首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: The early response and survival of oligodendrocytes after axonal stroke and their potential contribution to neuronal survival in vivo have not been adequately addressed. The purpose of this study was to investigate the changes occurring in the retina and optic nerve (ON) in anterior ischemic optic neuropathy (AION), using a c-fos transgenic mouse model. METHODS: A new mouse model of AION (rodent AION) was developed to evaluate the in vivo stress response of oligodendrocytes and retinal ganglion cells (RGCs) in a transgenic mouse strain, using the immediate early stress-response gene c-fos, RT-QPCR technology, immunohistochemistry, and electron microscopy. Confocal microscopy was used with cell-specific antibodies to characterize the timing of cells responding to rAION. The TUNEL assay detected cells undergoing apoptosis. Ultrastructural changes were analyzed by electron microscopy. RESULTS: In rAION, oligodendrocytes rapidly respond in vivo to ischemic ON damage, with c-fos activation as an early detectable event. Early evidence of progressive oligodendrocyte stress, is followed by demyelination, wallerian degeneration of the ON, and oligodendrocyte and RGC death far from the primary lesion. CONCLUSIONS: After rAION induction oligodendrocytes, as well as RGCs, undergo progressive stress, with dysfunction and apoptosis. The findings lead to a proposal that progressive retrograde oligodendrocyte stress, away from the primary lesion, is an important factor after ischemic optic neuropathy. Postinduction demyelination must be addressed for effective neuroprotection of ischemic and hypoxic white matter.  相似文献   

2.
PURPOSE. Anterior ischemic optic neuropathy (AION) is caused by sudden loss of vascular supply to retinal ganglion cell (RGC) axons in the anterior portion of the optic nerve and is a major cause of optic nerve dysfunction. There has been no easily obtainable animal model of this disorder. The current study was conducted to design a novel model of rodent AION (rAION), to enable more detailed study of this disease. METHODS. A novel rodent photoembolic stroke model was developed that is directly analogous to human AION. Using histologic, electrophysiological, molecular- and cell biological methods, the early changes associated with isolated RGC axonal ischemia were characterized. RESULTS. Functional (electrophysiological) changes occurred in RGCs within 1 day after rAION, with a loss of visual evoked potential (VEP) amplitude that persisted in the long term. The retinal gene expression pattern rapidly changed after rAION induction, with an early (<1 day) initial induction of c-Fos mRNA, and loss of RGC-specific gene expression. RGC-specific protein expression declined 2 days after detectable mRNA level changes, and immunostaining suggested that multiple retinal layers react to isolated RGC axonal ischemia. CONCLUSIONS. rAION rapidly results in electrophysiological and histologic changes similar to clinical AION, with reactive responses in primary and supporting neuronal cell layers. The rAION model can enable a detailed analysis of the individual retinal and optic nerve changes that occur after optic nerve stroke, which may be useful in determining possible therapeutic interventions for this disorder.  相似文献   

3.
PurposeTo evaluate the integrative potential of neural stem cells (NSCs) with the visual system and characterize effects on the survival and axonal regeneration of axotomized retinal ganglion cells (RGCs).MethodsFor in vitro studies, primary, postnatal rat RGCs were directly cocultured with human NSCs or cultured in NSC-conditioned media before their survival and neurite outgrowth were assessed. For in vivo studies, human NSCs were transplanted into the transected rat optic nerve, and immunohistology of the retina and optic nerve was performed to evaluate RGC survival, RGC axon regeneration, and NSC integration with the injured visual system.ResultsIncreased neurite outgrowth was observed in RGCs directly cocultured with NSCs. NSC-conditioned media demonstrated a dose-dependent effect on RGC survival and neurite outgrowth in culture. NSCs grafted into the lesioned optic nerve modestly improved RGC survival following an optic nerve transection (593 ± 164 RGCs/mm2 vs. 199 ± 58 RGCs/mm2; P < 0.01). Additionally, RGC axonal regeneration following an optic nerve transection was modestly enhanced by NSCs transplanted at the lesion site (61.6 ± 8.5 axons vs. 40.3 ± 9.1 axons, P < 0.05). Transplanted NSCs also differentiated into neurons, received synaptic inputs from regenerating RGC axons, and extended axons along the transected optic nerve to incorporate with the visual system.ConclusionsHuman NSCs promote the modest survival and axonal regeneration of axotomized RGCs that is partially mediated by diffusible NSC-derived factors. Additionally, NSCs integrate with the injured optic nerve and have the potential to form neuronal relays to restore retinofugal connections.  相似文献   

