首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim JW  Kim HP  Im SA  Kang S  Hur HS  Yoon YK  Oh DY  Kim JH  Lee DS  Kim TY  Bang YJ 《Cancer letters》2008,272(2):296-306
HER2 overexpression is observed in 5-25% of gastric cancers. Lapatinib is a dual inhibitor of the epidermal growth factor receptor and HER2 tyrosine kinase. We examined the antitumor effect of lapatinib in gastric cancer cell lines. Lapatinib induced selective and potent growth inhibition in two HER2-amplified gastric cancer cell lines (SNU-216 and NCI-N87). Lapatinib inhibited the phosphorylation of HER2, EGFR and downstream signaling proteins, resulting in G1 arrest in both cell lines with down-regulation of cMyc and induction of p27kip1. Lapatinib also induced apoptosis in NCI-N87 which has high HER2 amplification ratio. Lapatinib combined with 5-fluorouracil, cisplatin, oxaliplatin or paclitaxel showed an additive or synergistic effect. These results provide a rationale for the future clinical trials of lapatinib combined with cytotoxic drugs in the treatment of HER2-positive gastric cancer.  相似文献   

2.
Although HER2 targeted therapies have substantially improved outcomes in HER2 overexpressing (HER2+) breast cancer, resistance to these therapies remains a clinical challenge. To better understand the mechanisms of resistance to lapatinib, a HER2 and EGFR dual kinase inhibitor, we treated HER2+ breast cancer cells with lapatinib for an extended period to generate a lapatinib-resistant (LapR) cell line model and examined cancer-promoting signaling activation in LapR cells. We found that LapR cells possess enhanced mTOR activation, which was independent of PI3K and other known mTOR activators. Lapatinib resistance could be reversed by mTOR kinase inhibition. Intriguingly, LapR cells had constitutive cytosolic cytochrome C, indicating that LapR cells suppress lapatinib-induced apoptosis downstream of cytochrome C release from mitochondria into the cytosol rather than by preventing its release into the cytosol. Consistent with this notion, LapR cells possessed increased levels of 2 of the inhibitors of apoptosis (IAPs), survivin and c-IAP-2, which are reported to block caspase activation downstream of cytosolic cytochrome C release. Further, treatment with the mTOR kinase inhibitor AZD8055 or the Hsp90 inhibitor 17-AAG reversed expression of IAPs and overcame lapatinib resistance in LapR cells. Together, these data suggest that suppression of apoptosis downstream of cytosolic cytochrome C release, possibly through increased expression of IAPs or other caspase-suppressing proteins, may promote lapatinib resistance. Further, PI3K is thought to be the main driver of lapatinib resistance, but our findings indicate that PI3K inhibitors may be ineffective in some lapatinib-resistant HER2+ breast cancers with PI3K-independent activation of mTOR kinase, which may instead benefit from mTOR or Hsp90 inhibitors.  相似文献   

3.
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors erlotinib and gefitinib provide significant clinical benefit for non-small cell lung cancer (NSCLC) patients whose tumors bear EGFR mutations/amplifications. However, anti-EGFR therapy is largely ineffective in NSCLC with activating KRAS mutations. In this study, we investigated the treatment efficacy of erlotinib and gefitinib in combination with the histone deacetylase inhibitors (HDACi) vorinostat and sodium butyrate in the KRAS-mutated NSCLC cell line A549. For comparison, we tested the combination of HDACi with the dual tyrosine kinase inhibitor lapatinib. A549 cells proved to be resistant to erlotinib and gefitinib, but could be sensitized by cotreatment with HDACi, as assessed by flow cytometric analyses of cell death and mitochondrial depolarization. In contrast, A549 cells were a priori responsive to lapatinib treatment, but responsiveness to lapatinib could not be enhanced by HDACi cotreatment. These divergent effects of the different combination regimens may be explained by dissimilar types of cell death induced by the treatments: The use of the pan-caspase inhibitor z-VAD-fmk in the cell death and mitochondrial depolarization assays as well as fluorescence microscopy analyses indicated that erlotinib or gefitinib combined with HDACi elicited apoptosis, whereas lapatinib treatment induced a non-apoptotic type of cell death. Our study suggests that both HDACi/EGFR inhibitor-combination treatment and lapatinib-single treatment may be effective options for the therapy of NSCLC with KRAS mutations.  相似文献   

