首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The aim of this study was to assess whether enzymatically isolated chondrons from normal adult articular cartilage could be used as a model for the onset of osteoarthritis, by comparison with mechanically extracted chondrons from osteoarthritic cartilage. Enzymatically isolated chondrons (EC) were cultured for 4 weeks in alginate beads and agarose gel constructs. Samples were collected at days 1 and 2, and weekly thereafter. Samples were immunolabelled for types II and VI collagen, keratan sulphate and fibronectin and imaged using confocal microscopy. Mechanically extracted chondrons (MC) were isolated, immunohistochemically stained for type VI collagen and examined by confocal microscopy. In culture, EC showed the following characteristics: swelling of the chondron capsule, cell division within the capsule and remodelling of the pericellular microenvironment. This was followed by chondrocyte migration through gaps in the chondron capsule. Four types of cell clusters formed over time in both alginate beads and agarose constructs. Cells within clusters exhibited quite distinct morphologies and also differed in their patterns of matrix deposition. These differences in behaviour may be due to the origin of the chondrocytes in the intact tissue. The behaviour of EC in culture paralleled the range of morphologies observed in MC, which presented as single and double chondrons and large chondron clusters. This preliminary study indicates that EC in culture share similar structural characteristics with MC isolated from osteoarthritic cartilage, confirming that some processes that occur in osteoarthritis, such as pericellular remodelling, take place in EC cultures. The study of EC in culture may therefore provide an additional tool to investigate the mechanisms operating during the initial stages of osteoarthritis. Further investigation of specific osteoarthritic phenotype markers will, however, be required in order to validate the value of this model.  相似文献   

2.
Together, the chondrocyte and its pericellular matrix have been collectively termed the chondron. Current opinion is that the pericellular matrix has both protective and signalling functions between chondrocyte and extracellular matrix. Formation of a native chondrocyte pericellular matrix or chondron structure might therefore be advantageous when tissue engineering a functional hyaline cartilage construct. The presence of chondrons has not been previously described in cartilage engineered on a scaffold. In this paper, we describe a modified immunochemical method to detect collagen VI, a key molecular marker for the pericellular matrix, and an investigation of type VI collagen distribution in engineered hyaline cartilage constructs. Cartilage constructs were engineered from adult human or bovine hyaline chondrocytes cultured on sponge or nonwoven fiber based HYAFF 11 scaffolds. Type VI collagen was detected in all constructs, but a distinctive, high-density, chondron-like distribution of collagen VI was present only in constructs exhibiting additional features of hyaline cartilage engineered using nonwoven HYAFF 11. Chondron structures were localized in areas of the extracellular matrix displaying strong collagen II and GAG staining of constructs where type II collagen composed a high percentage (over 65%) of the total collagen.  相似文献   

3.
NG2/human melanoma proteoglycan (HMPG) is a chondroitin sulphate proteoglycan (CSPG), expressed by chondrocytes in fetal and in normal and osteoarthritic (OA) adult articular cartilage. NG2/HMPG is a receptor for extracellular matrix proteins, including type VI collagen, and regulates beta1 integrin binding to fibronectin. This study was undertaken to identify whether NG2/HMPG had similar activities in human articular chondrocytes (HACs). Normal and OA adult HAC adhesion to fibronectin, type II or type VI collagen was assessed using a methylene blue assay. The requirement for integrins, NG2/HMPG, and integrin-associated signalling molecules was investigated using anti-beta1 integrin and anti-HMPG antibodies and pharmacological inhibitors of signalling molecules. The adhesion of normal and OA HACs to fibronectin, type II and type VI collagen was beta1 integrin-dependent. Normal HAC adhesion to type VI collagen was stimulated by anti-HMPG antibodies. This effect was inhibited by pertussis toxin. Anti-HMPG antibodies had no effect on OA chondrocyte adhesion to type VI collagen, or on normal and OA cell adhesion to fibronectin and type II collagen. The results show that NG2/HMPG modulates integrin-mediated interactions of normal HACs with type VI collagen. Loss of this activity may be of importance in the progression of osteoarthritis.  相似文献   

