首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: The type I insulin-like growth factor receptor (IGF-IR) and its ligands have been shown to play a critical role in prostate carcinoma development, growth, and metastasis. Targeting the IGF-IR may be a potential treatment for prostate cancer. A fully human monoclonal antibody, A12, specific to IGF-IR, has shown potent antitumor effects in breast, colon, and pancreatic cancers in vitro and in vivo. In this study, we tested the in vivo effects of A12 on androgen-dependent and androgen-independent prostate tumor growth. EXPERIMENTAL DESIGN: Androgen-dependent LuCaP 35 and androgen-independent LuCaP 35V prostate tumors were implanted s.c. into intact and castrated severe combined immunodeficient mice, respectively. When tumor volume reached about 150 to 200 mm(3), A12 was injected at 40 mg/kg body weight thrice a week for up to 5 weeks. RESULTS: We find that A12 significantly inhibits growth of androgen-dependent LuCaP 35 and androgen-independent LuCaP 35V prostate xenografts, however, by different mechanisms. In LuCaP 35 xenografts, A12 treatment induces tumor cell apoptosis or G(1) cycle arrest. In LuCaP 35V xenografts, A12 treatment induces tumor cell G(2)-M cycle arrest. Moreover, we find that blocking the function of IGF-IR down-regulates androgen-regulated gene expression in androgen-independent LuCaP 35V tumor cells. CONCLUSIONS: Our findings suggest that A12 is a therapeutic candidate for both androgen-dependent and androgen-independent prostate cancer. Our findings also suggest an IGF-IR-dependent activity of the androgen receptor in androgen-independent prostate cancer cells.  相似文献   

2.
After therapeutic hormone deprivation, most prostate cancer (PrCa) cells develop androgen-independent (AI) growth. PrCa is highly heterogeneous and multifocal, suggesting that several molecular processes or pathways may be contributing to AI. The human LuCaP 23.1 xenograft model retains clinical hallmarks of PrCa, including heterogeneous growth, PSA production, androgen-responsiveness and progression to AI. In this work, we studied the effect of androgen depletion (castration) on the growth of LuCaP 23.1 xenografts. A total of 100 nude mice were implanted and analysed for their growth profiles before and after castration. By 11 and 15 weeks, tumours were harvested and assessed for molecular marker expression specific for PrCa. Prior to castration we found 37 fast growing (FG) tumours (948.9+/-76.9 mm(3)) and 63 slow growing (SG) tumours (229.6+/-18.4 mm(3)), a previously undescribed result for this PrCa model. Quantitative RT-PCR showed that in comparison to SGs, FGs contained high HER1, uPA and thymidilate synthetase (TS) expression with low levels of 5alpha-reductase 2 mRNA. All FG tumours progressed rapidly to AI growth 5 weeks after castration (FG-P). In SG castrated tumours, 66% of tumours (SG-P) showed retarded progression (by 12 weeks) to AI, whereas 34% responded to castration (SG-R). Molecular analysis permitted us to define distinct molecular profiles integrating different pathways associated with AI progression. FG-P, and a subgroup of SG-P tumours, presented significantly high levels of peptidylglycine alpha-amidating monooxygenase (PAM), HER1, HER2, TS, and uPA mRNA, all of which correlated with AR expression. The second subgroup of SG-P tumours showed overexpression of the antiapoptotic gene Bcl-2. A third subgroup of SG-P tumours showed significant expression of hypoxia-related gene (adrenomedullin) after castration. This work permitted to define distinct molecular profiles related to different AI growth in the LuCaP 23.1 xenograft.  相似文献   

