首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Previous studies from this laboratory demonstrated that the use of an oxygenated cardioplegic solution in the hypothermic arrested rat heart resulted in improved preservation of high-energy phosphate stores (adenosine triphosphate and creatine phosphate), mechanical recovery during reperfusion, and preservation of myocardial ultrastructure. In the current study the effect of cardioplegic solutions oxygenated with 30%, 60%, and 95% oxygen was evaluated in the isolated rat heart with reference to the maintenance of adenosine triphosphate, creatine phosphate, oxygen consumption, functional recovery, and mitochondrial oxidative phosphorylation in vitro. Results indicate that the hearts receiving cardioplegic solutions supplemented with 95% oxygen and 5% carbon dioxide maintained adenosine triphosphate and creatine phosphate at control values for at least 5 hours. The oxygen consumption during elective cardiac arrest, mechanical performance during reperfusion, and in vitro mitochondrial oxygen uptake and phosphorylation rate were highest in the hearts receiving cardioplegic solutions supplemented with 95% oxygen when compared to solutions with 30% and 60% oxygen. Addition of glucose and insulin to the cardioplegic solution (95% oxygen) increased the adenosine triphosphate levels but failed to improve function after reperfusion. Although myocardial adenosine triphosphate and creatine phosphate were well preserved by the oxygenated cardioplegic solution, there was a discrepancy between the adenosine triphosphate levels at the end of the arrest period, which represents the potential for mechanical function, and the actual function of the hearts after 5 hours.  相似文献   

2.
The ideal temperature and hematocrit level of blood cardioplegia has not been clearly established. This study was undertaken (a) to determine the optimal temperature of blood cardioplegia and (b) to study the effect of hematocrit levels in blood cardioplegia. A comparison of myocardial preservation was done among seven groups of animals on the basis of variations in hematocrit levels and temperature of oxygenated cardioplegic solution. The experimental protocol consisted of a 2-hour hypothermic cardioplegic arrest followed by 1 hour of normothermic reperfusion. Group 1 received oxygenated crystalloid cardioplegic solution at 10 degrees C. Groups 2 through 7 received oxygenated blood cardioplegic solution with the following hematocrit values and temperatures: (2) 10%, 10 degrees C; (3) 10%, 20 degrees C; (4) 10%, 30 degrees C; (5) 20%, 10 degrees C; (6) 20%, 20 degrees C; and (7) 20%, 30 degrees C. Parameters studied include coronary blood flow, myocardial oxygen extraction, myocardial oxygen consumption, and myocardial high-energy phosphate levels of adenosine triphosphate and creatine phosphate during control (prearrest), arrest, and reperfusion. Myocardial oxygen consumption at 30 degrees C during arrest was significantly higher than at 10 degrees C and 20 degrees C, which indicates continued aerobic metabolic activity at higher temperature. Myocardial oxygen consumption and the levels of adenosine triphosphate and creatine phosphate during reperfusion were similar in all seven groups. Myocardial oxygen extraction (a measure of metabolic function after ischemia) during initial reperfusion was significantly lower in the 30 degrees C blood group than in the 10 degrees C blood group at either hematocrit level and in the oxygenated crystalloid group, which suggests inferior preservation. The hematocrit level of blood cardioplegia did not affect adenosine triphosphate or myocardial oxygen consumption or extraction. It appears from this study that blood cardioplegia at 10 degrees C and oxygenated crystalloid cardioplegia at 10 degrees C are equally effective. Elevating blood cardioplegia temperature to 30 degrees C, however, reduces the ability of the solution to preserve metabolic function regardless of hematocrit level. Therefore, the level of hypothermia is important in blood cardioplegia, whereas hematocrit level has no detectable impact, and cold oxygenated crystalloid cardioplegia is as effective as hypothermic blood cardioplegia.  相似文献   

