首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dengue viruses (DV) infection is an important public health issue all over the world. Although the pathogenesis remains unclear, the overwhelmingly triggered immune responses have been consistently observed. Recently, we and other researchers demonstrated that the natural hosts for DV are dendritic cells (DC), the primary sentinels of immune system. In light of the significance of T cells in dengue virus pathogenesis, here, we examine the possible consequences of DC-T cell interaction that is supposed to be happening in lymphoid tissues after infection. We showed that DV-infected DC induced the interacting T cells to proliferate, to produce interleukin-2 as well as to express activation markers on cell surface. Compared to mock-infected DC, the infection of DC by DV also induced T cells to produce interleukin-4, interleukin-10 and interferon-gamma, a cytokine pattern suggesting Th0 phenotype. Such an effect was either totally abolished or greatly reduced when DV were pre-inactivated with heat or ultraviolet before infection. In addition, we demonstrated that such a Th0 phenotype shift of T cells was affected neither by different dosages of viruses that infected DC nor by different durations of DC-T cell interaction. Our results provide a basic support for clinical observations and may be of help in understanding the pathogenesis of DV infection.  相似文献   

2.
Dengue viruses (DV) infection is an important public health issue all over the world. Although the pathogenesis remains unclear, the overwhelmingly triggered immune responses have been consistently observed. Recently, we and other researchers demonstrated that the natural hosts for DV are dendritic cells (DC), the primary sentinels of immune system. In light of the significance of T cells in dengue virus pathogenesis, here, we examine the possible consequences of DC‐T cell interaction that is supposed to be happening in lymphoid tissues after infection. We showed that DV‐infected DC induced the interacting T cells to proliferate, to produce interleukin‐2 as well as to express activation markers on cell surface. Compared to mock‐infected DC, the infection of DC by DV also induced T cells to produce interleukin‐4, interleukin‐10 and interferon‐gamma, a cytokine pattern suggesting Th0 phenotype. Such an effect was either totally abolished or greatly reduced when DV were pre‐inactivated with heat or ultraviolet before infection. In addition, we demonstrated that such a Th0 phenotype shift of T cells was affected neither by different dosages of viruses that infected DC nor by different durations of DC‐T cell interaction. Our results provide a basic support for clinical observations and may be of help in understanding the pathogenesis of DV infection.  相似文献   

3.
Mast cells (MCs) play an important role in the regulation of protective adaptive immune responses against pathogens. However, it is still unclear whether MCs promote such host defense responses via direct effects on T cells or rather by modifying the functions of antigen-presenting cells. To identify the underlying mechanisms of the immunoregulatory capacity of MCs, we investigated the impact of MCs on dendritic cell (DC) maturation and function. We found that murine peritoneal MCs underwent direct crosstalk with immature DCs that induced DC maturation as evidenced by enhanced expression of costimulatory molecules. Furthermore, the MC/DC interaction resulted in the release of the T-cell modulating cytokines IFN-γ, IL-2, IL-6 and TGF-β into coculture supernatants and increased the IL-12p70, IFN-γ, IL-6 and TGF-β secretion of LPS-matured DCs. Such MC-"primed" DCs subsequently induced efficient CD4+ T-cell proliferation. Surprisingly, we observed that MC-primed DCs stimulated CD4+ T cells to release high levels of IFN-γ and IL-17, demonstrating that MCs promote Th1 and Th17 responses. Confirming our in vitro findings, we found that the enhanced disease progression of MC-deficient mice in Leishmania major infection is correlated with impaired induction of both Th1 and Th17 cells.  相似文献   

4.
The adaptive immune response is initiated when naive T cells interact with dendritic cells (DC). However, the physicodynamics as well as the molecules that constitute the contact plane (immunological synapse) between DC and T cells are not well understood. We show here that for the formation of stable conjugates, T cells need to be preactivated by DC in a CD80/86- and antigen dose-dependent manner. When activated, T cells induce cytoskeletal reorganization within DC via CD40-CD40L signaling. Polarization of the actin and fascin cytoskeleton in DC is associated with sustained DC-T cell contacts, strong T cell proliferation and a Th1 response. Organized contact planes with clearly separated patches containing TCR or CD11a are also formed. Thus, DC-T cell interactions take place in a sequential, interdependent fashion: first, DC "license" naive T cells to engage DC in an antigen dose- and CD80/86-dependent fashion. Then, these preactivated T cells induce cytoskeletal reorientation in DC, resulting in sustained DC-T cell contacts and subsequent T cell activation. These results demonstrate that T cells control the mode of interaction based on information gathered from DC.  相似文献   

