首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders.  相似文献   

4.
5.
Non-syndromic intellectual disability (NS-ID) is a genetically heterogeneous disorder, with more than 200 candidate genes to date. Despite the increasing number of novel mutations detected, a relatively low number of recurrently mutated genes have been identified, highlighting the complex genetic architecture of the disorder. A systematic search of PubMed and Medline identified 245 genes harbouring non-synonymous variants, insertions or deletions, which were identified as candidate NS-ID genes from case reports or from linkage or pedigree analyses. From this list, 33 genes are common to syndromic intellectual disability (S-ID) and 58 genes are common to certain neurological and neuropsychiatric disorders that often include intellectual disability as a clinical feature. We examined the evolutionary constraint and brain expression of these gene sets, and we performed gene network and protein–protein interaction analyses using GeneGO MetaCoreTM and DAPPLE, respectively. The 245?NS-ID candidate genes were over-represented in axon guidance, synaptogenesis, cell adhesion and neurotransmission pathways, all of which are key neurodevelopmental processes for the establishment of mature neuronal circuitry in the brain. These 245 genes exhibit significantly elevated expression in human brain and are evolutionarily constrained, consistent with expectations for a brain disorder such as NS-ID that is associated with reduced fecundity. In addition, we report enrichment of dopaminergic and glutamatergic pathways for those candidate NS-ID genes that are common to S-ID and/or neurological and neuropsychiatric disorders that exhibit intellectual disability. Collectively, this study provides an overview and analysis of gene networks associated with NS-ID and suggests modulation of neurotransmission, particularly dopaminergic and glutamatergic systems as key contributors to synaptic dysfunction in NS-ID.  相似文献   

6.
7.
8.
The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss‐of‐function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop‐gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.  相似文献   

9.
While many studies have led to the identification of rare sequence variants linked with susceptibility to autism and schizophrenia, the contribution of rare epigenetic variations (epivariations) in these disorders remains largely unexplored. Previously we presented evidence that epivariations occur relatively frequently in the human genome, and likely contribute to a subset of congenital and neurodevelopmental disorders through the disruption of dosage‐sensitive genes. Here we extend this approach, studying methylation profiles from 297 samples with autism and 767 cases with schizophrenia, identifying 84 and 268 rare epivariations in these two cohorts, respectively, that were absent from 4,860 population controls. We observed multiple features associated with these epivariations that support their pathogenic relevance, including (a) a significant enrichment for epivariations in schizophrenic individuals at genes previously linked with schizophrenia, (b) increased brain expression of genes associated with epivariations found in autism cases compared with controls, (c) in autism families, a significant excess of epivariations found specifically in affected versus unaffected sibs, (d) Gene Ontology terms linked with epivariations found in autism, including “D1 dopamine receptor binding.” Our study provides additional evidence that rare epivariations likely contribute to the mutational spectra underlying neurodevelopmental disorders.  相似文献   

10.
11.
In recent years, several genes have been implicated in the variable disease presentation of global developmental delay (GDD) and intellectual disability (ID). The endoplasmic reticulum membrane protein complex (EMC) family is known to be involved in GDD and ID. Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders. EMC10 is a bone marrow-derived angiogenic growth factor that plays an important role in infarct vascularization and promoting tissue repair. However, this gene has not been previously associated with human disease. Herein, we describe a Saudi family with two individuals segregating a recessive neurodevelopmental disorder. Both of the affected individuals showed mild ID, speech delay, and GDD. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify candidate genes. Further, to elucidate the functional effects of the variant, quantitative real-time PCR (RT-qPCR)-based expression analysis was performed. WES revealed a homozygous splice acceptor site variant (c.679-1G>A) in EMC10 (chromosome 19q13.33) that segregated perfectly within the family. RT-qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients, indicating the pathogenicity of the identified variant. For the first time in the literature, the EMC10 gene variant was associated with mild ID, speech delay, and GDD. Thus, this gene plays a key role in developmental milestones, with the potential to cause neurodevelopmental disorders in humans.  相似文献   