3.
The effect of nicotinic acid, an antilipolytic drug, on myocardial preservation was studied on the basis of cardiac performance after 2 hours of cardioplegic arrest. Isolated in situ pig hearts were subjected to 120 minutes of hypothermic potassium (35 mEq) crystalloid cardioplegic arrest followed by 60 minutes of reperfusion. The experimental group received nicotinic acid 0.08 mmol/L 15 minutes before cardioplegic arrest, whereas the control group received 15 minutes of unmodified perfusion. There was a marked decline in myocardial creatine phosphate levels during cardioplegic arrest in both groups that returned to the baseline level during reperfusion without a significant intergroup difference, and adenosine triphosphate levels remained stable throughout the experiment in both groups. Myocardial oxygen consumption during reperfusion was significantly higher in hearts treated with nicotinic acid, which was consistent with a significantly greater cardiac contractile force as evaluated by isovolumetric left ventricular pressure measurements. There appeared to be less cardiac membrane damage as measured by creatine kinase release during reperfusion, which was significantly inhibited by treatment with nicotinic acid. The present study supports the conclusion that nicotinic acid improves cardiac performance after hypothermic cardioplegic arrest.  相似文献   

4.
The myocardial protective effects of crystalloid, blood, and Fluosol-DA-20% cardioplegia were compared by subjecting hypertrophied pig hearts to 3 hours of hypothermic (10 degrees to 15 degrees C), hyperkalemic (20 mEq/L) cardioplegic arrest and 1 hour of normothermic reperfusion. Left ventricular hypertrophy was created in piglets by banding of the ascending aorta, with increase of the left ventricular weight-body weight ratio from 3.01 +/- 0.2 gm/kg (control adult pigs) to 5.50 +/- 0.2 gm/kg (p less than 0.001). An in vivo isolated heart preparation was established in 39 grown banded pigs, which were divided into three groups to receive aerated crystalloid (oxygen tension 141 +/- 4 mm Hg), oxygenated blood (oxygen tension 584 +/- 41 mm Hg), or oxygenated Fluosol-DA-20% (oxygen tension 586 +/- 25 mm Hg) cardioplegic solutions. The use of crystalloid cardioplegia was associated with the following: a low cardioplegia-coronary sinus oxygen content difference (0.6 +/- 0.1 vol%), progressive depletion of myocardial creatine phosphate and adenosine triphosphate during cardioplegic arrest, minimal recovery of developed pressure (16% +/- 8%) and its first derivative (12% +/- 7%), and marked structural deterioration during reperfusion. Enhanced oxygen uptake during cardioplegic infusions was observed with blood cardioplegia (5.0 +/- 0.3 vol%), along with excellent preservation of high-energy phosphate stores and significantly improved postischemic left ventricular performance (developed pressure, 54% +/- 4%; first derivative of left ventricular pressure, 50% +/- 5%). The best results were obtained with Fluosol-DA-20% cardioplegia. This produced a high cardioplegia-coronary sinus oxygen content difference (5.8 +/- 0.1 vol%), effectively sustained myocardial creatine phosphate and adenosine triphosphate concentrations during the extended interval of arrest, and ensured the greatest hemodynamic recovery (developed pressure, 81% +/- 6%, first derivative of left ventricular pressure, 80% +/- 10%) and the least adverse morphologic alterations during reperfusion. It is concluded that oxygenated Fluosol-DA-20% cardioplegia is superior to oxygenated blood and especially aerated crystalloid cardioplegia in protecting the hypertrophied pig myocardium during prolonged aortic clamping.  相似文献   