5.
Helicobacter pylori causes chronic gastric infection that affects the majority of the world's population. Despite generating an inflammatory response, the immune system usually fails to clear the infection. Since dendritic cells (DCs) play a pivotal role in shaping the immune response, we investigated the effects of H. pylori on DC function. We have demonstrated that H. pylori increased the expression of activation markers on DCs while upregulating the inhibitory B7 family molecule, PD-L1. Functionally, H. pylori-treated DCs resulted in the production of interleukin-10 (IL-10) and IL-23 but not of alpha interferon (IFN-alpha). While very little or no IL-12 was produced to H. pylori alone, simultaneous ligation of CD40 on DCs induced IL-12 release. We also demonstrated that DCs treated with H. pylori-induced IFN-gamma production by allogeneic naive T cells. However, stimulation of DCs with H. pylori for an extended period of time impaired their ability to produce cytokines after CD40 ligation and limited their ability to promote IFN-gamma release, suggesting that the DCs had become exhausted by the prolonged stimulation. The effect of chronic infection with H. pylori on DC function was further investigated by focusing on DC development. Demonstrating that monocytes differentiated into DCs in the presence of H. pylori exhibited an exhausted phenotype with an impaired ability to produce IL-12 and a downregulation of CD1a. Our results raise the possibility that in chronic H. pylori infection DCs become exhausted after prolonged antigen exposure leading to suboptimal Th1 development. This effect may contribute to persistence of H. pylori infection.  相似文献   

6.
Leptin is an adipose‐secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1‐cell polarization and inhibit Th2‐cell responses. Additionally, leptin induces Th17‐cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg‐cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL‐12, TNF‐α, and IL‐6, (iii) increased DC production of TGF‐β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T‐cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin‐free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.  相似文献   

7.
Effective viral immunity depends on the activation of T cells by professional antigen presenting cells, such as dendritic cells (DC). The remarkable heterogeneity of the DC network allows the immune system to respond specifically to various infection strategies by different viruses. As a consequence, DC-T cell interactions resulting in optimal virus-specific T cell priming are highly flexible and involve different types of DC. Further highlighting this complexity, recent lines of evidence suggest that presentation of viral antigen by DC is not only restricted to lymphoid organs, but instead also occurs at peripheral sites of infection. Here we discuss the multifaceted interactions between DC and T cells during peripheral virus infections in both lymphoid organs and the periphery.  相似文献   

8.
Physical interaction of T cells and dendritic cells (DCs) is essential for T cell proliferation and differentiation, but it has been unclear how this interaction is regulated physiologically. Here we show that DCs produce thromboxane A2 (TXA2), whereas naive T cells express the thromboxane receptor (TP). In vitro, a TP agonist enhances random cell movement (chemokinesis) of naive but not memory T cells, impairs DC-T cell adhesion, and inhibits DC-dependent proliferation of T cells. In vivo, immune responses to foreign antigens are enhanced in TP-deficient mice, which also develop marked lymphadenopathy with age. Similar immune responses were seen in wild-type mice treated with a TP antagonist during the sensitization period. Thus, TXA2-TP signaling modulates acquired immunity by negatively regulating DC-T cell interactions.  相似文献   