4.
Collagen type II, chondroitin 4-sulfate, laminin and fibronectin are major components of cartilage matrix. It is important to know their distribution patterns to evaluate relationships between cartilage cells and surrounding cartilage matrix. In the present study, we investigated localization patterns of these macromolecules in human nasal septal cartilage by immunohistochemical methods. Samples of human nasal septal cartilage were obtained from patients with nasal septum deviations who underwent septoplastic operation and were prepared for immunohistochemical examination. Distribution patterns of cartilage matrix macromolecules correlated with those found in other cartilage tissues. Diffuse staining of collagen type II was found in the cartilage matrix, chondroitin 4-sulfate immunostaining was present in the cytoplasm and like a pericellular ring around chondrocytes. Laminin immunostaining was found in the cytoplasm of chondrocytes, and fibronectin was localized in the pericellular matrix and in capsules of human nasal septal cartilage. Moreover, fibronectin was also detected at high levels in the interconnecting segments between adjacent chondrons. In conclusion, similar localisation patterns of the components investigated in human septal cartilage as in other tissues indicate that these macromolecules may play a role in both cell-matrix adhesion and matrix-matrix cohesion in the pericellular microenvironment surrounding nasal septal cartilage chondrocytes as in other cartilage tissues.  相似文献   

5.
Articular cartilage that lines the surface of long bones is a multilayered material. The superficial layer consists of collagen fibrils and chondrocytes that run parallel to the joint surface. In the deeper layers, the collagen fibrils are more randomly arranged and support vertical units termed chondrons containing rows of chondrocytes. In the deepest layers, the collagen fibrils run almost vertically and ultimately insert into the underlying subchondral bone. Osteoarthritis (OA) is a disease that affects articular cartilage and is characterized by enzymatic and mechanical breakdown of the extracellular matrix, leading to cartilage degeneration, exposure of subchondral bone, pain, and limited joint motion. Changes in mechanical properties of articular cartilage associated with OA include decreases in modulus and ultimate tensile strength. These changes parallel the changes observed after enzymatic degradation of either collagen or proteoglycans in cartilage. Results of recent viscoelastic studies on articular cartilage suggest that the elastic modulus of collagen and fibril lengths decrease in OA and are associated with a loss of the superficial zone and a decreased ability of articular cartilage to store elastic energy during locomotion. It is suggested that osteoarthritic changes to cartilage involve enzymatic degradation of matrix components and fibril fragmentation that is promoted by subsequent mechanical loading.  相似文献   

6.
The purpose of this study was to evaluate the morphologic and biochemical behavior and activity of human chondrocytes taken from nonarthritic and osteoarthritic cartilage and seeded on a three-dimensional matrix consisting of collagen types I, II, and III. Human articular chondrocytes were isolated from either nonarthritic or osteoarthritic cartilage of elderly subjects, and from nonarthritic cartilage of an adolescent subject, seeded on collagen matrices, and cultured for 12 h, 7 days, and 14 days. Histological analysis, immunohistochemistry, and biochemical assays for glycosaminoglycans (GAGs) and DNA content were performed for cell-seeded and unseeded matrices. Chondrocytes of nonarthritic cartilage revealed a larger number of spherical cells, consistent with a chondrocytic phenotype. The biochemical assay showed a net increase in GAG content in nonarthritic chondrocytes, whereas almost no GAGs were seen in osteoarthritic cells. The DNA results suggest that more osteoarthritic cells than chondrocytes from nonarthritic cartilage attached to the matrix within the first week. Human articular chondrocytes isolated from osteoarthritic cartilage seem to have less bioactivity after expansion and culture in a sponge consisting of type I, II, and III collagen compared with chondrocytes from nonarthritic cartilage.  相似文献   