5.
Myocardial high-energy phosphate and glucose-6-phosphate levels were determined in the in vivo pig heart model during ischemic arrest and reperfusion to determine the effectiveness of potassium cardioplegia in myocardial protection. Thirty-five pigs were divided into six experimental groups consisting of 2-hour normothermic arrest, 2-hour hypothemic arrest, 2-hour normothermic cardioplegic arrest, and 1-, 2-, and 3-hour hypothermic cardioplegic arrest. Myocardial biopsies from the left ventricle were obtained prior to arrest, every 30 minutes during the arrest interval, and at 30 and 60 minutes of reperfusion. The measurement of adenosine triphosphate and creatine phosphate showed that (1) cardioplegic arrest requires hypothermia to preserve high-energy phosphate levels in myocardial tissue; (2) hypothermia, while not completely protective alone, is more effective than potassium cardioplegia alone in providing myocardial preservation during 2-hour ischemic arrest; (3) the combination of potassium cardioplegia and hypothermia is additive in providing an effective means of maintaining myocardial high-energy phosphate stores during 1, 2, and 3 hours of ischemic arrest; (4) myocardial reperfusion does not allow a return to preischemic adenosine triphosphate (ATP) levels after 2 hours of arrest, except following hypothermic cardioplegia; and (5) extension of the duration of ischemic arrest to 3 hours using hypothermic cardioplegia prevents recovery of high-energy phosphate stores to preischemic levels during reperfusion. Optimal preservation can be achieved during 2 hours of ischemic arrest by using hypothermic potassium cardioplegia. The effects of myocardial reperfusion, however, prevent full ATP and creatine phosphate (CP) recovery following 3 hours of arrest. No other technique studied was as effective in providing myocardial preservation.  相似文献   

6.
Recent controversy concerns the proper vehicle for delivery of potassium cardioplegia. In the present study, adult dogs supported by cardiopulmonary bypass were subjected to 2 hours of multidose, hypothermic potassium cardioplegic arrest with 30 minutes of reperfusion with either autologous blood or crystalloid solution as the cardioplegic vehicle. Preservation of myocardial high-energy nucleotide stores was assessed by serial left ventricular biopsies assayed for adenosine triphosphate (ATP) and creatine phosphate. Preischemic and postischemic ventricular function was assessed by the use of an isovolumic intraventricular balloon. ATP stores were equally maintained at preischemic levels after ischemia and reperfusion by both autologous blood and crystalloid solution. Although creatine phosphate stores significantly declined (P less than 0.01, both groups) after 2 hours of arrest, reperfusion allowed equal restoration of preischemic levels. Maximum first derivative of left ventricular pressure and measured velocity were not depressed by either mode of protection. Similarly, myocardial compliance, as assessed by length-tension curves, showed no change following either autologous blood or crystalloid solution. The data show equal and significant myocardial protection by multidose, hypothermic potassium cardioplegia when both delivery vehicles were used.  相似文献   

7.
High-energy phosphates provide a sensitive index of myocardial preservation. This experiment was designed to use this index in order to assess the efficacy of various potassium concentrations in a crystalloid cardioplegic solution in protecting the myocardium during hypothermic ischemic arrest. The in vivo ischemic pig-heart model was used, measuring left ventricular levels of adenosine triphosphate (ATP) before, during, and after a two-hour arrest period and after 30 minutes of reperfusion. Thirty-eight animals were divided into seven groups of 5 to 6 animals each. Each group received a different potassium concentration in the cardioplegic solution, namely 5, 10, 15, 20, 25, 30, and 35 mEq/L. The results were as follows: the ATP moiety was best preserved during ischemia and reperfusion in the 15 mEq/L group, while it remained significantly lower in the 5 mEq/L group. The 10, 20, 25, 30, and 35 mEq/L groups showed an intermediate range of ATP preservation. We conclude from these results that cardioplegic solutions containing 5 mEq/L of potassium seem to be inadequate for myocardial preservation during ischemic arrest; that solutions with 15 mEq/L of potassium may offer the best myocardial protection of all concentrations tested; and that solutions with potassium concentrations of 15 to 35 mEq/L are significantly better than normokalemic (5 mEq/L) cardioplegic solutions.  相似文献   