9.
Dendritic cells are the most relevant antigen-presenting cells (APC) for presentation of antigens administered in adjuvant to CD4+ T cells. Upon interaction with antigen-specific T cells, dendritic cells (DC) expressing appropriate peptide-MHC class II complexes secrete IL-12, a cytokine that drives Th1 cell development. To analyze the T cell-mediated regulation of IL-12 secretion by DC, we have examined their capacity to secrete IL-12 in response to stimulation by antigen-specific Th1 and Th2 DO11.10 TCR-transgenic cells. These cells do not differ either in TCR clonotype or CD40 ligand (CD40L) expression. Interaction with antigen-specific Th1, but not Th2 cells, induces IL-12 p40 and p75 secretion by DC. The induction of IL-12 production by Th1 cells does not depend on their IFN-γ secretion, but requires direct cell-cell contact mediated by peptide/MHC class II-TCR and CD40-CD40L interactions. Th2 cells not only fail to induce IL-12 secretion, but they inhibit its induction by Th1 cells. Unlike stimulation by Th1, inhibition of IL-12 production by Th2 cells is mediated by soluble molecules, as demonstrated by transwell cultures. Among Th2-derived cytokines, IL-10, but not IL-4 inhibit Th1-driven IL-12 secretion. IL-10 produced by Th2 cells appears to be solely responsible for the inhibition of Th1-induced IL-12 secretion, but it does not account for the failure of Th2 cells to induce IL-12 production by DC. Collectively, these results demonstrate that Th1 cells up-regulate IL-12 production by DC via IFN-γ-independent cognate interaction, whereas this is inhibited by Th2-derived IL-10. The inhibition of Th1-induced IL-12 production by Th2 cells with the same antigen specificity represents a novel mechanism driving the polarization of CD4+ T cell responses.  相似文献   

10.
We have previously reported that CCR5-dependent human immunodeficiency virus type-1 (HIV-1; R5), but not CXCR4-restricted (X4) virus, efficiently replicates in T helper cell type 1 (Th1), Th2, or Th0 polyclonal T cells obtained from human umbilical cord blood (CB lines). The X4 virus restriction was env-dependent but did not occur at the level of viral entry. Here, we describe that in contrast to these monotropic HIVs, primary HIV-1 isolates capable of using CCR5 or CXCR4 indifferently for entry (i.e., R5X4 viruses) efficiently replicated in Th2 but not in Th1 CB lines. Although Th1 cells secreted significantly higher amounts of the three CCR5-binding chemokines in comparison with Th2 cells, this restriction was not explained by a defective infection of Th1 cells. Interferon-gamma (IFN-gamma) down-regulated CCR5 in Th1 cells and inhibited, whereas interleukin-4 (IL-4) up-regulated CXCR4 and enhanced the spreading of R5 and R5X4 viruses in polarized CB lines. However, both cytokines did not rescue the replication of X4 and dualtropic viruses in both types of CB lines or in Th1 cells, respectively, whereas addition of anti-IL-4- or anti-IFN-gamma-neutralizing antibodies did not activate virus expression. These findings together suggest the existence of post-entry restriction pathways influenced by gp120 Env/chemokine coreceptor interaction that may significantly contribute to the superior capacity of R5 and R5X4 HIV-1 strains to spread in vivo in comparison to X4 monotropic viruses.  相似文献   

11.
Dendritic cell (DC) maturation state is a key parameter for the issue of DC-T cell cognate interaction, which determines the outcome of T cell activation. Indeed, immature DCs induce tolerance while fully mature DCs generate immunity. Here we show that, in the absence of any deliberate activation signal, DCs freshly isolated from mouse spleen spontaneously produce IL-12 and tumor necrosis factor-alpha and up-regulate co-stimulation molecules, even when directly re-injected into their natural environment. Furthermore, after their isolation, these cells acquire the capacity to induce specific T(h)1 responses in vivo. These results demonstrate that the sole isolation of spleen DCs leads to the full maturation of these cells, which therefore cannot be considered as immature DCs. Moreover, we also show that the kinetics of DC activation do not influence the polarization of T(h) response in vivo challenging the idea that exhausted DCs induce preferentially T(h)2 response. Altogether, these observations should be taken into account in all experiments based on the transfer of ex vivo purified DCs.  相似文献   

12.
It has been shown that different types of pathogens induce different immune responses. Recovery from intracellular bacterial and viral infection is dependent on the secretion of Th1 cytokines, such as interferon-gamma (IFN-gamma), and on the generation of cytotoxic T cells. In contrast, responses to some parasitic invaders are of the Th2 type, characterized by secretion of interleukin-4 (IL-4). At present, it is not clear what directs this choice, and the most prevalent hypotheses are based on the dendritic cells (DC). In this work, we studied the immune responses generated in mice to a number of antigens, both replicating and nonreplicating, using bone marrow-derived DC as vehicles for immunization. We demonstrate that DC infected with influenza virus prime for a pure Th1 response in vivo devoid of IL-4 induction. This immune response correlates with the induction of DC maturation by the virus. In contrast, nonreplicating antigens, such as fetal bovine serum (FBS), beta-galactosidase, or inactivated influenza virus, do not mature the DC and prime for responses characterized by the secretion of large amounts of IL-4. These data support the hypothesis that myeloid DC are capable of eliciting both types of responses depending on the nature of the antigen.  相似文献   

