首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of presynaptic voltage-gated calcium channels is critical for depolarization-evoked neurotransmitter release. Various studies attempted to determine the functional implication of Rim1, a component of the vesicle release machinery. Besides to couple voltage-gated Ca2+ channels to the presynaptic vesicle release machinery, it was evidenced that Rim1 also prevents voltage-dependent inactivation of the channels through a direct interaction with the ancillary ??-subunits, thus facilitating neurotransmitter release. However, facilitation of synaptic activity may also be caused by a reduction of the inhibitory pathway carried by G-protein-coupled receptors. Here, we explored the functional implication of Rim1 in G-protein regulation of Cav2.2 channels. Activation of ??-opioid receptors expressed in HEK-293 cells along with Cav2.2 channels produced a drastic current inhibition both in control and Rim1-expressing cells. In contrast, Rim1 considerably promoted the extent of current deinhibition following channel activation, favoring sustained Ca2+ influx under prolonged activity. Our data suggest that Rim1-induced facilitation of neurotransmitter release may come as a consequence of a decrease in the inhibitory pathway carried by G-proteins that contributes, together with the slowing of channel inactivation, to maintain Ca2+ influx under prolonged activity. The present study also furthers functional insights in the importance of proteins from the presynaptic vesicle complex in the regulation of voltage-gated Ca2+ channels by G-proteins.  相似文献   

2.
Ca2+ -dependent inactivation (CDI) has recently been shown in heterologously expressed N-type calcium channels (CaV2.2), but CDI has been inconsistently observed in native N-current. We examined the effect of Ca2+ on N-channel inactivation in rat sympathetic neurons to determine the role of CDI on mammalian N-channels. N-current inactivated with fast (tau approximately 150 ms) and slow (tau approximately 3 s) components in Ba2+. Ca2+ differentially affected these components by accelerating the slow component (slow inactivation) and enhancing the amplitude of the fast component (fast inactivation). Lowering intracellular BAPTA concentration from 20 to 0.1 mM accelerated slow inactivation, but only in Ca2+ as expected from CDI. However, low BAPTA accelerated fast inactivation in either Ca2+ or Ba2+, which was unexpected. Fast inactivation was abolished with monovalent cations as the charge carrier, but slow inactivation was similar to that in Ba2+. Increased Ca2+, but not Ba2+, concentration (5-30 mM) enhanced the amplitude of fast inactivation and accelerated slow inactivation. However, the enhancement of fast inactivation was independent of Ca2+ influx, which indicates the relevant site is exposed to the extracellular solution and is inconsistent with CDI. Fast inactivation showed U-shaped voltage dependence in both Ba2+ and Ca2+, which appears to result from preferential inactivation from intermediate closed states (U-type inactivation). Taken together, the data support a role for extracellular divalent cations in modulating U-type inactivation. CDI appears to play a role in N-channel inactivation, but on a slower (sec) time scale.  相似文献   

3.
We investigated the relationship between intraterminal Ca(2+) concentration ([Ca(2+)](i)) and the frequency of miniature end plate potentials (MEPPs) at the frog neuromuscular junction by use of ratiometric imaging of fura-2-loaded nerve terminals and intracellular recording of MEPPs. Elevation of extracellular [KCl] over the range of 2-20 mM resulted in increases in [Ca(2+)](i) and MEPP frequency. Loading terminals with the fast and slow Ca(2+)-buffers bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-acetoxymethyl (BAPTA-AM) and EGTA-AM resulted in equivalent reductions in the KCl-dependent increases in MEPP frequency. The [Ca(2+)](i) dependence of MEPP frequency determined by elevation of [Ca(2+)](i) due to application of 0.1-10 microM ionomycin was similar to that determined when [Ca(2+)](i) was raised by increasing extracellular KCl. Measurements in 10 mM extracellular KCl revealed that application of the phorbol ester phorbol 12 myristate 13-acetetate (PMA) caused an increase in MEPP frequency while the inactive analogue, 4 alpha-PMA, did not. PMA application also caused an increase in [Ca(2+)](i). The relationship between [Ca(2+)](i) and MEPP frequency in PMA was the same as was determined by the other methods of raising [Ca(2+)](i). Under all conditions tested, our data revealed a low [Ca(2+)](i) threshold for activation of transmitter release and are consistent with a K(d) for [Ca(2+)](i) on the order of 1 microM.  相似文献   