12.
Chromosomal copy number variants (CNVs) are known contributors to neurodevelopmental conditions such as autism spectrum disorder (ASD). Both array comparative genomic hybridization and next-generation sequencing techniques have led to an increased detection of small CNVs and the identification of many candidate susceptibility genes for ASD. We report familial inheritance of two CNVs that include genes with known involvement in neurodevelopment. These CNVs are found in various combinations among four siblings with autism spectrum disorder, as well as in their neurodevelopmentally normal parents. We describe a 2.4 Mb duplication of 4p12 to 4p11 that includes GABRA4 (OMIM: 137141) and other GABA receptor genes, as well as a 246 kb deletion at 22q11.22 involving the TOP3B gene (OMIM: 603582). The maternally inherited 4p duplication was detected in three siblings, two of whom also had the paternally inherited 22q11.22 deletion. The fourth sibling only had the 22q11.22 deletion. These CNVs have rarely been reported in the literature. Upon review, a single publication was found describing a similar 4p duplication in three generations of a family with neurodevelopmental and neuropsychiatric disorders, as well as in an unrelated patient with autism (Polan et al., 2014). TOP3B falls within the distal 22q11.22 microdeletion syndrome and has been associated with schizophrenia, neurodevelopmental disorders including epilepsy, and cardiac defects. The identification of this family contributes to the understanding of specific genetic contributors to neurodevelopmental disorders and an emerging phenotype associated with proximal 4p duplication.  相似文献   

13.
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental diseases characterized by a triad of specific behavioral traits: abnormal social interactions, communication deficits and stereotyped or repetitive behaviors. Several recent studies showed that ASDs have a strong genetic basis, contributing to the discovery of a number of ASD-associated genes. Due to the genetic complexity of these disorders, mouse strains with targeted deletion of ASD genes have become an essential tool to investigate the molecular and neurodevelopmental mechanisms underlying ASD. Here we will review the most relevant genetic mouse models developed by targeted inactivation of ASD-associated genes, and discuss their importance for the development of novel pharmacological therapies of these disorders.  相似文献   

14.
Microtubule dynamics play a crucial role in neuronal development and function, and several neurodevelopmental disorders have been linked to mutations in genes encoding tubulins and functionally related proteins. Most recently, variants in the tubulin cofactor D (TBCD) gene, which encodes one of the five co‐chaperones required for assembly and disassembly of α/β‐tubulin heterodimer, were reported to underlie a recessive neurodevelopmental/neurodegenerative disorder. We report on five patients from three unrelated families, who presented with microcephaly, intellectual disability, intractable seizures, optic nerve pallor/atrophy, and cortical atrophy with delayed myelination and thinned corpus callosum on brain imaging. Exome sequencing allowed the identification of biallelic variants in TBCD segregating with the disease in the three families. TBCD protein level was significantly reduced in cultured fibroblasts from one patient, supporting defective TBCD function as the event underlying the disorder. Such reduced expression was associated with accelerated microtubule re‐polymerization. Morpholino‐mediated TBCD knockdown in zebrafish recapitulated several key pathological features of the human disease, and TBCD overexpression in the same model confirmed previous studies documenting an obligate dependency on proper TBCD levels during development. Our findings confirm the link between inactivating TBCD variants and this newly described chaperone‐associated tubulinopathy, and provide insights into the phenotype of this disorder.  相似文献   

15.
Rett Syndrome, an X-linked dominant neurodevelopmental disorder characterized by regression of language and hand use, is primarily caused by mutations in methyl-CpG-binding protein 2 (MECP2). Loss of function mutations in MECP2 are also found in other neurodevelopmental disorders such as autism, Angelman-like syndrome and non-specific mental retardation. Furthermore, duplication of the MECP2 genomic region results in mental retardation with speech and social problems. The common features of human neurodevelopmental disorders caused by the loss or increase of MeCP2 function suggest that even modest alterations of MeCP2 protein levels result in neurodevelopmental problems. To determine whether a small reduction in MeCP2 level has phenotypic consequences, we characterized a conditional mouse allele of Mecp2 that expresses 50% of the wild-type level of MeCP2. Upon careful behavioral analysis, mice that harbor this allele display a spectrum of abnormalities such as learning and motor deficits, decreased anxiety, altered social behavior and nest building, decreased pain recognition and disrupted breathing patterns. These results indicate that precise control of MeCP2 is critical for normal behavior and predict that human neurodevelopmental disorders will result from a subtle reduction in MeCP2 expression.  相似文献   