7.
Healing capacity of cartilage is low. Thus, cartilage defects do not regenerate as hyaline but mostly as fibrous cartilage which is a major drawback since this tissue is not well adapted to the mechanical loading within the joint. During in vitro cultivation in monolayers, chondrocytes proliferate and de-differentiate to fibroblasts. In three-dimensional cell cultures, de-differentiated chondrocytes could re-differentiate toward the chondrogenic lineage and re-express the chondrogenic phenotype. The objective of this study was to characterize the mesenchymal stem cell (MSC) potential of human chondrocytes isolated from articular cartilage. Furthermore, the differentiation capacity of human chondrocytes in three-dimensional cell cultures was analyzed to target differentiation direction into hyaline cartilage. After isolation and cultivation of chondrogenic cells, the expression of the MSC-associated markers: cluster of differentiation (CD)166, CD44, CD105, and CD29 was performed by flow cytometry. The differentiation capacity of human chondrocytes was analyzed in alginate matrix cultured in Dulbecco’s modified eagle medium with (chondrogenic stimulation) and without (control) chondrogenic growth factors. Additionally, the expression of collagen type II, aggrecan, and glycosaminoglycans was determined. Cultivated chondrocytes showed an enhanced expression of the MSC-associated markers with increasing passages. After chondrogenic stimulation in alginate matrix, the chondrocytes revealed a significant increase of cell number compared with unstimulated cells. Further, a higher synthesis rate of glycosaminoglycans and a positive collagen type II and aggrecan immunostaining was detected in stimulated alginate beads. Human chondrocytes showed plasticity whilst cells were encapsulated in alginate and stimulated by growth factors. Stimulated cells demonstrated characteristics of chondrogenic re-differentiation due to collagen type II and aggrecan synthesis.  相似文献   

8.
背景:关节软骨损伤可以影响软骨细胞功能,诱发创伤性骨关节炎。 目的:观察关节软骨损伤后体外培养的软骨细胞功能的变化。 方法:通过酶消化法分离培养高能量、低能量撞击后和正常兔膝关节透明软骨细胞,观察创伤能量对软骨细胞生存能力的影响;检测软骨细胞合成蛋白多糖和Ⅱ型胶原能力,检测细胞中白细胞介素1β和核转录因子κB mRNA表达水平,检测细胞合成白细胞介素1β和基质金属蛋白酶1的表达。 结果与结论:高能量和低能量关节软骨损伤后,软骨细胞的存活率下降,原代细胞的贴壁细胞数量减少,贴壁时间延长,生长曲线下移,细胞甲苯胺蓝染色异染反应减弱,Ⅱ型胶原免疫组化染色强度减弱,软骨细胞中白细胞介素1β和核转录因子κB mRNA表达水平上升,细胞培养液中白细胞介素1β和基质金属蛋白酶1的质量浓度升高,其中高能量组效果更为显著(P < 0.05)。说明关节软骨损伤后软骨细胞的功能受到影响,受损程度与创伤强度及炎性细胞因子的表达相关。  相似文献   

9.
Chondrocyte phenotypes on different extracellular matrix monolayers   总被引:11,自引:0,他引:11  
Chondrocytes undergo a process of dedifferentiation in monolayer culture that is characterized by a transition to a fibroblast-like phenotype. This behavioral change poses a challenge for tissue-engineered cartilage constructs, as approaches using autologous cells require expansion in vitro. Because chondrocytes express a variety of integrin receptors specific to different adhesive proteins, we hypothesized that chondrocytes expanded on various underlying protein monolayers would have different phenotypic responses. Bovine articular chondrocytes were cultured for up to 2 weeks on tissue culture plastic, fibronectin, collagen type I or collagen type II substrate in the presence or absence of ascorbate. Contrary to our hypothesis, the extracellular matrix protein substrates used in this study did not significantly alter the changes in chondrocyte morphology, gene expression, matrix formation, or cytoskeletal organization. Cells on all substrates assembled equivalent matrices, which may have subsequently regulated cell behavior. In cultures with ascorbate, populations of round and spread cells emerged after 1 week, with round cells expressing collagen type II and the differentiated phenotype and spread cells dedifferentiating. In cultures without ascorbate, chondrocytes rapidly adhered and spread onto organized fibronectin matrices via the 5β1 integrin, which has been associated with survival and proliferation of chondrocytes in vitro. These findings indicate that expanding chondrocytes on protein monolayers may not be an effective solution to preventing dedifferentiation and improving autologous chondrocyte transplantation.  相似文献   

10.
An agarose gel matrix was utilized to grow chondrocytes from human donors of various ages in cell culture. The chondrocytes produced the pericellular matrix characteristic for such cells and synthesized collagen type II as well as glyco-saminoglycans. The latter exhibit the typical distribution pattern of the respective articular cartilage matrix. The electron-microscopic appearance of the cultured chondrocytes closely resembles that of chondrocytes in sections of the original cartilage.  相似文献   