3.
4.
5.
Bcl-2 has emerged as a critical regulator of apoptosis in a variety of cell systems and is up-regulated during progression to androgen independence in prostate cancer cells. The objectives of this study were to characterize changes in Bcl-2 after androgen withdrawal and during progression to androgen independence in the human prostate LNCaP tumor model and determine whether adjuvant use of antisense Bcl-2 oligodeoxynucleotides (ODNs) with androgen ablation delays progression to androgen independence. Bcl-2 expression in LNCaP cells is down-regulated to undetectable levels by androgen in vitro and up-regulated after castration in vivo. Antisense Bcl-2 ODN treatment reduced LNCaP cell Bcl-2 messenger RNA and protein levels by >90% in a sequence-specific and dose-dependent manner at concentrations >50 nM. Bcl-2 mRNA levels returned to pretreatment levels by 48 h after discontinuing treatment. Athymic male mice bearing SQ LNCaP tumors were castrated and injected i.p. with 12.5 mg/kg/day with two-base mismatch ODN control, reverse polarity ODN control, or antisense Bcl-2 ODN. Tumor volume in control mice gradually increased 5-fold (range, 3-6) by 12 weeks after castration compared to a 10-50% decrease in precastrate tumor volume in mice treated with antisense Bcl-2 ODN. Changes in serum PSA paralleled changes in tumor volume, increasing 4-fold faster above nadir in controls than in mice treated with antisense Bcl-2 ODN. After decreasing 70% by 1 week after castration, PSA increased 1.6-fold above precastrate levels by 11 weeks in controls while staying 30% below precastrate levels in antisense-treated mice. In a second group of experiments, LNCaP tumor growth and serum PSA levels were 90% lower (P<0.01) in mice treated with antisense Bcl-2 ODN compared with mismatch or reverse polarity ODN controls. These results support the hypothesis that Bcl-2 helps mediate progression to androgen independence and is an appropriate target for antisense therapy.  相似文献   

6.
7.
背景与目的:高强度聚焦超声(high intensity focused ultrasound,HIFU)可以有效治疗前列腺癌,但肿瘤是一种全身性的疾病,理想的肿瘤治疗方法是能够在不损伤正常组织的同时进行局部肿瘤切除,还能够激活全身的抗肿瘤免疫反应。本研究旨在探讨HIFU治疗对去势治疗后中晚期前列腺癌患者机体免疫指标的影响。方法:行去势治疗的中晚期前列腺癌患者40例,随机分为2组,HIFU组为去势治疗后2周行HIFU治疗(n=20),对照组为单纯去势治疗(n=20),全部经直肠前列腺穿刺病理检查确诊,均为晚期前列腺癌患者,即前列腺特异性抗原(prostate specific antigen,PSA)>20 ng/mL。患者自愿接受HIFU治疗并签署知情同意书。HIFU组与对照组患者平均年龄(72.56±12.38)岁、(75.23±9.35)岁(P=0.446 3);初始PSA为(105.22±20.55)ng/mL、(100.53±18.38)ng/mL(P=0.451 5)。分别取治疗前和治疗后2周前列腺癌患者外周血6 d,检测T淋巴细胞亚群(CD4+、CD8+、CD4+/CD8+)和外周血Th细胞因子(IFN-γ、IL-2、IL-4、IL-10)。结果:HIFU组患者治疗后CD4+百分比及CD4+/CD8+比值明显升高;细胞因子IFN-γ、IL-2水平明显增高,而IL-4、IL-10水平明显降低,与治疗前相比差异有统计学意义(P<0.05),Th1/Th2平衡向Th1漂移。而对照组患者治疗前、后各项免疫指标差异无统计学意义(P>0.05)。HIFU组与对照组前、后各项免疫指标差值比较差异有统计学意义(P<0.05)。结论:HIFU治疗可在近期内改善去势治疗后中晚期前列腺癌患者机体免疫功能。  相似文献   

8.
A subject of current interest, especially in the development of androgen refractory prostate cancer, is the androgen receptor (AR) activation by growth factor receptors. Here, we report our work on the measurement of AR mRNA and protein expression in benign prostatic hyperplasia (BPH) and prostatic carcinoma (PCA) and evaluation of the relationship between AR, erbB-1 and erbB-2 gene expression determined in the same tissue. In order to define AR, erbB-1 and erbB-2 in human prostate neoplasms 36 benign prostatic hyperplasia, 46 prostatic carcinoma and 12 normal prostate gland samples were analysed. According to distant metastasis PCA tissues were divided into two categories: i) T1-4N0-3M0 (25 samples) and ii) T4N2-3M1 (21 samples). AR, erbB-1 and erbB-2 mRNA expression was estimated by RT-PCR. AR protein expression, both in nuclear and cytoplasmic fractions, was measured by Western blot technique. The association of AR mRNA and protein expression with erbB-1 and erbB-2 gene expression was evaluated. It was found that in clinically invasive (group II of PCA) prostate cancer cases AR mRNA expression was significantly correlated with erbB-2 mRNA expression (Spearman R coefficient 0.86, p<0.05). Interestingly, AR protein expression in this group of PCA was determined mainly in nuclear fraction. By Western blot AR protein was identified in 76.0% (16/21) and 23.8% (5/21) of PCA group II nuclear and cytoplasmic fractions, respectively. Furthermore, the mean AR protein level in nuclear fraction of clinically invasive (group II) PCA (0.82+/-0.04) was significantly higher (p<0.05) as compared to the normal group (0.56+/-0.11). In the case of T4N2-3M1 samples, significant correlation between AR protein level in nuclear fraction and erbB-2 mRNA expression (Spearman R coefficient 0.53, p<0.05) was stated.  相似文献   