8.
Benefits of glucose and oxygen in multidose cold cardioplegia.   总被引:3,自引:0,他引:3  
We tested the effects of glucose and oxygen in cardioplegic solutions on myocardial protection in the isolated perfused working rat heart. Recovery from 2 hours' hypothermic (8 degrees C) cardioplegic arrest was examined in 93 hearts. Cardioplegic solution, which was delivered every 15 minutes, was supplemented with glucose 28 mmol/L as a substrate or sucrose 28 mmol/L as a nonmetabolizable osmotic control; it was equilibrated with either 98% oxygen or 98% nitrogen, both with 2% carbon dioxide. Four combinations of hyperkalemic cardioplegic solution were studied: nitrogen-sucrose, nitrogen-glucose, oxygen-sucrose, and oxygen-glucose. During hypothermic arrest, oxygenation of cardioplegic solution greatly reduced myocardial lactate production and prevented ischemic contracture as indicated by coronary vascular resistance. Glucose increased lactate production modestly but significantly only when the cardioplegic solution was nitrogenated. Although end-arrest myocardial adenosine triphosphate and creatine phosphate were greatly increased by oxygenation of cardioplegic solution (p less than 0.005), we could not detect improved preservation of these high-energy phosphates by glucose. Averaged over reperfusion, percent recovery of cardiac output for the nitrogen-sucrose, nitrogen-glucose, oxygen-sucrose, and oxygen-glucose solutions was 32.3% +/- 6.1%, 45.9% +/- 4.6%, 44.5% +/- 4.6%, and 62.2% +/- 4.5%, respectively. Oxygenation of the glucose solution or addition of glucose to the oxygenated solution significantly improved recovery of cardiac output. The benefits of glucose and oxygen were additive, so that the oxygen-glucose cardioplegic solution provided the best functional recovery. We conclude that the addition of glucose to the fully oxygenated multidose cold cardioplegic solution improves functional recovery without increasing lactate production during arrest.  相似文献   

9.
The aim of this study was to test for metabolic differences in the response of hypertrophic and normal hearts to hypothermic cardioplegia. Hypertrophic dog hearts and normal control hearts were subjected to 6 hours of hypothermic cardioplegia with the St. Thomas' Hospital solution. Levels before arrest of subepicardial and subendocardial adenosine triphosphate, creatine phosphate, and lactate in eight hypertrophic hearts were the same as those levels in 12 normal hearts. In hypertrophic hearts, but not in normal hearts, the induction of arrest was slow and was associated with an 11% increase in adenosine triphosphate levels, a 59% decrease in creatine phosphate levels, and a 12-fold increase in lactate levels. Seven hypertrophic hearts and eight normal hearts were studied during 6 hours of arrest and showed no further differences in metabolic response. Reducing the myocardial temperature from 20 degrees C to 12 degrees C slowed the rate of depletion of adenosine triphosphate and the rate of accumulation of lactate in both groups. We conclude that in the nonfailing, severely hypertrophic heart, levels before arrest of high-energy phosphates and lactate are normal, but that marked biochemical changes may occur if the induction of arrest is prolonged because of underdosing with cardioplegic solution. Cooling from 20 degrees C to 12 degrees C improves myocardial preservation in both hypertrophic and normal hearts.  相似文献   

10.
The effects of a short period of ventricular fibrillation on myocardial high energy phosphates were assessed in two groups of rats. Group 1 underwent hypothermic crystalloid cardioplegia infusion and aortic cross-clamping. In Group 2, cardioplegia and cross-clamping were preceded by ten seconds of induced ventricular fibrillation. In rat hearts that had undergone ventricular fibrillation, adenosine triphosphate levels averaged only 70% (p less than .0001) and creatine phosphate levels averaged only 60% (p less than .0005) of levels measured following standard cardioplegic arrest without ventricular fibrillation. These findings are of potential importance in both routine cardiac surgical procedures and in organ procurement.  相似文献   

11.
This study was designed to test the effect of glucose and a formulation enriched with branched chain amino acids as additives to oxygenated crystalloid cardioplegic solution in the ischemic heart. Energy-depleted isolated working rat hearts were subjected to 68 minutes of normothermic global ischemia during which oxygenated cardioplegic solution was used to protect them. The hearts were then reperfused in the nonworking mode for 10 minutes and for a further 30 minutes in the working mode. The hearts were randomly divided into three groups, in which various oxygenated cardioplegic solutions were perfused. Group 1 (control) was subjected to modified St. Thomas' Hospital cardioplegic solution and groups 2 and 3 to the same solution with the addition of glucose (11.1 mmol/L) and glucose (11.1 mmol/L) and branched chain amino acids, respectively. Recovery of aortic flow, coronary flow, cardiac output, aortic pressure, adenosine triphosphate, creatine phosphate, and oxygen consumption was significantly better in group 2 than in group 1. In addition, recovery of aortic flow, coronary flow, cardiac output, aortic pressure, stroke volume, minute work, adenosine triphosphate, and creatine phosphate was found to be significantly enhanced in group 3. Release of adenine catabolites and lactic dehydrogenase from these hearts during postischemic reperfusion was significantly decreased. Thus, during global ischemia in the energy-depleted heart, the presence of glucose and branched chain amino acids in oxygenated crystalloid cardioplegic solution enhanced myocardial protection.  相似文献   