13.
14.
To investigate the functional difference of bone marrow (BM)-derived dendritic cells (DC), BM cells were cultured under three different cytokine conditions and the induced DC were temporarily designated as DC0, DC1, or DC2 cells. DC0 were induced by culture of BM cells with granulocyte macrophage colony-stimulating factor (GMCSF) plus interleukin 3 (IL-3). DC1 were induced by culture with Th1-inducing cytokine (IL-12, gamma-interferon-IFN-gamma) in addition to GMCSF plus IL-3. DC2 were induced by culture with Th2-inducing cytokine (IL-4) in addition to GMCSF plus IL-3. Flow cytometric analysis demonstrated that almost all DC0, DC1 and DC2 cells were stained with anti-CD11c, which reacts with a marker for DC cells. However, interestingly, DC0, DC1 and DC2 cells expressed different amounts of functional molecules on their cell surface. Namely, DC1 cells expressed the highest levels of MHC class I, class II, CD40, B7.1 and B7.2 compared with DC0 and DC2 cells. In terms of IL-12 production, DC1 cells showed enhanced production, while DC2 cells showed reduced production compared with DC0 cells. Moreover, it was shown that both DC0 and DC1 supported the differentiation of IFN-gamma-producing Th1 cells, but not IL-4-producing Th2 cells from TCR-transgenic mouse naive Th cells. However, DC2 cells selectively enhanced the differentiation of IL-4-producing Th2 cells. These data strongly suggested that DC1 cells might be preferable antigen-presenting cells for application to immunotherapy.  相似文献   

15.
16.
Th17 cells and CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells are thought to promote and suppress inflammatory responses, respectively. Here we explore why under Th17 cell polarizing conditions, Treg cells did not suppress, but rather upregulated, the expression of interleukin-17A (IL-17A), IL-17F, and IL-22 from responding CD4(+) T?cells (Tresp cells). Upregulation of IL-17 cytokines in Tresp cells was dependent on?consumption of IL-2 by Treg cells, especially at early time points both in?vitro and in?vivo. During an oral Candida albicans infection in mice, Treg cells induced IL-17 cytokines in Tresp cells, which markedly enhanced fungal clearance and recovery from infection. These findings show how Treg cells can promote acute Th17 cell responses to suppress mucosal fungus infections and reveal that Treg cells?have a powerful capability to fight infections besides their role in maintaining tolerance or immune homeostasis.  相似文献   

17.
Bordetella pertussis, the causative agent of whooping cough, is internalized by several cell types, including epithelial cells, monocytes, and neutrophils. Although its ability to survive intracellularly is still debated, it has been proven that cell-mediated immunity (CMI) plays a pivotal role in protection. In this study we aimed to clarify the interaction of B. pertussis with human monocyte-derived dendritic cells (MDDC), evaluating the ability of the bacterium to enter MDDC, to survive intracellularly, to interfere with the maturation process and functional activities, and to influence the host immune responses. The results obtained showed that B. pertussis had a low capability to be internalized by-and to survive in-MDDC. Upon contact with the bacteria, immature MDDC were induced to undergo phenotypic maturation and acquired antigen-presenting-cell functions. Despite the high levels of interleukin-10 (IL-10) and the barely detectable levels of IL-12 induced by B. pertussis, the bacterium induced maturation of MDDC and T helper 1 (Th1) polarized effector cells. Gene expression analysis of the IL-12 cytokine family clearly demonstrated that B. pertussis induced high levels of the p40 and p19 subunits of IL-23 yet failed to induce the expression of the p35 subunit of IL-12. Overall our findings show that B. pertussis, even if it survives only briefly in MDDC, promotes the synthesis of IL-23, a newly discovered Th1 polarizing cytokine. A Th1-oriented immune response is thus allowed, relevant in the induction of an adequate CMI response, and typical of protection induced by natural infection or vaccination with whole-cell vaccines.  相似文献   