9.
Initially, prostate cancer is androgen dependent. However, most cases progress to an androgen-independent state through unknown mechanisms. Interleukin-6 (IL-6) has been associated with prostate cancer progression including activation of the androgen receptor (AR). To determine if IL-6 plays a role in the conversion of prostate cancer from androgen dependent to androgen independent, we established androgen-dependent LuCaP 35 human prostate cancer xenografts in nude mice, castrated the mice, and blocked IL-6 activity using a neutralizing antibody (CNT0328) for a period of 18 weeks. IL-6 inhibition increased survival of mice and inhibited tumor growth, as reflected by decreased tumor volume and prostate-specific antigen levels, compared with that in mice receiving isotype control antibody. To test the effect of IL-6 inhibition on the conversion from androgen dependent to androgen independent, tumor cells from the treated mice were assessed for their androgen dependence both in vitro and by implanting them into sham-operated or orchiectomized mice. Tumor cells derived from the isotype-treated animals converted to androgen-independent state, whereas tumor cells from the anti-IL-6 antibody-treated mice were still androgen dependent in vitro and in vivo. Although there was no difference in AR levels between the androgen-independent and androgen-dependent tumors, IL-6 inhibition promoted both apoptosis and inhibited cell proliferation in tumors and blocked the orchiectomy-induced expression of histone acetylases, p300 and CBP, which are AR cofactors. These data show that IL-6 contributes to the development of androgen independence in prostate cancer and suggest that it mediates this effect, in part, through modulation of p300 and CBP.  相似文献   

10.
Prostate cancer progression can be associated with androgen receptor (AR) mutations acquired following treatment with castration and/or an antiandrogen. Abiraterone, a rationally designed inhibitor of CYP17A1 recently approved for the treatment of docetaxel-treated castration-resistant prostate cancer (CRPC), is often effective, but requires coadministration with glucocorticoids to curtail side effects. Here, we hypothesized that progressive disease on abiraterone may occur secondary to glucocorticoid-induced activation of mutated AR. We found that prednisolone plasma levels in patients with CRPC were sufficiently high to activate mutant AR. Mineralocorticoid receptor antagonists, such as spironolactone and eplerenone that are used to treat side effects related to mineralocorticoid excess, can also bind to and activate signaling through wild-type or mutant AR. Abiraterone inhibited in vitro proliferation and AR-regulated gene expression of AR-positive prostate cancer cells, which could be explained by AR antagonism in addition to inhibition of steroidogenesis. In fact, activation of mutant AR by eplerenone was inhibited by MDV3100, bicalutamide, or greater concentrations of abiraterone. Therefore, an increase in abiraterone exposure could reverse resistance secondary to activation of AR by residual ligands or coadministered drugs. Together, our findings provide a strong rationale for clinical evaluation of combined CYP17A1 inhibition and AR antagonism.  相似文献   