16.
We describe two brothers with autistic disorder, intellectual disability (ID) and cleft lip/palate with a microdeletion of Xp11.22 detected through screening individuals with autism spectrum disorders (ASDs) for microdeletions and duplications using 1-Mb resolution array comparative genomic hybridization. The deletion was confirmed by fluorescence in situ hybridization/real-time quantitative polymerase chain reaction (RT-qPCR) and shown to be inherited from their unaffected mother who had skewed (100%) X inactivation of the aberrant chromosome. RT-qPCR characterization of the del(X)(p11.22) region (∼53,887,000–54,359,000 bp) revealed complete deletion of the plant homeodomain finger protein 8 ( PHF8 ) gene as well as deletions of the FAM120C and WNK lysine-deficient protein kinase 3 ( WNK3 ) genes, for which a definitive phenotype has not been previously characterized. Xp11.2 is a gene-rich region within the critical linkage interval for several neurodevelopmental disorders. Rare interstitial microdeletions of Xp11.22 have been recognized with ID, craniofacial dysmorphism and/or cleft lip/palate and truncating mutations of the PHF8 gene within this region. Despite evidence implicating genes within Xp11.22 with language and cognitive development that could contribute to an ASD phenotype, their involvement with autism has not been systematically evaluated. Population screening of 481 (319 males/81 females) and 282 X chromosomes (90 males/96 females) in respective ASD and control cohorts did not identify additional subjects carrying this deletion. Our findings show that in addition to point mutations, a complete deletion of the PHF8 gene is associated with the X-linked mental retardation Siderius-Hamel syndrome (OMIM 300263) and further suggest that the larger size of the Xp11.22 deletion including genes FAM120C and WNK3 may be involved in the pathogenesis of autism.  相似文献   

17.
Common hereditary neurodevelopmental disorders such as autism, bipolar disorder, and schizophrenia are most likely both genetically multifactorial and heterogeneous. Because of these characteristics traditional methods for genetic analysis fail when applied to such diseases. To address the problem we propose a novel probabilistic framework that combines the standard genetic linkage formalism with whole-genome molecular-interaction data to predict pathways or networks of interacting genes that contribute to common heritable disorders. We apply the model to three large genotype-phenotype data sets, identify a small number of significant candidate genes for autism (24), bipolar disorder (21), and schizophrenia (25), and predict a number of gene targets likely to be shared among the disorders.  相似文献   

18.
The advent of next generation sequencing has improved gene discovery in neurodevelopmental disorders. A greater understanding of the genetic basis of these disorders has expanded the spectrum of pathogenic genes, thus enhancing diagnosis and therapeutic management. Genetic overlap between distinct neurodevelopmental disorders has also been revealed, which can make determining a strict genotype-phenotype correlation more difficult. Intellectual disability and cortical malformations are two neurodevelopmental disorders particularly confronted by this difficulty. Indeed, for a given pathogenic gene, intellectual disability can be associated, or not, with cortical malformations. Here, we report for the first time, two individuals with the same de novo mutation in TBR1, leading to a frameshift starting at codon Thr532, and resulting in a premature stop codon 143 amino acids downstream (c.1588_1594dup, p.(Thr532Argfs*144)). These individuals presented with a developmental encephalopathy characterized by frontal pachygyria and severe intellectual disability. Remarkably, 11 TBR1 gene mutations were previously reported in intellectual disability and autism spectrum disorders. Our study supports the observation that TBR1-related disorders range from intellectual disability to frontal pachygyria. We also highlight the need for first-line, good quality neuroimaging for patients with intellectual disability.  相似文献   

19.
Because several genes responsible for epileptic encephalopathy are located on the 9q33q34 region, patients with chromosomal deletions of this region often show intractable epilepsy and neurodevelopmental disability. Contrary to these findings, chromosomal duplications of this region have never been reported previously. We identified a first case of 9q33q34 microduplications in siblings associated with developmental disorders and macrocephaly. Their mother was a mosaic carrier of this duplication. Duplicated regions involved STXBP1; the gene related to epileptic encephalopathy. Neurological features including developmental delay and macrocephaly observed in the present siblings may be derived from the extra-copy of STXBP1.  相似文献   

20.
PurposeCommon diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed.MethodsWe characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome.ResultsComputational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted.ConclusionOur results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号