4.
Ultrastructural remodeling, with evidence of focal deafferentation and reinnervation, occurs within normal young adult rat soleus neuromuscular junctions (Cardasis and Padykula, 1981). This may be related to normal variations in function. Recognition of this plasticity provides a basis for analysis of aging changes in junctional ultrastructure. Thirty soleus junctions were studied between 11 and 26 months of life. In these junctions, compared to younger ones (3-5 months) synaptic sites with the conventional ultrastructure become increasingly sparse. There is an increase in extent and frequency of exposed junctional folds, of intervention of Schwann cell cytoplasm between axon and junctional folds, and of numbers of lysosomes in all cytoplasmic profiles. Often primary clefts are shallow or missing, and secondary folds are widened and contain collagen. Features limited largely to these older junctions include highly pleomorphic myonuclei, deeply invaginated by myofibrils, and an increase in cellular profiles between basal lamina and sarcolemma. The identity of these profiles is unknown. At other locations within many of the same endplates, small intact terminals are associated with larger expanses of junctional folds, and several small terminals occur within the same primary cleft. Such terminals frequently contain dense-cored vesicles. These observations suggest continuation of some terminal axonal regeneration. Thus, the ultrastructure of these aging neuromuscular junctions reveals the same degenerative and regenerative events suggested by the ultrastructure of younger junctions, but suggests a shift in the balance between them.  相似文献   

5.
Ultrastructural remodeling, with evidence of focal deafferentation and reinnervation, occurs within normal young adult rat soleus neuromuscular junctions (Cardasis and Padykula, 1981). This may be related to normal variations in function. Recognition of this plasticity provides a basis for analysis of aging changes in junctional ultrastructure. Thirty soleus junctions were studied between 11 and 26 months of life. In these junctions, compared to younger ones (3–5 months) synaptic sites with the conventional ultrastructure become increasingly sparse. There is an increase in extent and frequency of exposed junctional folds, of intervention of Schwann cell cytoplasm between axon and junctional folds, and of numbers of lysosomes in all cytoplasmic profiles. Often primary clefts are shallow or missing, and secondary folds are widened and contain collagen. Features limited largely to these older junctions include highly pleomorphic myonuclei, deeply invaginated by myofibrils, and an increase in cellular profiles between basal lamina and sarcolemma. The identity of these profiles is unknown. At other locations within many of the same endplates, small intact terminals are associated with larger expanses of junctional folds, and several small terminals occur within the same primary cleft. Such terminals frequently contain dense-cored vesicles. These observations suggest continuation of some terminal axonal regeneration. Thus, the ultrastructure of these aging neuromuscular junctions reveals the same degenerative and regenerative events suggested by the ultrastructure of younger junctions, but suggests a shift in the balance between them.  相似文献   

6.
The calcium channel CACNA1A gene encodes the pore-forming, voltage-sensitive subunit of the voltage-dependent calcium Ca(v)2.1 type channel. Mutations in this gene have been linked to several human disorders, including familial hemiplegic migraine, episodic ataxia 2 and spinocerebellar ataxia type 6. The mouse homologue, Cacna1a, is associated with the tottering, Cacna1a(tg), mutant series. Here we describe two new missense mutant alleles, Cacna1a(tg-4J) and Cacna1a(Tg-5J). The Cacna1a(tg-4J) mutation is a valine to alanine mutation at amino acid 581, in segment S5 of domain II. The recessive Cacna1a(tg-4J) mutant exhibited the ataxia, paroxysmal dyskinesia and absence seizures reminiscent of the original tottering mouse. The Cacna1a(tg-4J) mutant also showed altered activation and inactivation kinetics of the Ca(v)2.1 channel, not previously reported for other tottering alleles. The semi-dominant Cacna1a(Tg-5J) mutation changed a conserved arginine residue to glutamine at amino acid 1252 within segment S4 of domain III. The heterozygous mouse was ataxic and homozygotes rarely survived. The Cacna1a(Tg-5J) mutation caused a shift in both voltage activation and inactivation to lower voltages, showing that this arginine residue is critical for sensing Ca(v)2.1 voltage changes. These two tottering mouse models illustrate how novel allelic variants can contribute to functional studies of the Ca(v)2.1 calcium channel.  相似文献   