11.
Typically, the initial response of a prostate cancer patient to androgen ablation therapy is regression of the disease. However, the tumor will progress to an "androgen-independent" stage that results in renewed growth and spread of the cancer. Both nuclear factor-kappaB (NF-kappaB) expression and neuroendocrine differentiation predict poor prognosis, but their precise contribution to prostate cancer progression is unknown. This report shows that secretory proteins from neuroendocrine cells will activate the NF-kappaB pathway in LNCaP cells, resulting in increased levels of active androgen receptor (AR). By blocking NF-kappaB signaling in vitro, AR activation is inhibited. In addition, the continuous activation of NF-kappaB signaling in vivo by the absence of the IkappaBalpha inhibitor prevents regression of the prostate after castration by sustaining high levels of nuclear AR and maintaining differentiated function and continued proliferation of the epithelium. Furthermore, the NF-kappaB pathway was activated in the ARR(2)PB-myc-PAI (Hi-myc) mouse prostate by cross-breeding into a IkappaBalpha(+/-) haploid insufficient line. After castration, the mouse prostate cancer continued to proliferate. These results indicate that activation of NF-kappaB is sufficient to maintain androgen-independent growth of prostate and prostate cancer by regulating AR action. Thus, the NF-kappaB pathway may be a potential target for therapy against androgen-independent prostate cancer.  相似文献   

12.
Increases in neuroendocrine (NE) cells and their secretory products are closely correlated with tumor progression and androgen-independent prostate cancer. However, the mechanisms by which NE cells influence prostate cancer growth and progression, especially after androgen ablation therapy, are poorly understood. To investigate the role of NE cells on prostate cancer growth, LNCaP xenograft tumors were implanted into nude mice. After the LNCaP tumors were established, the NE mouse prostate allograft (NE-10) was implanted on the opposite flank of these nude mice to test whether NE tumor-derived systemic factors can influence LNCaP growth. Mice bearing LNCaP tumors with or without NE allografts were castrated 2 weeks after NE tumor inoculation, and changes in LNCaP tumor growth rate and gene expression were investigated. After castration, LNCaP tumor growth decreased in mice bearing LNCaP tumors alone, and this was accompanied by a loss of nuclear androgen receptor (AR) localization. In contrast, in castrated mice bearing both LNCaP and NE-10 tumors, LNCaP tumors continued to grow, had increased levels of nuclear AR, and secreted prostate-specific antigen. Therefore, in the absence of testicular androgens, NE secretions were sufficient to maintain LNCaP cell growth and androgen-regulated gene expression in vivo. Furthermore, in vitro experiments showed that NE secretions combined with low levels of androgens activated the AR, an effect that was blocked by the antiandrogen bicalutamide. Because an increase in AR level has been reported to be sufficient to account for hormone refractory prostate cancers, the NE cell population ability to increase AR level/activity can be another mechanism that allows prostate cancer to escape androgen ablation therapy.  相似文献   

13.
An isocaloric low-fat diet has been shown to slow androgen-sensitive Los Angeles Prostate Cancer-4 (LAPC-4) tumor growth in a mouse xenograft model. LAPC-4 cells were injected into male severe combined immunodeficient mice. After palpable tumors developed, the mice were divided into three groups, high-fat intact, high-fat castration, and low-fat castration. Tumor latency (18 versus 9 weeks; P < 0.001) and mouse survival (20.8 +/- 1.3 versus 13 +/- 0.7 weeks; P < 0.01) were significantly longer in the low-fat castration versus high-fat castration group. Reduced dietary fat intake delayed conversion from androgen-sensitive to -insensitive prostate cancer and significantly prolonged survival of severe combined immunodeficient mice bearing LAPC-4 xenografts.  相似文献   

14.
15.
In an attempt to induce a high incidence of prostate carcinoma, 3,2'-dimethyl-4-aminobiphenyl (DMAB), a prostatic carcinogen, was given during the period of cell proliferation of the prostate gland induced by the administration of methyltestosterone (MT) to castrated F344 rats. Three weeks after the surgical castration, rats were given diet containing 300 ppm of MT for 2 weeks and basal for 2 weeks alternately 12 times. During each treatment with MT, one (group 1) or two (group 2) subcutaneous injections of 50 mg/kg body wt. of DMAB was given. After the last treatment of MT, a pellet of testosterone propionate (TP) was implanted in the subcutis of all animals until the end of the experiment (week 60). No carcinomas developed in the prostate gland of any of the rats. Atypical hyperplasia of the ventral lobe of prostate was found in 4 of 22 rats in group 1 and 2 of 20 rats in group 2. The incidences of atypical hyperplasia of the seminal vesicles in groups 1 and 2 were 64% and 75%, respectively. No pathological lesions in the prostate were observed in 32 rats given DMAB without MT treatment.  相似文献   

