conversely, 20 microM NDGA failed to increase [Ca(2+)](i) after 1 microM thapsigargin had depleted the endoplasmic reticulum Ca(2+) store. Inhibition of phospholipase C with 2 microM U73122 had little effect on 20 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)](i). Together, the data suggest that NDGA increased [Ca(2+)](i) in hepatocytes in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum and causing Ca(2+) influx.  相似文献   

19.
We investigated the effects of ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine], a myosin light chain kinase (MLCK) inhibitor, on intracellular Ca2+ concentration ([Ca2+]i), contraction induced by high K+ and an agonist, and capacitative Ca2+ entry in fura-2-loaded guinea pig tracheal smooth muscle. ML-9 inhibited both the increase in [Ca2+]i and the contraction induced by 60 mM K+, 1 microM methacholine or 1 microM thapsigargin, an inhibitor of the sarcoplasmic reticulum Ca2+-ATPase. However, another MLCK inhibitor, wortmannin (3 microM), inhibited the contraction elicited by these stimuli without affecting [Ca2+]i. Under the condition that the thapsigargin-induced contraction was fully suppressed by 3 microM wortmannin, 30 microM ML-9 caused a further decrease in [Ca2+]i. The inhibitory effects of ML-9 on [Ca2+]i and the contraction elicited by methacholine were similar to those of SKF-96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), a Ca2+ channel blocker. These results indicate that ML-9 acts as a potent inhibitor of Ca2+-permeable channels independently of MLCK inhibition in tracheal smooth muscle.  相似文献   

20.
The effect of the antidepressant fluoxetine on Ca2+ signaling in cultured cells was largely unknown. The effect of various concentrations of fluoxetine on [Ca 2+] i in populations of bladder female transitional cancer (BFTC) cells was evaluated by using fura-2 as a Ca2+ probe. Fluoxetine increased [Ca 2+] i concentration dependently (20-100 microM) with an EC50 value of 30 microM. The response was inhibited by 50-60% on extracellular Ca2+ removal. In Ca2+ -free medium, pretreatment with 1 microM thapsigargin (an inhibitor of the endoplasmic reticulum Ca2+ pump) abolished 50 microM fluoxetine-induced Ca2+ release; whereas pretreatment with fluoxetine did not alter the thapsigargin-induced Ca2+ response. Addition of 3 mM Ca2+ increased [Ca 2+] i after pretreatment with 50 microM fluoxetine in Ca2+ -free medium, suggestive of fluoxetine-induced capacitative Ca2+ entry. Suppression of inositol 1,4,5-trisphosphate formation by 2 microM U73122 (a phospholipase C inhibitor) did not affect 50 microM fluoxetine-induced Ca2+ release. Collectively, this study shows that fluoxetine increased [Ca 2+] i in bladder cancer cells in a concentration-dependent fashion, by releasing Ca2+ from thapsigargin-sensitive Ca2+ stores in an IP3-independent manner, and by inducing Ca2+ influx from extracellular medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号