12.
The use of an oxygenated crystalloid cardioplegic solution to improve myocardial preservation during elective cardiac arrest was evaluated with the isolated perfused rat heart used as a model. Experiments were conducted at 4 degrees C and 20 degrees C. The oxygen tension of the nonoxygenated and oxygenated cardioplegic solutions averaged 117 and 440 mm Hg, respectively. At 4 degrees C, the adenosine triphosphate content of hearts subjected to 120 minutes of oxygenated cardioplegia was significantly higher than that of the nonoxygenated cardioplegia group. However, functional recovery during reperfusion was similar for both groups. At 20 degrees C, the myocardial adenosine triphosphate concentration decreased at a significantly faster rate during ischemia in the group receiving nonoxygenated cardioplegia compared with the oxygenated cardioplegia group. Hearts subjected to 180 minutes of ischemia with oxygenated cardioplegia had a normal ultrastructural appearance whereas hearts subjected to 120 minutes of nonoxygenated cardioplegia showed severe ischemic damage. Myocardial functional recovery in the group receiving oxygenated cardioplegia exceeded that of the group receiving nonoxygenated cardioplegia. The use of myocardial adenosine triphosphate concentration at the end of the ischemic period to predict subsequent cardiac output, peak systolic pressure, and total myocardial work showed significant positive correlations.  相似文献   

13.
A study was carried out to evaluate the best method of myocardial preservation in the pig-heart model. Two techniques for employing hypothermic potassium cardioplegia during prolonged ischemic arrest were compared. One entailed three one-hour periods of arrest interrupted with 30-minute intervals of reperfusion (intermittent arrest), and the other involved a single period of continuous hypothermic cardioplegic arrest (continuous arrest) of three hours' duration. In order to evaluate intermittent versus continuous cardioplegic arrest, prearrest and postarrest contractility, compliance, myocardial perfusion, and left ventricular adenosine triphosphate (ATP) and creatine phosphate (CP) levels were compared in 28 animals.The results show significant deterioration in myocardial contractility and compliance following three-hour cardioplegic arrest whether the arrest was intermittent or continuous. However, there were significant differences between the two groups studied. The animal having continuous arrest had less functional impairment than the animal having intermittent arrest. Myocardial perfusion 30 minutes following continuous arrest returned to prearrest levels whereas there was significant depression in perfusion in the group with intermittent arrest. This represented severe coronary vasoconstriction. The ATP level after completion of arrest is significantly higher in the group having continuous arrest and remains higher throughout the final reperfusion period.On the basis of these studies, it is thought that intermittent reperfusion may lead to a reperfusion injury, which is primarily reflected in decreased perfusion, contractility, and compliance. While hypothermic potassium cardioplegia does not optimally protect the myocardium during prolonged (three hour) ischemic arrest, the alternative of intermittent arrest provides poorer myocardial preservation.  相似文献   