16.
Castration resistance is a major issue during castration therapy for prostate cancer and thus more effective treatment are needed for castration-resistant prostate cancer (CRPC). NDRG2 (N-Myc downstream regulated gene 2), a recently identified tumor suppressor, was previously shown to inhibit the proliferation and invasion of prostate cancer, but whether NDRG2 is involved in CRPC remains to be known. Because androgen receptor (AR) axis plays an important role in castration resistance, we evaluate the role of NDRG2 in AR signaling and CRPC. Immunohistochemistry examination of prostate cancer tissues demonstrated that the expression of NDRG2 is negatively correlated with that of AR and c-Myc. Furthermore, AR negatively regulates NDRG2, as well as alters levels of c-Myc and prostate specific antigen (PSA). Forced expression of NDRG2 significantly inhibits the in vitro growth of androgen-dependent and castration-resistant prostate cancer cells; this was accompanied by alterations in PSA, but not by those of AR and c-Myc. Finally, by mimicking castration therapy in a xenograft mouse model, we showed that lentivirus-mediated NDRG2 overexpression efficiently overcomes castration resistance. Thus, by acting as a negative regulator downstream of AR, NDRG2 may emerge as a potential therapy molecule for CRPC.  相似文献   

17.
The development of prostate cancer and its progression to castrate-resistant prostate cancer (CRPC) after antiandrogen ablation therapy are driven by persistent biological activity of androgen receptor (AR) signaling. Moreover, studies have shown that more than 50% of human prostate cancers overexpress ERG (v-ets avian erythroblastosis virus E26 oncogene related gene) due to AR-regulated TMPRSS2-ERG fusion gene. However, the reported roles of TMPRSS2-ERG fusion in cancer progression are not clear. In this study, we investigated the signal transduction in the AR/TMPRSS2-ERG/Wnt signaling network for studying the aggressive behavior of prostate cancer cells and further assessed the effects of BR-DIM and CDF [natural agents-derived synthetic formulation and analogue of 3,3'-diindolylmethane (DIM) and curcumin, respectively, with improved bioavailability] on the regulation of AR/TMPRSS2-ERG/Wnt signaling. We found that activation of AR resulted in the induction of ERG expression through TMPRSS2-ERG fusion. Moreover, we found that ERG overexpression and nuclear translocation activated the activity of Wnt signaling. Furthermore, forced overexpression of ERG promoted invasive capacity of prostate cancer cells. More important, we found that BR-DIM and CDF inhibited the signal transduction in the AR/TMPRSS2-ERG/Wnt signaling network, leading to the inactivation of Wnt signaling consistent with inhibition of prostate cancer cell invasion. In addition, BR-DIM and CDF inhibited proliferation of prostate cancer cells and induced apoptotic cell death. On the basis of our findings, we conclude that because BR-DIM and CDF downregulate multiple signaling pathways including AR/TMPRSS2-ERG/Wnt signaling, these agents could be useful for designing novel strategies for the prevention and/or treatment of prostate cancer.  相似文献   

18.
The mechanisms by which androgen receptor (AR) antagonists inhibit AR activity, and how their antagonist activity may be abrogated in prostate cancer that progresses after androgen deprivation therapy, are not clear. Recent studies show that AR antagonists (including the clinically used drug bicalutamide) can enhance AR recruitment of corepressor proteins [nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid receptors (SMRT)] and that loss of corepressors may enhance agonist activity and be a mechanism of antagonist failure. We first show that the agonist activities of weak androgens and an AR antagonist (cyproterone acetate) are still dependent on the AR NH(2)/COOH-terminal interaction and are enhanced by steroid receptor coactivator (SRC)-1, whereas the bicalutamide-liganded AR did not undergo a detectable NH(2)/COOH-terminal interaction and was not coactivated by SRC-1. However, both the isolated AR NH(2) terminus and the bicalutamide-liganded AR could interact with the SRC-1 glutamine-rich domain that mediates AR NH(2)-terminal binding. To determine whether bicalutamide agonist activity was being suppressed by NCoR recruitment, we used small interfering RNA to deplete NCoR in CV1 cells and both NCoR and SMRT in LNCaP prostate cancer cells. Depletion of these corepressors enhanced dihydrotestosterone-stimulated AR activity on a reporter gene and on the endogenous AR-regulated PSA gene in LNCaP cells but did not reveal any detectable bicalutamide agonist activity. Taken together, these results indicate that bicalutamide lacks agonist activity and functions as an AR antagonist due to ineffective recruitment of coactivator proteins and that enhanced coactivator recruitment, rather than loss of corepressors, may be a mechanism contributing to bicalutamide resistance.  相似文献   