11.
Normal articular cartilage is composed of chondrocytes embedded within an extracellular matrix (ECM). The patterns of integrin expression determine the adhesive properties of cells by modulating interactions with specific ECMs. Our hypothesis is that chondrocyte integrin expression changes in response to changes in their microenvironment. Porcine articular chondrocytes were encapsulated in alginate beads with several ECMs (collagen type I, collagen type II and fibronectin) for 7 days, subjected to RT-PCR, western blot analysis and immunofluorescence staining. It was found that chondrocytes in different ECMs showed different patterns of integrin expression. Integrin alpha5 and beta1 were strongly expressed in all groups, but integrin alpha1 was strongly expressed only in collagen type I and fibronectin conjugated alginate beads, and integrin alpha2 was strongly expressed only in collagen type II conjugated alginate beads. These findings suggest that the addition of different ECMs to chondrocytes can modulate the patterns and levels of integrin expression possibly through a feedback mechanism. These finding suggest that the modulation of ECM interactions may play a critical role in the pathogenesis of osteoarthritis.  相似文献   

12.
Mucopolysaccharidosis (MPS) Type VI (Maroteaux-Lamy Disease) is the lysosomal storage disease characterized by deficient arylsulfatase B activity and the resultant accumulation of dermatan sulfate-containing glycosaminoglycans (GAGs). A major feature of this and other MPS disorders is abnormal cartilage and bone development leading to short stature, dysostosis multiplex, and degenerative joint disease. To investigate the underlying cause(s) of degenerative joint disease in the MPS disorders, articular cartilage and cultured articular chondrocytes were examined from rats and cats with MPS VI. An age-progressive increase in the number of apoptotic chondrocytes was identified in the MPS animals by terminal transferase nick-end translation (TUNEL) staining and by immunohistochemical staining with anti-poly (ADP-ribose) polymerase (PARP) antibodies. Articular chondrocytes grown from these animals also released more nitric oxide (NO) and tumor necrosis factor alpha (TNF-alpha) into the culture media than did control chondrocytes. Notably, dermatan sulfate, the GAG that accumulates in MPS VI cells, induced NO release from normal chondrocytes, suggesting that GAG accumulation was responsible, in part, for the enhanced cell death in the MPS cells. Coculture of normal chondrocytes with MPS VI cells reduced the amount of NO release, presumably because of the release of arylsulfatase B by the normal cells and reuptake by the mutant cells. As a result of the enhanced chondrocyte death, marked proteoglycan and collagen depletion was observed in the MPS articular cartilage matrix. These results demonstrate that MPS VI articular chondrocytes undergo cell death at a higher rate than normal cells, because of either increased levels of dermatan sulfate and/or the presence of inflammatory cytokines in the MPS joints. In turn, this leads to abnormal cartilage matrix homeostasis in the MPS individuals, which further exacerbates the joint deformities characteristic of these disorders.  相似文献   

13.
背景:采用组织工程技术再生和重建软骨是目前修复软骨组织缺损效果最好、最有应用前景的方法。 目的:以体外培养的软骨细胞和交联透明质酸钠为支架材料,开发一套体外构建组织工程软骨的完整方案。 方法:分离新西兰兔膝关节软骨细胞,制成细胞悬液滴加于交联透明质酸钠支架上,体外复合培养21 d,提取RNA进行RT-PCR检测,制备冰冻切片进行显微观察和免疫组织化学观察。 结果与结论:软骨细胞接种于交联透明质酸钠支架材料后,可贴附于支架上生长,并且大量细胞聚集成团,在支架材料的纤维间隙中生长或呈单层细胞附着于支架材料纤维。细胞-支架复合物表达软骨组织特异性蛋白聚糖基因和Ⅱ型胶原α1基因,以及软骨组织特异性蛋白Ⅱ型胶原蛋白,可维持软骨细胞表型。表明培养的细胞-支架复合物在体外培养可形成软骨细胞外基质,有望获得组织工程软骨组织。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