14.
Isolated canine hearts were preserved at 4 degrees C with multi-dose cardioplegic solution every hour for 6 hours. Reperfusion was observed for 2 hours under cross-circulation without cardiotonic drugs. The aprotinin group (n = 8), which received cardioplegic solution with added aprotinin (150 KIU/mL), was compared with the control group (n = 6). The increase in tissue adenosine triphosphate and total adenine nucleotide content during reperfusion was significant in the aprotinin group; there was no change in the control group, and the levels at the end of reperfusion tended to be higher in the aprotinin group than in the control group. Tissue adenosine diphosphate levels remained unchanged in both groups. Tissue adenosine monophosphate levels declined during reperfusion in both groups and were slightly lower in the control group. Tissue levels of cyclic adenosine monophosphate remained unchanged in the aprotinin group whereas they increased during ischemia and declined significantly during reperfusion in the control group. Tissue levels of cyclic guanosine monophosphate declined during reperfusion in both groups without difference. Creatine phosphate levels recovered in both groups without difference. Serum cyclic guanosine monophosphate concentration tended to be lower in the aprotinin group than in the control group. Serum creatine kinase-MB level increased slightly during reperfusion in both groups without difference. N-acetyl-beta-D-glucosaminidase levels were significantly suppressed during reperfusion in the aprotinin group as compared with the control group. These results suggest that aprotinin is effective in preserving adenine nucleotide and adenosine triphosphate levels and in stabilizing tissue cyclic adenosine monophosphate levels in prolonged hypothermic cardioplegic preservation followed by reperfusion.  相似文献   

15.
The effect of the calcium and oxygen contents of a hyperkalemic glucose-containing cardioplegic solution on myocardial preservation was examined in the isolated working rat heart. The cardioplegic solution was delivered at 4 degrees C every 15 minutes during 2 hours of arrest, maintaining a myocardial temperature of 8 degrees +/- 2 degrees C. Hearts were reperfused in the Langendorff mode for 15 minutes and then resumed the working mode for a further 30 minutes. Groups of hearts were given the oxygenated cardioplegic solution containing an ionized calcium concentration of 0, 0.25, 0.75, or 1.25 mmol/L or the same solution nitrogenated to reduce the oxygen content and containing 0 or 0.75 mmol ionized calcium per liter. The myocardial adenosine triphosphate concentrations at the end of arrest in these six groups of hearts were 15.6 +/- 1.2, 9.5 +/- 0.5, 8.2 +/- 1.1, 4.9 +/- 1.8, 10.1 +/- 2.0, and 1.6 +/- 0.4 nmol/mg dry weight, respectively. At 5 minutes of working reperfusion, the percentages of prearrest aortic flow were 80 +/- 2, 62 +/- 4, 33 +/- 6, 37 +/- 5, 48 +/- 7 and 46 +/- 8, respectively. The differences among the groups in adenosine triphosphate concentrations and in functional recovery diminished during reperfusion. In hearts given the hypoxic calcium-containing solution, there was a marked increase in coronary vascular resistance during the administration of successive doses of cardioplegic solution, which was rapidly reversible upon reperfusion. These data indicate that hearts given the acalcemic oxygenated solution had better adenosine triphosphate preservation during arrest and better functional recovery than hearts in any other group. Addition of calcium to the oxygenated cardioplegic solution decreased adenosine triphosphate preservation and functional recovery. Oxygenation of the acalcemic solution increased adenosine triphosphate preservation and functional recovery. The lowest adenosine triphosphate levels at end arrest were observed in hearts given the hypoxic calcium-containing solution. In the setting of hypothermia and multidose administration, the addition of calcium to a cardioplegic solution resulted in increased energy depletion during arrest and depressed recovery.  相似文献   

16.
The merits of oxygenated crystalloid cardioplegic solutions have been well established in experimental animals. The positive effects of oxygenation of Plasmalyte B (Sabax Ltd) and St. Thomas Hospital solution (Plegisol) were achieved by gassing with 95% O2/5% CO2 and 100% O2, respectively. In view of the marked pH differences induced by these gas mixtures, we evaluated the effect of mode of oxygenation on myocardial recovery during reperfusion after hypothermic cardioplegic arrest. Oxygenation with 100% O2 of Plasmalyte B containing high K+ levels caused marked deterioration in myocardial recovery, whereas the mode of oxygenation did not affect recovery after arrest with St. Thomas Hospital solution. Because the major differences between these solutions reside in their respective K+, Mg2+, and HCO3- contents, the effects of variations in the levels of these ions were investigated. The results showed that oxygenation with 100% O2 was deleterious only in the presence of high K+ (29 mmol/L), low Mg2+ (3 mmol/L), and high NaHCO3 (28 mmol/L) levels. The marked decline in mechanical recovery during reperfusion was associated with significant changes in myocardial adenosine triphosphate and intracellular Ca2+ levels. Although an explanation for these findings is not readily available, it is suggested that complex ionic interactions and possibly oxygen free radical generation may lead to intracellular Ca2+ overload, depression in mitochondrial adenosine triphosphate generation, and, hence, deterioration in mechanical recovery.  相似文献   