4.
目的 探讨拉帕替尼联合顺铂抗食管鳞癌的体外活性及其作用机制。方法 MTT法检测拉帕替尼、顺铂单独及二者联合对食管鳞癌细胞的增殖抑制作用,并计算两药联合作用指数。碘化丙啶(PI)染色或Annexin V-FITC/PI双染结合流式细胞术检测细胞周期进程及凋亡,Western blot法检测两药单独及联合处理后食管鳞癌细胞EGFR和HER2的磷酸化及下游信号分子的表达变化。结果 拉帕替尼联合顺铂可协同抑制食管鳞癌细胞的增殖,二者之间的联合作用指数小于1。拉帕替尼联合顺铂可使食管鳞癌细胞阻滞于G2/M期,并可显著诱导细胞凋亡。联合用药可显著抑制EGFR和HER2的磷酸化,并进而抑制两个主要的下游信号分子ERK和AKT的活化。结论 拉帕替尼联合顺铂在体外具有协同抗食管鳞癌活性,对EGFR和HER2过表达食管鳞癌是一种有前景的治疗策略。  相似文献   

5.
Heparanase (HPSE) is the dominant mammalian endoglycosidase and important tumorigenic, angiogenic, and pro-metastatic molecule. Highest levels of HPSE activity have been consistently detected in cells possessing highest propensities to colonize the brain, emphasizing the therapeutic potential for targeting HPSE in brain metastatic breast cancer (BMBC). Lapatinib (Tykerb) is a small-molecule and dual inhibitor of human epidermal growth factor receptor1 and 2 (EGFR and HER2, respectively) which are both high-risk predictors of BMBC. It was approved by the US Food and Drug Administration for treatment of patients with advanced or metastatic breast cancer. However, its role is limited in BMBC whose response rates to lapatinib are significantly lower than those for extracranial metastasis. Because HPSE can affect EGFR phosphorylation, we examined Roneparstat, a non-anticoagulant heparin with potent anti-HPSE activity, to inhibit EGFR signaling pathways and BMBC onset using lapatinib-resistant clones generated from HER2-transfected, EGFR-expressing MDA-MB-231BR cells. Cell growth, EGFR pathways, and HPSE targets were assessed among selected clones in the absence or presence of Roneparstat and/or lapatinib. Roneparstat overcame lapatinib resistance by inhibiting pathways associated with EGFR tyrosine residues that are not targeted by lapatinib. Roneparstat inhibited the growth and BMBC abilities of lapatinib-resistant clones. A molecular mechanism was identified by which HPSE mediates an alternative survival pathway in lapatinib-resistant clones and is modulated by Roneparstat. These results demonstrate that the inhibition of HPSE-mediated signaling plays important roles in lapatinib resistance, and provide mechanistic insights to validate the use of Roneparstat for novel BMBC therapeutic strategies.Abbreviations: ANOVA, analysis of variance; BR, HER2-transfected MDA-MB-231BR; BMBC, brain metastatic breast cancer; COX-2, cyclooxygenase-2; DME/F-12, Dulbecco’s modified Eagle’s/F-12 medium; ERK, extracellular signal-regulated kinase; EGFR, human epidermal growth factor receptor1; FACS, fluorescence activated cell sorting; FAK, focal adhesion kinase; FBS, fetal bovine serum; HER2, human epidermal growth factor receptor2; HPSE, heparanase; HS, heparan sulfate; Ls/Lr BR clones, lapatinib-sensitive/lapatinib-resistant BR clones; MAPK, mitogen-activated protein kinase; MMP-9, matrix metalloprotease-9; PBS, phosphate-buffered saline; PI3K, phosphoinositide 3-kinase; STR, short tandem repeat.  相似文献   

6.
Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor (TKI), has been approved for HER2-positive breast cancer patients. Nevertheless, its inhibitory effect on EGFR did not deliver clinical benefits for triple-negative breast cancer (TNBC) patients even EGFR overexpression was frequently found in this disease. Moreover, lapatinib was unexpectedly found to enhance metastasis of TNBC cells, but the underlying mechanisms are not fully understood. In this study, we explored that the level of interleukin-6 (IL-6) was elevated in lapatinib-treated TNBC cells. Treatment with IL-6 antibody abolished the lapatinib-induced migration. Mechanistically, the signaling axis of Raf-1/mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinases (JNKs), p38 MAPK, and activator protein 1 (AP-1) was activated in response to lapatinib treatment to induce IL-6 expression. Furthermore, our data showed that microRNA-7 directly binds and inhibits Raf-1 3′UTR activity, and that down-regulation of miR-7 by lapatinib contributes to the activation of Raf-1 signaling pathway and the induction of IL-6 expression. Our results not only revealed IL-6 as a key regulator of lapatinib-induced metastasis, but also explored the requirement of miR7/Raf-1/MAPK/AP-1 axis in lapatinib-induced IL-6 expression.  相似文献   

7.