14.
Adult chondrocytes are less chondrogenic than immature cells, yet it is likely that autologous cells from adult patients will be used clinically for cartilage engineering. The aim of this study was to compare the postexpansion chondrogenic potential of adult nasal and articular chondrocytes. Bovine or human chondrocytes were expanded in monolayer culture, seeded onto polyglycolic acid (PGA) scaffolds, and cultured for 40 days. Engineered cartilage constructs were processed for histological and quantitative analysis of the extracellular matrix and mRNA. Some engineered constructs were implanted in athymic mice for up to six additional weeks before analysis. Using adult bovine tissues as a cell source, nasal chondrocytes generated a matrix with significantly higher fractions of collagen type II and glycosaminoglycans as compared with articular chondrocytes. Human adult nasal chondrocytes proliferated approximately four times faster than human articular chondrocytes in monolayer culture, and had a markedly higher chondrogenic capacity, as assessed by the mRNA and protein analysis of in vitro-engineered constructs. Cartilage engineered from human nasal cells survived and grew during 6 weeks of implantation in vivo whereas articular cartilage constructs failed to survive. In conclusion, for adult patients nasal septum chondrocytes are a better cell source than articular chondrocytes for the in vitro engineering of autologous cartilage grafts. It remains to be established whether cartilage engineered from nasal cells can function effectively when implanted at an articular site.  相似文献   

15.
The re-differentiation capacities of human articular and chick embryo sternal chondrocytes were evaluated by culture on HYAFF-11 and its sulphate derivative, HYAFF-11-S, polymers derived from the benzyl esterification of hyaluronate. Initial results showed that the HYAFF-11-S material promoted the highest rate of chondrocyte proliferation. RNA isolated from human and chick embryo chondrocytes cultured in Petri dishes, HYAFF-11 or HYAFF-11-S were subjected to semi-quantitative RT-PCR analyses. Human collagen types I, II, X, human Sox9 and aggrecan, chick collagen types I, II, IX and X were analysed. Results showed that human collagen type II mRNA expression was upregulated on HYAFF-11 biomaterials. In particular, a high level of collagen type IIB expression was associated with three-dimensional culture conditions, and the HYAFF-11 material was the most supportive for human collagen type X mRNA expression. Human Sox9 mRNA levels were constantly maintained in monolayer cell culture conditions over a period of 21 days, while these were upregulated when chondrocytes were cultured on HYAFF-11 and HYAFF-11S. Furthermore, chick collagen type IIA and IIB mRNA expression was detected after only 7 days of HYAFF-11 culture. Chick collagen type IX mRNA expression decreased in scaffold cultures over time. Histochemical staining performed in engineered cartilage revealed the presence of a de novo synthesized glycosaminoglycan-rich extracellular matrix; immunohistochemistry confirmed the deposition of collagen type II. This study showed that the three-dimensional HYAFF-11 culture system is both an effective chondrocyte delivery system for the treatment of articular cartilage defects, and an excellent in vitro model for studying cartilage differentiation.  相似文献   

16.
The regenerative capacity of hyaline articular cartilage is limited. Thus, lesions of this tissue are a proarthrotic factor, and up to now the conservative treatment of cartilage lesions and arthrosis does not yield satisfying results. Therefore, autologous transplantation of articular chondrocytes is being investigated in a variety of different assays. The aim of our study was to create a mechanically stable cell-matrix implant with viable and active chondrocytes which could serve to fill out articular lesions created in the knees of sheep. For this purpose, articular cartilage was collected from knee lesions, chondrocytes were liberated enzymatically and seeded in culture flasks and cultured till confluency. Cells were then trypsinized and grown on a type I/III collagen matrix (Chondro-Gide™, Geistlich Biomaterials, Wolhusen, Switzerland) for 3, 6 and 10 days before being fixed and embedded for electron microscopy by routine methods. Scanning electron microscopy was performed after dehydration in acetone, critical point drying and sputter-coating with gold-paladium.