17.
The effects of temperature and pressure during early cardiac reperfusion after 3.5 hours of hypothermic, cardioplegic ischemia were investigated in isolated Langendorff-perfused rat hearts. The hearts were randomized in two groups and subjected to different techniques of reperfusion. The group I hearts were exposed to rapidly rising perfusion pressure and temperature, and in group II slowly rising pressure and temperature were employed. After 60 min of reperfusion, left ventricular developed pressure, coronary flow and tissue content of high-energy phosphates were evaluated. Left ventricular pressure and coronary flow were significantly better preserved in group II. Recovery of adenosine triphosphate and creatine phosphate was significantly lower in group I (5.27 +/- 0.38 and 8.72 +/- 0.62 mumol x g dry weight-1) than in group II (9.31 +/- 0.41 and 14.97 +/- 0.62). The study thus demonstrated that functional recovery, restoration of coronary flow and normalization of high-energy phosphate stores after long periods of hypothermic cardioplegic ischemia can be considerably influenced by the employed reperfusion technique.  相似文献   

18.
Reports differ as to the efficacy of glucose and insulin as cardioplegic additives. Although deliberate oxygenation of crystalloid cardioplegic solutions improves myocardial protection, little is known about the protection afforded by glucose and insulin in such oxygenated solutions. In the isolated working rat heart, we studied the addition of oxygen, glucose, and insulin, separately and together, to a cardioplegic solution. The solution was equilibrated with O2 or N2, with glucose added as a substrate or sucrose as a nonmetabolizable osmotic control, with or without insulin. Hearts were arrested for 2 hours at 8 degrees C by multidose infusions. Oxygenation decreased lactate production and improved high-energy phosphate and glycogen preservation during arrest, prevented ischemic contracture, and improved functional recovery. The addition of glucose to the oxygenated solution increased the level of adenosine triphosphate at end-arrest from 10.5 +/- 0.5 to 13.9 +/- 0.6 nmol/mg dry weight and glycogen stores from 18.7 +/- 2.5 to 35.7 +/- 5.5 nmol/mg dry weight. The further addition of insulin did not better preserve these metabolites. Improvements in functional recovery due to glucose or insulin in the oxygenated solution attained statistical significance when both additives were included. Glucose increased lactate production significantly only when the solution was nitrogenated. Insulin added to the nitrogenated glucose-containing solution increased adenosine triphosphate and glycogen levels after 1 hour of arrest; and, although insulin did not prevent ischemic contracture from developing during the latter part of arrest with profound depletion of these metabolites, functional recovery was improved. The mechanism of improved functional recovery by insulin is not clear.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Oxygenation of crystalloid cardioplegic solutions is beneficial, yet bicarbonate-containing solutions equilibrated with 100% oxygen become highly alkaline as carbon dioxide is released. In the isolated perfused rat heart fitted with an intraventricular balloon, we recently observed a sustained contraction related to infusion of cardioplegic solution. In the same model, to record these contractions, we studied myocardial preservation by multidose bicarbonate-containing cardioplegic solutions in which first the calcium content and then the pH was varied. An acalcemic cardioplegic solution (Group 1) and the same solution with calcium provided by adding calcium chloride (Group 2) or blood (Group 3) were equilibrated with 100% oxygen. Ionized calcium concentrations were 0, 0.10 +/- 0.06, and 0.11 +/- 0.07 mmol/L and pH values were 8.74 +/- 0.07, 8.54 +/- 0.08, and 8.40 +/- 0.07, all highly alkaline. Hearts were arrested for 2 hours at 8 degrees +/- 2.5 degrees C and reperfused for 1 hour at 37 degrees C. At end-arrest, myocardial adenosine triphosphate was depleted in all three groups, significantly in Groups 2 and 3. In Group 1 the calcium paradox developed upon reperfusion, with contracture (left ventricular end-diastolic pressure = 60 +/- 7 mm Hg), creatine kinase release up to 620 +/- 134 U/L, a profound further decrease in adenosine triphosphate to 1.9 +/- 1.7 nmol/mg dry weight, and either greatly impaired or no functional recovery (17% +/- 10% of prearrest developed pressure). Three hearts in this group released creatine kinase during arrest and did not resume beating during reperfusion. In Groups 2 and 3, the calcium paradox did not occur; functional recovery was 61% +/- 4% and 71% +/- 9% at 5 minutes of reperfusion. In two additional groups (4 and 5), the pH of the acalcemic cardioplegic solution was decreased by equilibration with 2% and 5% carbon dioxide in oxygen to 7.53 +/- 0.03 and 7.11 +/- 0.02. Contractions during arrest were smaller than in Groups 1, 2, and 3; adenosine triphosphate was maintained during arrest; functional recovery was 101% +/- 3% and 96% +/- 4% at 5 minutes of reperfusion. We conclude that acalcemic solutions with carbon dioxide are superior to highly alkaline calcium-containing solutions. If oxygenation of cardioplegic solutions, of proved value, causes severe alkalinity, then calcium paradox may result even with hypothermia. This hazard is prevented by adding calcium or blood to the solution or carbon dioxide to the oxygen used for equilibration.  相似文献   