7.
Ahnak1 has been implicated in the beta-adrenergic regulation of the cardiac L-type Ca(2+) channel current (I (CaL)) by its binding to the regulatory Cavβ(2) subunit. In this study, we addressed the question whether ahnak1/Cavβ(2) interactions are essential or redundant for beta-adrenergic stimulation of I (CaL). Three naturally occurring ahnak1 variants (V5075?M, G5242R, and T5796?M) identified by genetic screening of cardiomyopathy patients did essentially not influence the in vitro Cavβ(2) interaction as assessed by recombinant proteins. But, we observed a robust increase in Cavβ(2) binding by mutating Ala at position 4984 to Pro which creates a PxxP consensus motif in the ahnak1 protein fragment. Surface plasmon resonance measurements revealed that this mutation introduced an additional Cavβ(2) binding site. The functionality of A4984P was supported by the specific action of the Pro-containing ahnak1-derived peptide (P4984) in beta-adrenergic regulation of I (CaL). Patch clamp recordings on cardiomyocytes showed that intracellular perfusion of P4984 markedly reduced I (CaL) response to the beta-adrenergic agonist, isoprenaline, while the Ala-containing counterpart failed to affect I (CaL). Interestingly, I (CaL) of ahnak1-deficient cardiomyocytes was not affected by peptide application. Moreover, I (CaL) of ahnak1-deficient cardiomyocytes showed intact beta-adrenergic responsiveness. Similarly isolated ahnak1-deficient mouse hearts responded normally to adrenergic challenge. Our results indicate that ahnak1 is not essential for beta-adrenergic up-regulation of I (CaL) and cardiac contractility in mice. But, tuning ahnak1/Cavβ(2) interaction provides a tool for modulating the beta-adrenergic response of I (CaL).  相似文献   

8.
Presynaptic calcium influx at the inhibitor of the crayfish neuromuscular junction was investigated by measuring fluorescence transients generated by calcium-sensitive dyes. This approach allowed us to correlate presynaptic calcium influx with transmitter release at a high time resolution. Systematic testing of the calcium indicators showed that only low-affinity dyes, with affinities in the range of micromolar, should be used to avoid saturation of dye binding and interference with transmitter release. Presynaptic calcium influx was regulated by slowly increasing the duration of the action potential through progressive block of potassium channels. The amplitude of the calcium transient, measured from a cluster of varicosities, was linearly related to the duration of the action potential with a slope of 1.2. Gradual changes in potassium channel block allowed us to estimate the calcium cooperativity of transmitter release over a 10-fold range in presynaptic calcium influx. Calcium cooperativity measured here exhibited one component with an average value of 3.1. Inspection of simultaneously recorded presynaptic calcium transients and inhibitory postsynaptic currents (IPSCs) showed that prolonged action potentials were associated with a slow rising phase of presynaptic calcium transients, which were matched by a slow rate of rise of IPSCs. The close correlation suggests that fluorescence transients provide information on the rate of calcium influx. Because there is an anatomic mismatch between the presynaptic calcium transient, measured from a cluster of varicosities, and IPSC, measured with two-electrode voltage clamp, macropatch recording was used to monitor inhibitory postsynaptic responses from the same cluster of varicosities from which the calcium transient was measured. Inhibitory postsynaptic responses recorded with the macropatch method exhibited a faster rising phase than that recorded with two-electrode voltage clamp. This difference could be attributed to slight asynchrony of transmitter release due to action potential conduction along fine branches. In conclusion, this report shows that fluorescence transients generated by calcium-sensitive dyes can provide insights to the properties of presynaptic calcium influx, and its correlation with transmitter release, at a high time resolution.  相似文献   

9.
AH5183 was studied because it inhibits acetylcholine transport into synaptic vesicles. The drug apparently is a slow-acting anti-cholinesterase, so further experiments were performed with this enzyme inhibited. Soaking for hours in AH5183 in Ringer does not decrease quantal size. However, a few minutes of tetanic nerve stimulation results in a marked decrease in quantal size. Quantal size also decreased after hours in a hypertonic Ringer containing the drug.  相似文献   