Light microscopically, clusters of chondrocytes can be seen on the surface of the matrix with a few cells growing into the matrix. Transmission electron microscopic photographs yield a rather differentiated chondrocyte-like appearance, which is evidence of a matrix-induced redifferentiation after dedifferentiation during the growth period in the culture flasks. Scanning electron microscopic results show large, flattened chondrocytes without signs of differentiation on plastic, whereas chondrocytes grown on the Chondro-Gide™ sponge show a more roundish aspect wrapping firmly around the collagen fibrils, exhibiting numerous contacts with the matrix. This cell-matrix biocomposite can now serve to fill out articular cartilage lesions created in the knees of sheep.  相似文献   


17.
18.
Summary Synthesis of collagen by chondrocytes was studied by immunofluorescence using antibodies specific for type I, II and III collagen. The following tissues and culture conditions were chosen for this immunohistological study: normal articular cartilage, epiphyseal growth cartilage, cartilage undergoing osteoarthrotic degeneration, suspension culture and monolayer culture. While type II collagen is the unique collagen all over hyaline cartilage, type I collagen is produced by hypertrophic chondrocytes in the growth plate. In addition, chondrocytes in osteoarthrotic areas of articular cartilage synthesize type I collagen. Under in vitro culture conditions, chondrocytes initially produce type II collagen and synthesize later on type I collagen. The change of synthesis from type II to type I collagen is more rapid in monolayer than in suspension culture. It is concluded that the presence of matrix compounds and the cellmatrix interaction as well are necessary to maintain synthesis of type II collagen in chondrocytes. Alterations in the cell-matrix interactions are shown to occur in the hypertrophic zone of the epiphyseal growth plate, in cartilage undergoing osteoarthrotic degeneration as well as in chondrocytes grown in culture. Thus, change in the control of gene activity may subsequently lead to change in collagen synthesis. It is possible that the synthesis of type I collagen, which cannot fulfil the physiological function of a structural element in cartilageneous tissue, is a crucial factor in the process of osteoarthrosis.
Abbreviations EDTA Ethylendiaminetetraacetate - FITC Fluoresceine isothiocyanate This investigation was supported by grants of the Deutsche Forschungsgemeinschaft, Mu 378/4, Re 388/1 and SFB 51  相似文献   

19.
The development of the articular cartilage of the rabbit knee joint from the 17-day fetus to the 2-year adult rabbit has been examined. At 17 days, the developing femur and tibia are separated by the interzone. Cavitation occurs around 25 days; the cells of the intermediate layer flatten and move onto those of the chondogenous layers to create the articular surfaces. After birth, growth of the cartilage is mainly the result of matrix production. Ossification of the epiphyses is complete by 6 weeks postpartum. Horizontal zones can be distinguished in the articular cartilage; the superficial cells are aligned parallel to the surface, but in the deep layers the cells are in columns. The tidemark is first seen at 12–14 weeks. The matrix of the interzone in the 17-day fetus contains types I, III and V collagens, but no type II. After cavitation at 25 days, the surface layer of the articular cartilage still contains type I, but no type II collagen. From 6 weeks postnatal onwards, type II collagen is present throughout the cartilage and type I disappears. Type III collagen is initially in the interterritorial matrix, but later it is mainly pericellular. Type V collagen is pericellular both in the chondrogenous layers and later in the articular cartilage, but is not present in the epiphyseal cartilage below. From 6 weeks onwards, types III and V collagens create a capsule around all the chondrocytes above the tidemark. The relationship of types V and XI collagens is discussed. It is concluded that the articular chondrocytes form a unique subset of cells from the earliest stages of joint formation in the fetal rabbit.  相似文献   

20.
Human articular cartilage type II collagen (h coll.II) was purified and used to develop a radioimmunoassay. The sequential saturation procedure allowed a sensitivity of 3 ng/tube. The intra and between assay coefficients of variation were less than 10 and 20% respectively in the linear part of the curve. The assay was highly specific for native human articular type II collagen. There was no cross-reactivity with other constituents of cartilage: human proteoglycans, fibronectin, laminin and hyaluronic acid did not interfere with the assay. No cross-reactivity existed with bovine collagen types I, III, IV. However, native collagens from human placenta (I, III, IV, V, VI), rat and calf skin type I collagens and bovine type II collagen produced a weak cross-reaction only at high doses. Concerning the latter, inhibition curves were not parallel. Parallelism of inhibition curves were observed for dilution of type II collagen, produced by human chondrocytes in three-dimensional culture. All of these characteristics indicate that radioimmunoassy of type II collagen is a very sensitive and specific method available for the study and quantification of type II collagen in in vitro experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号