18.
Mechanisms controlling the Th1 / Th2 phenotype of a primary immune response are often discussed assuming that the generation of Th1 and Th2 cells from the common CD4(+) precursor T helper (pTh) involves an interaction of this pTh cell with an antigen-presenting cell (APC) in the form of a two-cell interaction. Other studies suggest that the outcome of this two-cell interaction is modified by the presence of other T cells. No study has analyzed primary immune responses generated in normal, non-TcR transgenic mice, following the administration of a non-infectious antigen administered without adjuvant. We show that the Th1 / Th2 phenotype of such a primary response, generated in lethally irradiated recipients reconstituted with a variety of unprimed spleen cells, depends conjointly on the amount of antigen and number of unprimed syngeneic CD4(+) T cells present, with higher amounts and numbers favoring the generation of Th2 cells. Our observations show how these quantitative variables control in an interdependent manner the Th1 / Th2 phenotype of a primary immune response, and bear upon the mechanism by which this phenotype is determined.  相似文献   

19.
Background Human thymic stromal lymphopoietin (TSLP) is expressed in the human asthmatic lung and activates dendritic cells (DCs) to strongly induce proallergic T‐helper type 2 (Th2) cell responses, suggesting that TSLP plays a critical role in the pathophysiology of human asthma. Th2 cells are predominantly involved in mild asthma, whereas a mixture of Th1 and Th2 cells with neutrophilic inflammation, probably induced by Th17, affects more severe asthmatic disease. Exacerbation of asthmatic inflammation is often triggered by airway‐targeting RNA viral infection; virus‐derived double‐stranded RNA, Toll‐like receptor (TLR)3 ligand, activates bronchial epithelial cells to produce pro‐inflammatory mediators, including TSLP. Objective Because TSLPR‐expressing DCs express TLR3, we examined how the relationship between TSLP and TLR3 ligand stimulation influences DC activation. Methods CD11c+DCs purified from adult peripheral blood were cultured in TLR ligands containing media with or without TSLP and then co‐cultured with allogeneic naïve CD4+T cells. Results CD11c+ DCs responded to a combination of TSLP and TLR3 ligand, poly(I : C), to up‐regulate expression of the functional TSLP receptor and TLR3. Although TSLP alone did not induce IL‐23 production by DCs, poly(I : C) alone primed DCs for the production of IL‐23, and a combination of TSLP and poly(I : C) primed DCs for further production of IL‐23. The addition of poly(I : C) did not inhibit TSLP‐activated DCs to prime naïve CD4+ T cells to differentiate into inflammatory Th2 cells. Furthermore, DCs activated by a combination of TSLP and poly(I : C) primed more naïve CD4+ T cells to differentiate into Th17‐cytokine–producing cells with a central memory T cell phenotype compared with DCs activated by poly(I : C) alone. Conclusions These results suggest that through DC activation, human TSLP and TLR3 ligands promote differentiation of Th17 cells with the central memory T cell phenotype under Th2‐polarizing conditions.  相似文献   

20.
Intestinal immune responses are normally regulated to maintain a state of immune balance. Dendritic cells (DC) are antigen-presenting cells, which induce immune responses against microbes and other stimuli and are key players in the regulation of tolerance in the gut. These cells influence the differentiation of cytokine responses in T cells, and in the gut, in particular, such interactions may be critical to the course of inflammatory bowel disease (IBD). Using the CD45RBhi CD4+ T cell-reconstituted severe combined immunodeficient mouse model of colitis, we investigated the ability of isolated colon DC to stimulate immune responses in syngeneic and allogeneic spleen CD4+ T cells, as well as in colon T cells isolated from the same tissue as DC in IBD mice. We found that the frequency of DC in IBD mice colons and spleens was elevated in comparison with control mice, but colon and spleen DC exhibited different phenotypic and functional properties. Colon DC stimulated significantly higher levels of interferon-gamma and interleukin-6 when cocultured with autologous colon T cells than in cocultures with syngeneic or allogeneic spleen T cells. These data suggest that in the IBD colon, DC-T cell interactions may create conditions with an abundance of proinflammatory cytokines, which favor the inflammatory state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号