10.
In vertebrates there is a delay in impulse transmission at the neuromuscular junction termed residual latency (RL). RL is composed of synaptic delay proper plus delays due to reduced conduction velocities of fine nerve and muscle fibers. There have been few studies on RL and none under controlled conditions. RL has been determined for 485 HS mice and for 65 male inbred mice in five strains. All measurements were made on tails of awake mice 60–72 days old. The interval between the peak of the compound nerve action potential and the peak of the compound muscle action potential is defined as RL. In 400 HS males the mean (±SE) RL was 0.930±0.005 ms, with a range of 0.726 to 1.375 ms. Inbred means ranged from 0.714±0.024 ms for A/J to 0.0902±0.020 ms for DBA/1J. The inbred means differed very significantly among themselves (F=11.36, df=4, 60,P<0.0001). Nested ANOVA of RL by litter, family, and generation for the HS males and repeated-measures (test-retest) ANOVA for some HS males and inbreds permit estimation of environmental and genetic variances. Corrected for testing error, broad-sense heritability is estimated to be at least one-third and may be appreciably greater. RL may be of interest to behavioral geneticists because of its heritability and its reflection of certain types of CNS synaptic activity.This work was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

11.
Voltage-gated Ca(2+) (Ca(v))1.3 α-subunits of high voltage-activated Ca(2+) channels (HVACCs) are essential for Ca(2+) influx and transmitter release in cochlear inner hair cells and therefore for signal transmission into the central auditory pathway. Their absence leads to deafness and to striking structural changes in the auditory brain stem, particularly in the lateral superior olive (LSO). Here, we analyzed the contribution of various types of HVACCs to the total Ca(2+) current (I(Ca)) in developing mouse LSO neurons to address several questions: do LSO neurons express functional Ca(v)1.3 channels? What other types of HVACCs are expressed? Are there developmental changes? Do LSO neurons of Ca(v)1.3(-/-) mice show any compensatory responses, namely, upregulation of other HVACCs? Our electrophysiological and pharmacological results showed the presence of functional Ca(v)1.3 and Ca(v)1.2 channels at both postnatal days 4 and 12. Aside from these L-type channels, LSO neurons also expressed functional P/Q-type, N-type, and, most likely, R-type channels. The relative contribution of the four different subtypes to I(Ca) appeared to be 45%, 29%, 22%, and 4% at postnatal day 12, respectively. The physiological results were flanked and extended by quantitative RT-PCR data. Altogether, LSO neurons displayed a broad repertoire of HVACC subtypes. Genetic ablation of Ca(v)1.3 resulted in functional reorganization of some other HVACCs but did not restore normal I(Ca) properties. Together, our results suggest that several types of HVACCs are of functional relevance for the developing LSO. Whether on-site loss of Ca(v)1.3, i.e., in LSO neurons, contributes to the recently described malformation of the LSO needs to be determined by using tissue-specific Ca(v)1.3(-/-) animals.  相似文献   

12.
Aim: To investigate the direct effect of testosterone and its precursor/derivative dehydroepiandrosterone (DHEA) on isolated rat abdominal aortic rings. Materials and methods: 3 mm abdominal aortic rings that were obtained from 3 months old male Sprague-Dawley rats were suspended in organ baths containing Hepes buffered PSS bubbled with 100% oxygen. Relaxation response to testosterone and DHEA was studied in noradrenalin pre-contracted rings. The role of aromatase and androgen receptor was assessed by inhibition using aminogluthetemide and blockade using flutamide respectively. Relaxation responses of the rings to testosterone in the presence of l-NAME, indomethacin, barium chloride, apamin, charybdotoxin, iberiotoxin, and nifedipine were also determined. Results: Both aromatase inhibition and androgen receptor blockade did not block the relaxing effect of testosterone on rings from rat abdominal aorta. Also there was no significant difference between testosterone relaxation response in the presence or absence of l-NAME and indomethacin. However 3 μM, BaCl2 almost completely abolished the aortic ring relaxation response to testosterone while 1 μM, nifedipine potentiated the vasorelaxing effect of testosterone. Conclusion: Testosterone relaxes abdominal aorta directly via a non-genomic pathway which is independent of endothelial derived vasoactive substances, but involves activation of inward rectifying potassium channel (KIR) and blockade of l-type calcium channel.  相似文献   