4.
Optic neuritis is an inflammatory disease of the optic nerve that often occurs in patients with multiple sclerosis and leads to permanent visual loss mediated by retinal ganglion cell (RGC) damage. Optic neuritis occurs with high frequency in relapsing-remitting experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, with significant loss of RGCs. In the current study, mechanisms of RGC loss in this model were examined to determine whether inflammation-induced axonal injury mediates apoptotic death of RGCs. RGCs were retrogradely labeled by injection of fluorogold into superior colliculi of 6-7 week old female SJL/J mice. EAE was induced one week later by immunization with proteolipid protein peptide. Optic neuritis was detected by inflammatory cell infiltration on histological examination as early as 9 days after immunization, with peak incidence by day 12. Demyelination occurred 1-2 days after inflammation began. Loss of RGC axons was detected following demyelination, with significant axonal loss occurring by day 13 post-immunization. Axonal loss occurred prior to loss of RGC bodies at day 14. Apoptotic cells were also observed at day 14 in the ganglion cell layer of eyes with optic neuritis, but not in control eyes. Together these results suggest that inflammatory cell infiltration mediates demyelination and leads to direct axonal injury in this model of experimental optic neuritis. RGCs die by an apoptotic mechanism triggered by axonal injury. Potential neuroprotective therapies to prevent permanent RGC loss from optic neuritis will likely need to be initiated prior to axonal injury to preserve neuronal function.  相似文献   

5.
The role of autophagy in retinal ganglion cell (RGC) death is still controversial. Several studies focused on RGC body death, although the axonal degeneration pathway in the optic nerve has not been well documented in spite of evidence that the mechanisms of degeneration of neuronal cell bodies and their axons differ. Axonal degeneration of RGCs is a hallmark of glaucoma, and a pattern of localized retinal nerve fiber layer defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. As models of preceding axonal degeneration, both the tumor necrosis factor (TNF) injection model and hypertensive glaucoma model may be useful in understanding the mechanism of axonal degeneration of RGCs, and the concept of axonal protection can be an attractive approach to the prevention of neurodegenerative optic nerve disease. Since mitochondria play crucial roles in glaucomatous optic neuropathy and can themselves serve as a part of the autophagosome, it seems that mitochondrial function may alter autophagy machinery. Like other neurodegenerative diseases, optic nerve degeneration may exhibit autophagic flux impairment resulting from elevated intraocular pressure, TNF, traumatic injury, ischemia, oxidative stress, and aging. As a model of aging, we used senescence-accelerated mice to provide new insights. In this review, we attempt to describe the relationship between autophagy and recently reported noteworthy factors including Nmnat, ROCK, and SIRT1 in the degeneration of RGCs and their axons and propose possible mechanisms of axonal protection via modulation of autophagy machinery.  相似文献   