20.
The potential for improving myocardial protection with the high-energy phosphates adenosine triphosphate and creatine phosphate was evaluated by adding them to the St. Thomas' Hospital cardioplegic solution in the isolated, working rat heart model of cardiopulmonary bypass and ischemic arrest. Dose-response studies with an adenosine triphosphate range of 0.05 to 10.0 mmol/L showed 0.1 mmol/L to be the optimal concentration for recovery of aortic flow and cardiac output after 40 minutes of normothermic (37 degrees C) ischemic arrest (from 24.1% +/- 4.4% and 35.9% +/- 4.1% in the unmodified cardioplegia group to 62.6% +/- 4.7% and 71.0% +/- 3.0%, respectively, p less than 0.001). Adenosine triphosphate at its optimal concentration (0.1 mmol/L) also reduced creatine kinase leakage by 39% (p less than 0.001). Postischemic arrhythmias were also significantly reduced, which obviated the need for electrical defibrillation and reduced the time to return of regular rhythm from 7.9 +/- 2.0 minutes in the control group to 3.5 +/- 0.4 minutes in the adenosine triphosphate group. Under more clinically relevant conditions of hypothermic ischemia (20 degrees C, 270 minutes) with multidose (every 30 minutes) cardioplegia, adenosine triphosphate addition improved postischemic recovery of aortic flow and cardiac output from control values of 26.8% +/- 8.4% and 35.4% +/- 6.3% to 58.0% +/- 4.7% and 64.4% +/- 3.7% (p less than 0.01), respectively, and creatine kinase leakage was significantly reduced. Parallel hypothermic ischemia studies (270 minutes, 20 degrees C) using the previously demonstrated optimal creatinine phosphate concentration (10.0 mmol/L) gave nearly identical improvements in recovery and enzyme leakage. The combination of the optimal concentrations of adenosine triphosphate and creatine phosphate resulted in even greater myocardial protection; aortic flow and cardiac output improved from their control values of 26.8% +/- 8.4% and 35.4% +/- 6.3% to 79.7% +/- 1.1 and 80.7% +/- 1.0% (p less than 0.001), respectively. In conclusion, both extracellular adenosine triphosphate and creatine phosphate alone markedly improve the cardioprotective properties of the St. Thomas' Hospital cardioplegic solution during prolonged hypothermic ischemic arrest, but together they act additively to provide even greater protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号