13.
14.
Voltage-dependent calcium channels (VDCC) have a key role in neuronal function transforming the voltage signals into intracellular calcium signals. They are composed of the pore-forming alpha(1) and the regulatory alpha(2)delta, gamma and beta subunits. Molecular and functional studies have revealed which alpha(1) subunit gene product is the molecular constituent of each class of native calcium channel (L, N, P/Q, R and T type). Electrophysiological and immunocytochemical studies have suggested that at adult mouse motor nerve terminal (MNT) only P/Q type channels, formed by alpha(1A) subunit, mediate evoked transmitter release. The generation of alpha(1A)-null mutant mice offers an opportunity to study the expression and localization of calcium channels at a synapse with complete loss of P/Q calcium channel. We have investigated the expression and localization of VDCCs alpha(1) and beta subunits at the wild type (WT) and knockout (KO) mouse neuromuscular junction (NMJ) using fluorescence immunocytochemistry. The alpha(1A) subunit was observed only at WT NMJ and was absent at denervated muscles and at KO NMJ. The subunits alpha(1B), alpha(1D) and alpha(1E) were also present at WT NMJ and they were over- expressed at KO NMJ suggesting a compensatory expression due to the lack of the alpha(1A). On the other hand, the beta(1b), beta(2a) and beta(4) were present at the same levels in both genotypes. The presence of other types of VDCC at WT NMJ indicate that they may play other roles in the signaling process which have not been elucidated and also shows that other types of VDCC are able to substitute the alpha(1A) subunit, P/Q channel under certain pathological conditions.  相似文献   

15.
We report here evidence for endogenous NO signalling in long-term (> 1 h) synaptic depression at the neuromuscular junction induced by 20 min of 1 Hz nerve stimulation. Synaptic depression was characterized by a 46% reduction in the end-plate potential (EPP) amplitude and a 21% decrease in miniature EPP (MEPP) frequency, but no change to MEPP amplitude, indicating a reduction in evoked quantal release. Both the membrane-impermeant NO scavenger cPTIO and the NOS inhibitor+ release from the sarcoplasmic reticulum and muscle contraction were blocked with dantrolene. These data suggest that the depression depends on transmission, but not muscle contraction. The calcineurin inhibitors cyclosporin A and FK506, as well as ODQ, an inhibitor of NO-sensitive soluble guanylyl cyclase, Rp-8-pCPT-cGMPS, an inhibitor of cGMP-dependent protein kinase, and the calmodulin antagonist phenoxybenzamine also blocked depression. We propose that low frequency synaptic transmission leads to production of NO at the synapse and depression of transmitter release via a cGMP-dependent mechanism. The NO could be generated either directly from the muscle, or possibly from the Schwann cell in response to an unidentified muscle-derived messenger. We showed that the long-lasting depression of transmitter release was due to sustained activity of the NO signalling pathway, and suggest dephosphorylation of NOS by calcineurin as the basis for continued NO production.  相似文献   

16.
The severely ataxic and epileptic mouse leaner (Ln) carries a natural splice site mutation in Cacna1a, leading to a C-terminal truncation of the encoded Ca(v)2.1 alpha(1) protein. Ca(v)2.1 is a neuronal Ca(2+) channel, mediating neurotransmitter release at many central synapses and the peripheral neuromuscular junction (NMJ). With electrophysiological analyses we demonstrate severely reduced ( approximately 50%) neurotransmitter release at Ln NMJs. This equals the reduction at NMJs of Cacna1a null-mutant (Ca(v)2.1-KO) mice, which display a neurological phenotype remarkably similar to that of Ln mice. However, using selective Ca(v) channel blocking compounds we revealed a compensatory contribution profile of non-Ca(v)2.1 type channels at Ln NMJs that differs completely from that at Ca(v)2.1-KO NMJs. Our data indicate that the residual function and presence of Ln-mutated Ca(v)2.1 channels precludes presynaptic compensatory recruitment of Ca(v)1 and Ca(v)2.2 channels, and hampers that of Ca(v)2.3 channels. This is the first report directly showing at single synapses the deficits and plasticity in transmitter release resulting from the Ln mutation of Cacna1a.  相似文献   