6.
PURPOSE: To examine how the vascular plexuses in the rd mouse retina are affected by the loss of photoreceptors and how this compares with the Royal College of Surgeons (RCS) rat. To examine whether the profound effects of vascular pathology on retinal ganglion cells (RGCs) and their axons seen in RCS rats are also found in rd mice. METHODS: Vascular patterns were studied in flatmounted and sectioned retinas using either nicotinamide adenine dinucleotide phosphate(NADPH)-diaphorase histochemistry or vessel filling with horseradish peroxidase. Optic axons were visualized using RT97 (an antibody against the 200-kDa neurofilament subunit), and RGCs were labeled by retrograde transport of fluorescence label, the Fluorogold, applied to the superior colliculus. RESULTS: The present study showed that in the rd mouse, similar to the RCS rat, vascular complexes developed in association with retinal pigment epithelial cells at the outer border of the retina. The number and distribution of complexes were very different from the rat, but as in the rat, progressive axonal dystrophy was seen in the optic fiber layer. RGC loss, rather than being local was more broadly distributed, but some, at least, appeared to be secondary to axonal dystrophy caused by vessels supplying vascular formation. CONCLUSIONS: Photoreceptor loss in the rd mouse leads to RGC axonal dystrophy and loss. The lesser degree and different distribution of RGC loss caused by abnormal vasculature associated with vascular formations in the outer retina in the rd mouse may be due to the early atrophy of the deep vascular plexus in this animal.  相似文献   

7.
Glaucoma is a group of diseases characterized by progressive optic nerve degeneration that results in visual field loss and irreversible blindness. A crucial element in the pathophysiology of all forms of glaucoma is the death of retinal ganglion cells (RGCs), a population of CNS neurons with their soma in the inner retina and axons in the optic nerve. Strategies that delay or halt RGC loss have been recognized as potentially beneficial to preserve vision in glaucoma; however, the success of these approaches depends on an in-depth understanding of the mechanisms that lead to RGC dysfunction and death. In recent years, there has been an exponential increase in valuable information regarding the molecular basis of RGC death stemming from animal models of acute and chronic optic nerve injury as well as experimental glaucoma. The emerging landscape is complex and points at a variety of molecular signals - acting alone or in cooperation - to promote RGC death. These include: axonal transport failure, neurotrophic factor deprivation, toxic pro-neurotrophins, activation of intrinsic and extrinsic apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving reactive glia and loss of synaptic connectivity. Collectively, this body of work has considerably updated and expanded our view of how RGCs might die in glaucoma and has revealed novel, potential targets for neuroprotection.  相似文献   

8.
Anterior ischemic optic neuropathy (AION) can be divided into nonarteritic (NAION) and arteritic (AAION) forms. NAION makes up ~85% of all cases of AION, and until recently was poorly understood. There is no treatment for NAION, and its initiating causes are poorly understood, in part because NAION is not lethal, making it difficult to obtain fresh, newly affected tissue for study. In-vivo electrophysiology and post-mortem studies reveal specific responses that are associated with NAION. New models of NAION have been developed which enable insights into the pathophysiological events surrounding this disease. These models include both rodent and primate species, and the power of a 'vertically integrated' multi-species approach can help in understanding the common cellular mechanisms and physiological responses to clinical NAION, and to identify potential approaches to treatment. The models utilize laser light to activate intravascular photoactive dye to induce capillary vascular thrombosis, while sparing the larger vessels. The observable optic nerve changes associated with rodent models of AION (rAION) and primate NAION (pNAION) are indistinguishable from that seen in clinical disease, including sectoral axonal involvement, and in-vivo electrophysiological data from these models are consistent with clinical data. Early post-infarct events reveal an unexpected inflammatory response, and changes in intraretinal gene expression for both stress response, while sparing outer retinal function, which occurs in AAION models. Histologically, the NAION models reveal an isolated loss of retinal ganglion cells by apoptosis. There are changes detectable by immunohistochemistry suggesting that other retinal cells mount a brisk response to retinal ganglion cell distress without themselves dying. The optic nerve ultimately shows axonal loss and scarring. Inflammation is a prominent early histological feature. This suggests that clinically, specific modulation of inflammation may be a useful approach to NAION treatment early in the course of the disease.  相似文献   