Background

Trastuzumab has been recently approved for clinical use to treat HER2-expressing advanced gastric cancer, and anti-HER2-targeting therapy has become a promising option for gastric cancer. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and HER2. The aim of the present study was to explore the utility of lapatinib for gastric cancer, with a particular focus on trastuzumab-mediated antibody-dependent cellular cytotoxicity (ADCC).

Methods

Nine gastric cancer cell lines were evaluated for the effects of lapatinib on the cell-surface accumulation of HER2 and analyzed for their additional effects on trastuzumab-mediated ADCC. Also, HER2 signaling with Western blot, proliferative function with the MTT assay, and apoptosis-inducing activity with 7ADD/Annexin-V were investigated when a panel of gastric cancer cell lines was treated with lapatinib.

Results

Lapatinib inhibited HER2 signaling and cell proliferation in the panel of gastric cancer cell lines. Lapatinib also induced the accumulation of HER2 on the cell surface, resulting in the enhancement of trastuzumab-mediated ADCC of gastric cancer.

Conclusions

Lapatinib exhibits inhibitory activity in gastric cancer cells, and the combination of lapatinib with trastuzumab may be a promising treatment strategy for gastric cancer patients.  相似文献   

8.
Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 20% of gastric and gastroesophageal junction cancers in the United States and European Union. Lapatinib, a dual HER2 and epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated clinical efficacy in HER2‐amplified cancer cells. However, several studies have shown that some cytokines can mediate resistance to lapatinib using their receptor tyrosine kinase (RTK) pathways. One of these, Heregulin1 (HRG1), can confer resistance to lapatinib‐mediated growth inhibition in HER2‐amplified breast cancer cells, but the underlying mechanisms remain unknown. Here, we investigated whether and how HRG1 causes resistance to lapatinib in gastric and gastroesophageal junction cancers in vitro. HER2‐amplified gastric and gastroesophageal junction cancer cell lines were highly sensitive to lapatinib. Exposure to HRG1 together with lapatinib rescued cells from lapatinib‐induced cell cycle arrest and apoptosis. Downregulation of HER3 with siRNA in the presence of HRG1 re‐sensitized HER2‐amplified cancer cells to lapatinib. Immunoblotting analysis indicated that HRG1 re‐activated HER3 and AKT in the presence of lapatinib, which persisted for at least 72 h. Activation of HER3 and downstream AKT was mediated by residual activity of HER2. HRG1‐mediated resistance could be reduced by PI3K/mTOR inhibitors or by complete inhibition of HER2. Thus, we conclude that HRG1 mediates resistance to lapatinib through HER3 and AKT activation, and that this depends on residual HER2 activity. Lapatinib in combination with anti‐PI3K therapies or more potent HER2 inhibitors would improve the efficacy and avoid the emergence of resistant cells.  相似文献   

9.
Lapatinib, a dual tyrosine kinase inhibitor of the epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2), is clinically active in patients with breast cancer positive for HER2 amplification. The mechanism of this anti-tumor action has remained unclear, however. We have now investigated the effects of lapatinib in HER2 amplification-positive breast cancer cells with or without an activating PIK3CA mutation. Lapatinib induced apoptosis in association with upregulation of the pro-apoptotic protein Bcl-2 interacting mediator of cell death (BIM) through inhibition of the MEK-ERK signaling pathway in breast cancer cells with HER2 amplification. RNA interference (RNAi)-mediated depletion of BIM inhibited lapatinib-induced apoptosis, implicating BIM induction in this process. The pro-apoptotic effect of lapatinib was less pronounced in cells with a PIK3CA mutation than in those without one. Lapatinib failed to inhibit AKT phosphorylation in PIK3CA mutant cells, likely because of hyperactivation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway by the mutation. Depletion of PIK3CA (a catalytic subunit of PI3K) revealed that survivin expression is regulated by the PI3K pathway in these cells, suggesting that insufficient inhibition of PI3K-survivin signaling is responsible for the limited pro-apoptotic effect of lapatinib in HER2 amplification-positive cells with a PIK3CA mutation. Consistent with this notion, depletion of survivin by RNAi or treatment with a PI3K inhibitor markedly increased the level of apoptosis in PIK3CA mutant cells treated with lapatinib. Our results thus suggest that inhibition of both PI3K-survivin and MEK-ERK-BIM pathways is required for effective induction of apoptosis in breast cancer cells with HER2 amplification.  相似文献   