19.
Prostate carcinomas frequently express estrogen receptors (ER), irrespective of androgen receptor (AR) expression; however, the role of ERs and estrogens in prostate cancer is controversial. We found that 17beta-estradiol (E(2)) is able to markedly up-regulate insulin-like growth factor (IGF)-I receptor (IGF-IR) mRNA and protein expression in both AR-positive (LNCaP cells) and AR-negative (PC-3 cells) prostate cancer cells. This effect occurs not only via ERalpha but also via ERbeta stimulation and is specific for IGF-IR because it does not involve the cognate insulin receptor. IGF-IR up-regulation is associated with increased IGF-IR phosphorylation and with increased mitogenic and motogenic activities in response to IGF-I. IGF-IR up-regulation by E(2) does not require ER binding to DNA and is poorly sensitive to antiestrogen blockade, whereas it is associated with the activation of cytosolic kinase cascades involving Src, extracellular signal-regulated kinase (ERK)-1/2, and, to a lesser extent, phosphatidylinositol 3-kinase and is sensitive to the inhibition of these kinases. In conclusion, our data indicate that estrogens may contribute to IGF system deregulation in prostate cancer through the activation of a nongenotropic pathway. Estrogens may have a role, therefore, in tumor progression to androgen independence. Inhibition of the IGF-IR or the Src-ERK pathway should be considered, therefore, as an adjuvant therapy in prostate cancer.  相似文献   

20.
Most patients that present in the clinic with prostate cancer have either localized or recurrent postradiotherapy therapy tumors that may be amenable to injectable treatments using slow-release cytotoxic drugs. The objective of this preclinical study was to design an injectable polymeric paste formulation of paclitaxel for intratumoral injection into nonmetastatic human prostate tumors grown s.c. in mice. Paclitaxel was dissolved (10% w/w) in a blend of a biodegradable triblock copolymer of a random copolymer of D,L-lactide and epsilon-caprolactone (PLC) with poly(ethyleneglycol) [PEG; PLC-PEG-PLC] blended with methoxypoly(ethylene glycol) in a 40:60 ratio. Human prostate LNCaP tumors grown s.c. in castrated athymic male mice were injected with 100 microl of this paste at room temperature. Changes in tumor progression were assessed using both serum prostate-specific antigen (PSA) levels and tumor size. Paclitaxel inhibited LNCaP cell growth in vitro in a concentration-dependent fashion with an IC50 of 1 nM. Apoptosis was documented using DNA fragmentation analysis. The paste formulation solidified over a period of 1 h both in vivo and in aqueous media at 37 degrees C as the methoxypoly(ethylene glycol) component partitioned out of the insoluble PLC-PEG-PLC/paclitaxel matrix. The semisolid implant released drug at a rate of about 100 microg/day in vitro. In control mice treated with paste without paclitaxel, serum PSA levels increased from 2-8 ng/ml (mean, 4.3+/-2 ng/ml) to 60-292 ng/ml (mean, 181+/-88 ng/ml), and tumor volume increased from 30 to 1000 mm3. In mice treated with a single 100-microl injection 3 weeks after castration (early-phase treatment group), tumors decreased in volume from a mean of 43+/-19 mm3 to nonpalpable, and PSA levels decreased from a mean of 22+/-8 to 2+/-1 ng/ml by 8 weeks after castration. In mice treated 5 weeks after castration (androgen-independent tumors; late-phase treatment group), tumors decreased in volume from a mean of 233+/-136 mm3 to nonpalpable, and serum PSA decreased from 24+/-8 to 9+/-4 ng/ml. Observed side effects of the treatment were limited to minor ulceration at the needle injection site in paclitaxel-treated mice only. The controlled-release formulation can be injected via 22-gauge needles and is effective in inhibiting LNCaP tumor growth and PSA levels in mice bearing multiple nonmetastatic tumors. Paclitaxel may be an effective therapy for patients with localized tumors recurring after radiotherapy and for some patients with localized tumors who are not candidates for radical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号