9.
In vivo detection of retinal ganglion cell (RGC) damage should have experimental and clinical relevance. A number of experimental models have been recently described to visualize RGCs in vivo. With retrograde injection of fluorescent tracers into the superior colliculus, lateral geniculate body, or optic nerve, RGCs can be detected in vivo with confocal laser scanning microscopy, fluorescent microscopy, or confocal scanning laser ophthalmoscopy. Although the resolution of these imaging techniques is limited to detecting only the cell bodies, the addition of adaptive optics has allowed in vivo visualization of axonal and dendritic processes. An ideal experimental model for detection of RGC damage should be non-invasive and reproducible. The introduction of a strain of transgenic mice that express fluorescent proteins under the control of Thy-1 promoter sequence has offered a non-invasive approach to detect RGCs. Long- term serial monitoring of RGCs over a year has been shown possible with this technique. In vivo imaging of RGCs could provide crucial information to investigating the mechanisms of neurodegenerative diseases and evaluating the treatment response of neuroprotective agents.  相似文献   

10.
Glaucoma is an optic neuropathy in which the optic nerve axons are damaged, resulting in death of retinal ganglion cells (RGCs). The primary region of damage is thought to be the optic nerve head (ONH), with the lateral geniculate nucleus (LGN) and optic radiations to the visual cortex being secondarily affected. Neurotrophin deprivation resulting from optic nerve injury is thought to cause RGCs to die by apoptosis by inhibition of cell survival pathways. However, disruption of retrograde axonal transport is not the only mechanism associated with optic nerve damage and RGC death, and thus, an additional mechanism of injury is likely to be involved in glaucomatous optic neuropathy.  相似文献   

11.
PURPOSE. Heparan sulfate (HS) is abundantly expressed in the developing neural retina; however, its role in the intraretinal axon guidance of retinal ganglion cells (RGCs) remains unclear. In this study, the authors examined whether HS was essential for the axon guidance of RGCs toward the optic nerve head. METHODS. The authors conditionally ablated the gene encoding the exostosin-1 (Ext1) enzyme, using the dickkopf homolog 3 (Dkk3)-Cre transgene, which disrupted HS expression in the mouse retina during directed pathfinding by RGC axons toward the optic nerve head. In situ hybridization, immunohistochemistry, DiI tracing, binding assay, and retinal explant assays were performed to evaluate the phenotypes of the mutants and the roles of HS in intraretinal axon guidance. RESULTS. Despite no gross abnormality in RGC distribution, the mutant RGC axons exhibited severe intraretinal guidance errors, including optic nerve hypoplasia, ectopic axon penetration through the full thickness of the neural retina and into the subretinal space, and disturbance of the centrifugal projection of RGC axons toward the optic nerve head. These abnormal phenotypes shared similarities with the RGC axon misguidance caused by mutations of genes encoding Netrin-1 and Slit-1/2. Explant assays revealed that the mutant RGCs exhibited disturbed Netrin-1-dependent axon outgrowth and Slit-2-dependent repulsion. CONCLUSIONS. The present study demonstrated that RGC axon projection toward the optic nerve head requires the expression of HS in the neural retina, suggesting that HS in the retina functions as an essential modulator of Netrin-1 and Slit-mediated intraretinal RGC axon guidance.  相似文献   