10.
In this study, we explore the therapeutic potential of lapatinib a selective inhibitor of both the EGFR and HER2 tyrosine kinases for the treatment of endometrial cancer. The effect of lapatinib on tumour cell growth and receptor activation was studied in a panel of human endometrial cancer cell lines. Candidate molecular markers predicting sensitivity were assessed by baseline gene expression profiling, ELISA, and western blot analyses. Multiple drug effect/combination index (CI) isobologram analysis was used to study the interactions between chemotherapeutic drugs and lapatinib. Concentration-dependent anti-proliferative effects of lapatinib were seen in all endometrial cancer cell lines tested, but varied significantly between individual cell lines (IC(50) range: 0.052-10.9 micromol). HER2 overexpression or increased expression of EGFR was significantly associated with in vitro sensitivity (P=0.024 or 0.011, respectively). Lapatinib exerts growth inhibition in a PTEN-independent manner. Sensitive cell lines also exhibited increased expression of EGFR ligands or HER3. In contrast, lapatinib-resistant cell lines exhibited high androgen receptor (AR) levels or epithelial-to-mesenchymal transition (post-EMT) features. In endometrial cancer cells, at a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for lapatinib plus carboplatin, paclitaxel, docetaxel, and doxorubicin. These observations provide a clear biologic rational to test lapatinib as a single agent or in combination with chemotherapy in endometrial cancer with HER2 overexpression. Expression of EGFR, its ligands, HER3, AR, and post-EMT markers warrant further evaluation to help define patients with HER2-nonoverexpressing endometrial cancer most likely to benefit from lapatinib.  相似文献   

11.
Members of the human epidermal receptor (HER) family are frequently associated with aggressive disease and poor prognosis in multiple malignancies. Lapatinib is a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and HER‐2. This study evaluated the therapeutic potential of lapatinib, alone and in combination with SN‐38, the active metabolite of irinotecan (CPT‐11), in colon and gastric cancer cell lines. Concentration‐dependent antiproliferative effects of both lapatinib and SN‐38 were observed in all colon and gastric cancer cell lines tested but varied significantly between individual cell lines (lapatinib range 0.08–11.7 μM; SN‐38 range 3.6–256 nM). Lapatinib potently inhibited the growth of a HER‐2 overexpressing gastric cancer cell line and demonstrated moderate activity in gastric and colon cancer cells with detectable HER‐2 expression. The combination of lapatinib and SN‐38 interacted synergistically to inhibit cell proliferation in all colon and gastric cancer cell lines tested. Cotreatment with lapatinib and SN‐38 also resulted in enhanced cell cycle arrest and the induction of apoptosis with subsequent cellular pharmacokinetic analysis demonstrating that lapatinib promoted the increased intracellular accumulation and retention of SN‐38 when compared to SN‐38 treatment alone. Finally, the combination of lapatinib and CPT‐11 demonstrated synergistic antitumor efficacy in the LoVo colon cancer mouse xenograft model with no apparent increase in toxicity compared to CPT‐11 monotherapy. These results provide compelling preclinical rationale indicating lapatinib to be a potentially efficacious chemotherapeutic combination partner for irinotecan in the treatment of gastrointestinal carcinomas. © 2009 UICC  相似文献   