17.
Nociceptive neurons of the dorsal root ganglion (DRG) express a combination of rapidly gating TTX-sensitive and slowly gating TTX-resistant Na currents, and the channels that produce these currents have been cloned. The Na(v)1.7 and Na(v)1.8 channels encode for the rapidly inactivating TTX-sensitive and slowly inactivating TTX-resistant Na currents, respectively. Although the Na(v)1.7 channel expresses well in cultured mammalian cell lines, attempts to express the Na(v)1.8 channel using similar approaches has been met with limited success. The inability to heterologously express Na(v)1.8 has hampered detailed characterization of the biophysical properties and pharmacology of these channels. In this study, we investigated the determinants of Na(v)1.8 expression in tsA201 cells, a transformed variant of HEK293 cells, using a combination of biochemistry, immunochemistry, and electrophysiology. Our data indicate that the unusually low expression levels of Na(v)1.8 in tsA201 cells results from a trafficking defect that traps the channel protein in the endoplasmic reticulum. Incubating the cultured cells with the local anesthetic lidocaine dramatically enhanced the cell surface expression of functional Na(v)1.8 channels. The biophysical properties of the heterologously expressed Na(v)1.8 channel are similar but not identical to those of the TTX-resistant Na current of native DRG neurons, recorded under similar conditions. Our data indicate that the lidocaine acts as a molecular chaperone that promotes efficient trafficking and increased cell surface expression of Na(v)1.8 channels.  相似文献   

18.
19.
The transport of calcium ions (Ca(2+)) to the cytosol is essential for immunoreceptor signaling, regulating lymphocyte differentiation, activation, and effector function. Increases in cytosolic-free Ca(2+) concentrations are thought to be mediated through two interconnected and complementary mechanisms: the release of endoplasmic reticulum Ca(2+) "stores" and "store-operated" Ca(2+) entry via plasma membrane channels. However, the identity of molecular components conducting Ca(2+) currents within developing and mature T?cells is unclear. Here, we have demonstrated that the L-type "voltage-dependent" Ca(2+) channel Ca(V)1.4 plays a cell-intrinsic role in the function, development, and survival of naive T?cells. Plasma membrane Ca(V)1.4 was found to be essential for modulation of intracellular Ca(2+) stores and T?cell receptor (TCR)-induced rises in cytosolic-free Ca(2+), impacting activation of Ras-extracellular signal-regulated kinase (ERK) and nuclear factor of activated T?cells (NFAT) pathways. Collectively, these studies revealed that Ca(V)1.4 functions in controlling naive T?cell homeostasis and antigen-driven T?cell immune responses.  相似文献   

20.
Although optically based imaging techniques provide valuable functional and physiological information of the retina, they are mostly limited to the probing of the retinal surface and require an unobstructed light path. MRI, in contrast, could offer physiological and functional data without depth limitation. Blood oxygenation level-dependent functional MRI (BOLD fMRI) of the thin rat retina is, however, challenging because of the need for high spatial resolution, and the potential presence of eye movement and susceptibility artifacts. This study reports a novel application of high-resolution (111 × 111 × 1000 μm(3)) BOLD fMRI of visual stimulation in the anesthetized rat retina at 11.7 T. A high-field MRI scanner was utilized to improve the signal-to-noise ratio, spatial resolution and BOLD sensitivity. Visual stimuli (8 Hz diffuse achromatic light) robustly increased BOLD responses in the retina [5.0 ± 0.8% from activated pixels and 3.1 ± 1.1% from the whole-retina region of interest (mean ± SD), n = 12 trials on six rats, p < 0.05 compared with baseline]. Some activated pixels were detected surrounding the pupil and ciliary muscle because of accommodation reflex to visual stimuli, and were reduced with atropine and phenylephrine eye drops. BOLD fMRI scans without visual stimulations showed no significantly activated pixels (whole-retina BOLD changes were 0.08 ± 0.34%, n = 6 trials on five rats, not statistically different from baseline, p > 0.05). BOLD fMRI of visual stimulation has the potential to provide clinically relevant data to probe hemodynamic neurovascular coupling and dysfunction of the retina with depth resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号