12.
PURPOSE: To use a rat model of optic nerve injury to differentiate primary and secondary retinal ganglion cell (RGC) injury. METHODS: Under general anesthesia, a modified diamond knife was used to transect the superior one third of the orbital optic nerve in albino Wistar rats. The number of surviving RGC was quantified by counting both the number of cells retrogradely filled with fluorescent gold dye injected into the superior colliculus 1 week before nerve injury and the number of axons in optic nerve cross sections. RGCs were counted in 56 rats, with 24 regions examined in each retinal wholemount. Rats were studied at 4 days, 8 days, 4 weeks, and 9 weeks after transection. The interocular difference in RGCs was also compared in five control rats that underwent no surgery and in five rats who underwent a unilateral sham operation. It was confirmed histologically that only the upper optic nerve had been directly injured. RESULTS: At 4 and 8 days after injury, superior RGCs showed a mean difference from their fellow eyes of -30.3% and -62.8%, respectively (P = 0.02 and 0.001, t-test, n = 8 rats/group), whereas sham-operation eyes had no significant loss (mean difference between eyes = 1.7%, P = 0.74, t-test). At 8 days, inferior RGCs were unchanged from control, fellow eyes (mean interocular difference = -4.8%, P = 0.16, t-test). Nine weeks after transection, inferior RGC had 34.5% fewer RGCs than their fellow eyes, compared with 41.2% fewer RGCs in the superior zones of the injured eyes compared with fellow eyes. Detailed, serial section studies of the topography of RGC axons in the optic nerve showed an orderly arrangement of fibers that were segregated in relation to the position of their cell bodies in the retina. CONCLUSIONS: A model of partial optic nerve transection in rats showed rapid loss of directly injured RGCs in the superior retina and delayed, but significant secondary loss of RGCs in the inferior retina, whose axons were not severed. The findings confirm similar results in monkey eyes and provide a rodent model in which pharmacologic interventions against secondary degeneration can be tested.  相似文献   

13.
A model of the mammalian optic nerve fibre based on experimental data   总被引:2,自引:0,他引:2  
Oozeer M  Veraart C  Legat V  Delbeke J 《Vision research》2006,46(16):2513-2524
  相似文献   

14.
PURPOSE: In both animal model system and in human glaucoma, retinal ganglion cells (RGCs) die by apoptosis. To understand how RGC apoptosis is initiated in these systems, the authors studied RGC neurotrophin transport in experimental glaucoma using acute intraocular pressure (IOP) elevations in rats and chronic IOP elevation and unilateral optic nerve transections in monkeys. METHODS: Eyes were studied in masked fashion by light and electron microscopy and by immunohistochemistry with antibodies directed against the tyrosine kinase receptors (TrkA, B, and C) and against brain-derived neurotrophic factor (BDNF), as well as by autoradiography to identify retrograde axonal transport of 125I-BDNF injected into the superior colliculus. RESULTS: With acute glaucoma in the rat, RGC axons became abnormally dilated, accumulating vesicles presumed to be moving in axonal transport at the optic nerve head. Label for TrkB, but not TrkA, was relatively increased at and behind the optic nerve head with IOP elevation. Abnormal, focal labeling for TrkB and BDNF was identified in axons of monkey optic nerve heads with chronic glaucoma. With acute IOP elevation in rats, radiolabeled BDNF arrived at cells in the RGC layer at less than half the level of control eyes. CONCLUSIONS: Interruption of BDNF retrograde transport and accumulation of TrkB at the optic nerve head in acute and chronic glaucoma models suggest a role for neurotrophin deprivation in the pathogenesis of RGC death in glaucoma.  相似文献   

15.
Tesser RA  Niendorf ER  Levin LA 《Ophthalmology》2003,110(10):2031-2035
OBJECTIVE: The mechanism by which nonarteritic anterior ischemic optic neuropathy (NAION) causes an infarct in the optic nerve is controversial. We studied the three-dimensional anatomic configuration of a NAION infarct to better elucidate its pathophysiology. DESIGN: Case report with clinicopathologic correlation. METHODS: Serial sections of the optic nerve from a previously reported patient diagnosed with NAION 20 days before death were studied. Every fourth slide was stained with hematoxylin-eosin, photographed, and digitized. NIH Image 1.62 was used to reconstruct the nerve in all three dimensions, and the infarct morphology was analyzed. MAIN OUTCOME MEASURES: Morphology of the reconstructed optic nerve infarct. RESULTS: The area of axonal loss within each section of the optic nerve was identified and reconstructed. The loss was in the superior part of the nerve, encircling the central retinal artery at its greatest extent. Remaining areas of the nerve appeared healthy, and, notably, the periphery of the uninvolved inferior portion of the nerve was normal. Three-dimensional analysis revealed two distinct areas of infarct at the posterior extent of the lesion which coalesced toward the center of the lesion and finally tapered as the infarct reached the optic nerve head. Sagittal reconstructions gave the appearance of a two-pronged fork posteriorly connecting to a single "handle" anteriorly. There was no obvious correlation between the configuration of the infarct and any single vascular territory. The total length of the nerve involved by the infarct was approximately 1.5 mm. CONCLUSIONS: The morphology of this NAION infarct is not consistent with disease of large or small vessels and, more likely, represents a form of compartment syndrome that causes tissue ischemia.  相似文献   