12.
Mutations of the oncogene KRAS are important drivers of pancreatic cancer progression. Activation of epidermal growth factor receptor (EGFR) and human EGFR2 (HER2) is observed frequent in pancreatic adenocarcinomas. Because of co-activation of these two signaling pathways, we assessed the efficacy of inhibition of EGFR/HER2 receptors and the downstream KRAS effector, mitogen-activated protein kinase/extracellular-signal regulated kinase (ERK) kinase 1 and 2 (MEK1/2), on pancreatic cancer proliferation in vitro and in a murine orthotopic xenograft model. Treatment of established and patient-derived pancreatic cancer cell lines with the MEK1/2 inhibitor trametinib (GSK1120212) inhibited proliferation, and addition of the EGFR/HER2 inhibitor lapatinib enhanced the inhibition elicited by trametinib in three of eight cell lines. Importantly, in the orthotopic xenograft model, treatment with lapatinib and trametinib resulted in significantly enhanced inhibition of tumor growth relative to trametinib treatment alone in four of five patient-derived tumors tested and was, in all cases, significantly more effective in reducing the size of established tumors than treatment with lapatinib or trametinib alone. Acute treatment of established tumors with trametinib resulted in an increase in AKT2 phosphorylation that was blunted in mice treated with both trametinib and lapatinib. These data indicate that inhibition of the EGFR family receptor signaling may contribute to the effectiveness of MEK1/2 inhibition of tumor growth possibly through the inhibition of feedback activation of receptor tyrosine kinases in response to inhibition of the RAS-RAF-MEK-ERK pathway. These studies provide a rationale for assessing the co-inhibition of these pathways in the treatment of pancreatic cancer patients.  相似文献   

13.
Guo XF  Zhu XF  Zhong GS  Deng BG  Gao ZT  Wang H 《Oncology reports》2012,27(5):1639-1645
Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) amplification occurs in over 30% of esophageal carcinomas. Combination therapies with EGFR and HER2-targeting agents and cytotoxic agents are considered a potential therapeutic option for esophageal cancer. We evaluated the antitumor effects of lapatinib, a dual tyrosine kinase inhibitor which simultaneously inhibits EGFR and HER2, 5-fluorouracil (5-Fu) alone and in combination on esophageal cancer cells. The antiproliferative activity of lapatinib, 5-Fu and lapatinib plus 5-Fu was measured by MTT assay and the combination index (CI) values were calculated. Additionally, cell cycle distribution of lapatinib alone and the combination with 5-Fu were detected by flow cytometry analysis. Annexin?V-FITC and propidium iodide stain were used for analyzing the apoptotic cells after cells were treated with either agent alone or in combination. The EGFR and HER2 activated signaling pathways were monitored by western blotting. The combination of lapatinib and 5-Fu synergistically inhibited cell proliferation and exhibited an enhanced proapoptotic effect on esophageal cancer cells. The potentiation effect of combined treatment was associated with downregulation of EGFR and HER2 signaling pathways because data from western blot analysis showed that lapatinib in combination with 5-Fu markedly reduced the phosphorylation of EGFR and HER2, and inhibited the activation of downstream signaling molecules, such as AKT and ERK. A significant G1 arrest was also observed in cell cycle analysis after exposing cells to lapatinib, however, combination with 5-Fu did not enhance G1 arrest. These results indicate that the combination of the lapatinib and 5-Fu is a promising treatment option for esophageal carcinoma with HER2 amplification.  相似文献   

14.
Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2-driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro-apoptotic effector p27kip1, a cyclin-dependent kinase inhibitor. Elevation of miR-221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR-221 was mediated by the lapatinib-induced Src family tyrosine kinase and subsequent NF-κB activation. The reversal of miR-221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA-221 as a pivotal factor conferring the acquired resistance of HER2-positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.  相似文献   

15.
Lapatinib is an oral, small-molecule dual inhibitor of human EGF receptor 1 (EGFR/erbB1) and 2 (HER2/erbB2). Lapatinib has recently been approved, in combination with capecitabine, for the treatment of HER2-positive metastatic breast cancer patients failing trastuzumab therapy. Data from clinical trials are consistently showing the key role of this agent in the management of HER2-positive disease. Moreover, interesting data are suggesting a key role of lapatinib in enhancing endocrine responsiveness and/or restoring endocrine sensitivity in hormone receptor-positive disease. The present article will summarize the main data leading to the clinical development of the combination of lapatinib and the aromatase inhibitor letrozole.  相似文献   

16.
17.
Lapatinib is an oral dual tyrosine kinase inhibitor targeting EGFR1 and EGFR2 (HER2). Phase I trials have shown that lapatinib is well tolerated, with mild diarrhea and skin rush as common adverse effects, and low cardiotoxicity. Phase II and III trials provided evidences on clinical effectiveness in advanced or metastatic breast cancer and potential against brain metastases. Lapatinib is active in combination with trastuzumab and in trastuzumab-resistant patients, moreover it has synergistic action with capecitabine. Several clinical trials are in progress to explore the effectiveness of lapatinib in other combinations and against several tumor types.  相似文献   