16.
We examined qualitatively and quantitatively in adult rat retinas the temporal degeneration of the nerve fibre layer after intra-orbital optic nerve transection (IONT) or crush (IONC). Retinal ganglion cell (RGC) axons were identified by their heavy neurofilament subunit phosphorylated isoform (pNFH) expression. Optic nerve injury induces a progressive axonal degeneration which after IONT proceeds mainly with abnormal pNFH-accumulations in RCG axons and after IONC in RGCs somas and dendrites. Importantly, this aberrant pNFH-expression pattern starts earlier and is more dramatic after IONT than after IONC, highlighting the importance that the type of injury has on the time-course of RGC degeneration.  相似文献   

17.
PURPOSE: To establish a method for morphometric analysis of retrogradely labeled retinal ganglion cells (RGCs) of the mouse retina, to be used for the study of molecular aspects of RGC survival and neuroprotection in this model; to evaluate the effect of overexpression of Cu-Zn-superoxide dismutase (CuZnSOD) on RGC survival after severe crush injury to the optic nerve, and to assess the effect of the alpha2-adrenoreceptor agonist brimonidine, recently shown to be neuroprotective, on RGC survival. METHODS: A severe crush injury was inflicted unilaterally in the orbital portion of the optic nerves of wild-type and transgenic (Tg-SOD) mice expressing three to four times more human CuZnSOD than the wild type. In each mouse all RGCs were labeled 72 hours before crush injury by stereotactic injection of the neurotracer dye FluoroGold (Fluorochrome, Denver, CO) into the superior colliculus. Survival of RGCs was then assessed morphometrically, with and without systemic injection of brimonidine. RESULTS: Two weeks after crush injury, the number of surviving RGCs was significantly lower in the Tg-SOD mice (596.6 +/- 71.9 cells/mm(2)) than in the wild-type control mice (863. 5 +/- 68 cells/mm(2)). There was no difference between the numbers of surviving RGCs in the uninjured retinas of the two strains (3708 +/- 231.3 cells/mm(2) and 3904 +/- 120 cells/mm(2), respectively). Systemic injections of brimonidine significantly reduced cell death in the Tg-SOD mice, but not in the wild type. CONCLUSIONS: Overexpression of CuZnSOD accelerates RGC death after optic nerve injury in mice. Activation of the alpha2-adrenoreceptor pathway by brimonidine enhances survival of RGCs in an in vivo transgenic model of excessive oxidative stress.  相似文献   

18.
Ocular hypertension (OHT) is the main risk factor of glaucoma, a neuropathy leading to blindness. Here we have investigated the effects of laser photocoagulation (LP)-induced OHT, on the survival and retrograde axonal transport (RAT) of adult rat retinal ganglion cells (RGC) from 1 to 12 wks. Active RAT was examined with fluorogold (FG) applied to both superior colliculi (SCi) 1 wk before processing and passive axonal diffusion with dextran tetramethylrhodamine (DTMR) applied to the optic nerve (ON) 2 d prior to sacrifice. Surviving RGCs were identified with FG applied 1 wk pre-LP or by Brn3a immunodetection. The ON and retinal nerve fiber layer were examined by RT97-neurofibrillar staining. RGCs were counted automatically and color-coded density maps were generated. OHT retinas showed absence of FG+ or DTMR+RGCs in focal, pie-shaped and diffuse regions of the retina which, by two weeks, amounted to, approximately, an 80% of RGC loss without further increase. At this time, there was a discrepancy between the total number of surviving FG-prelabelled RGCs and of DMTR+RGCs, suggesting that a large proportion of RGCs had their RAT impaired. This was further confirmed identifying surviving RGCs by their Brn3a expression. From 3 weeks onwards, there was a close correspondence of DTMR+RGCs and FG+RGCs in the same retinal regions, suggesting axonal constriction at the ON head. Neurofibrillar staining revealed, in ONs, focal degeneration of axonal bundles and, in the retinal areas lacking backlabeled RGCs, aberrant staining of RT97 characteristic of axotomy. LP-induced OHT results in a crush-like injury to ON axons leading to the anterograde and protracted retrograde degeneration of the intraocular axons and RGCs.  相似文献   