18.
Despite the initial effectiveness of the tyrosine kinase inhibitor lapatinib against HER2 gene-amplified breast cancers, most patients eventually relapse after treatment, implying that tumors acquire mechanisms of drug resistance. To discover these mechanisms, we generated six lapatinib-resistant HER2-overexpressing human breast cancer cell lines. In cells that grew in the presence of lapatinib, HER2 autophosphorylation was undetectable, whereas active phosphoinositide-3 kinase (PI3K)-Akt and mitogen-activated protein kinase (MAPK) were maintained. To identify networks maintaining these signaling pathways, we profiled the tyrosine phosphoproteome of sensitive and resistant cells using an immunoaffinity-enriched mass spectrometry method. We found increased phosphorylation of Src family kinases (SFKs) and putative Src substrates in several resistant cell lines. Treatment of these resistant cells with Src kinase inhibitors partially blocked PI3K-Akt signaling and restored lapatinib sensitivity. Further, SFK mRNA expression was upregulated in primary HER2+ tumors treated with lapatinib. Finally, the combination of lapatinib and the Src inhibitor AZD0530 was more effective than lapatinib alone at inhibiting pAkt and growth of established HER2-positive BT-474 xenografts in athymic mice. These data suggest that increased Src kinase activity is a mechanism of lapatinib resistance and support the combination of HER2 antagonists with Src inhibitors early in the treatment of HER2+ breast cancers in order to prevent or overcome resistance to HER2 inhibitors.  相似文献   

19.
This article reviews lapatinib clinical trials in patients with HER2 (ErbB2)-positive breast cancer, and is a report of a presentation from a symposium at the ECCO 14 congress in 2007.Promising clinical results have been achieved to date with lapatinib, an oral, intracellular, dual-targeted small molecule inhibitor of EGFR (ErbB1) and HER2 in patients with HER2-positive metastatic breast cancer. Lapatinib has shown impressive activity in HER2-positive metastatic breast cancer, both first-line and in heavily pretreated patients whose disease has progressed following prior treatment in the metastatic setting with taxanes, anthracyclines and trastuzumab. Lapatinib has also demonstrated activity in inflammatory breast cancer, a particularly aggressive form of the disease. Lapatinib is generally well tolerated, with the most common adverse events being diarrhoea and rash, which can be effectively managed with proactive guidelines.In conclusion, these data demonstrate that lapatinib is a promising new agent in the fight against HER2-positive breast cancer.  相似文献   

20.
Lapatinib is a small molecule inhibitor of both HER2 and the epidermal growth factor receptor (EGFR). We investigated the effect of treatment with lapatinib alone or in combination with a fluoropyrimidine derivative S‐1 against pancreatic cancer. The HER2/EGFR expression in each of the four pancreatic cancer cell lines MiaPaca‐2, PANC‐1, Capan‐1 and Capan‐2 was measured by flow cytometry. The anti‐tumor effects of lapatinib (30 mg/kg) and/or S‐1 (10 mg/kg) were evaluated using female BALB/c nude mice xenografts generated using these four cell lines. Synergy between lapatinib and S‐1 was examined by median effect analysis in vitro. Resected pancreatic cancer tissues from 137 patients were immunohistochemically stained with anti‐human HER2 and EGFR antibodies. The administration of lapatinib as a single agent substantially suppressed tumor growth in vivo of all pancreatic cancer cell lines examined. A strong correlation was observed between HER2 expression and the anti‐tumor effect of lapatinib in vivo. Lapatinib synergized with S‐1 to inhibit the tumor growth of MiaPaca‐2 and PANC‐1 xenografts. When used as a single agent in vitro, lapatinib barely inhibit the cell growth of any cell line. However, lapatinib synergized with the anti‐tumor activity of the S‐1 components 5‐fluorouracil and 5‐chloro‐2,4‐dihydrogenase against all cell lines. Immunohistochemical staining demonstrated that 70% of the pancreatic cancers overexpressed HER2 and/or EGFR. Both lapatinib monotherapy and combined treatment with S‐1 may be promising treatments for patients with pancreatic cancers; the majority these cancers express lapatinib target molecules. (Cancer Sci 2009; 00: 000–000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号