19.
Injury to retinal ganglion cell (RGC) axons within the optic nerve causes apoptosis of the soma. We previously demonstrated that in vivo axotomy causes elevation of superoxide anion within the RGC soma, and that this occurs 1-2 days before annexin-V positivity, a marker of apoptosis. Pegylated superoxide dismutase delivery to the RGC prevents the superoxide elevation and rescues the soma. Together, these results imply that superoxide is an upstream signal for apoptosis after axonal injury in RGCs. We then studied metallocorroles, potent superoxide dismutase mimetics, which we had shown to be neuroprotective in vitro and superoxide scavengers in vivo for RGCs. RGCs were retrograde labeled with the fluorescent dye 4Di-10Asp, and then axotomized by intraorbital optic nerve transection. Iron(III) 2,17-bis-sulfonato-5,10,15-tris(pentafluorophenyl)corrole (Fe(tpfc)(SO(3)H)(2)) (Fe-corrole) was injected intravitreally. Longitudinal imaging of RGCs was performed and the number of surviving RGCs enumerated. There was significantly greater survival of labeled RGCs with Fe-corrole, but the degree of neuroprotection was relatively less than that predicted by their ability to scavenge superoxide-This implies an unexpected complexity in signaling of apoptosis by reactive oxygen species.  相似文献   

20.
The DBA/2 mouse has been used as a model for spontaneous secondary glaucoma. We attempted to determine the in vivo time course and spatial distribution of retinal ganglion cells (RGCs) undergoing apoptotic death in DBA/2 mice. Female DBA/2 mice, 3, 9-10, 12, 15, and 18 months of age, received intravitreal injections of Annexin-V conjugated to AlexaFluor 1h prior to euthanasia. Retinas were fixed and flat-mounted. Annexin-V-positive RGCs in the hemiretina opposite the site of injection were counted, and their locations were recorded. Positive controls for detection of apoptotic RGCs by Annexin-V labeling included rats subjected to optic nerve ligation, and C57BL/6 mice subjected to either optic nerve ligation or intravitreal injection of NMDA. To verify that Annexin-V-labeled cells were RGCs, intravitreal Annexin-V injections were also performed on retinas pre-labeled retrogradely with FluoroGold or with DiI. Annexin-V-positive RGC locations were analyzed to determine possible clustering and areas of preferential loss. Annexin-V labeled apoptotic RGCs in eyes after optic nerve ligation, intravitreal NMDA injection, as well as in aged DBA/2 animals. In glaucomatous DBA/2 mice 95-100% of cells labeled with Annexin-V were also FluoroGold- and DiI-positive. This confirms that Annexin-V can be used to specifically detect apoptotic RGCs in rodent retinas. In DBA/2 mice, apoptotic RGC death is maximal from the 12th to the 15th month of age (ANOVA, p<0.001, Fisher's post hoc test) and occurs in clusters. These clusters are initially located in the midperipheral retina and progressively occur closer to the optic nerve head with increasing age. Retrograde axonal transport of FluoroGold in the glaucomatous mouse retina is functional until at least 2-3days prior to initiation of apoptotic RGC death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号