首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intracellular pH (pHi) and buffering power of type 1 and type 2 fibres from the iliofibularis muscle of the clawed frog,Xenopus laevis, have been measured using pH-sensitive microelectrodes. In phosphate buffered Ringer's solution (extracellular pH 7.25, 20–22°C), mean pHi and its variance were similar in the two fibre types (6.86±SD 0.15±SEM 0.03,n=24, type 1, and 6.86±SD 0.12±SEM 0.03,n=15, type 2). On changing to Ringer's solution containing CO2 and HCO 3 (extracellular pH 7.25, 20–22°C), pHi became more acid in both fibre types. Although H+ ions were not at electrochemical equilibrium across the surface membrane, active transport did not return pHi to its original value during exposure to CO2. The buffering powers calculated from the changes in pHi were not significantly different, 41.6 mmol·l–1 per pH unit (±SEM 4.0,n=17) for type 1 and 49.3 mmol·l per pH unit (±SEM 7.2,n=11) for type 2 fibres. Thus differences in the mechanical properties of these fibre types are not due simply to a difference of the intracellular pH or buffering of resting fibres. Other possible explanations are discussed for the changes in some contractile properties that occur when pHi is acidified.  相似文献   

2.
We studied the regulation of intracellular pH (pHi) and the mechanisms of pHi regulation in cultured rat astrocytes using microspectrofluorometry and the pH-sensitive fluorophore 2,7-bis(carboxyethyl-)-5,6-carboxyfluorescein. Control pHi was 7.00±0.02 in HCO 3 - containing solutions at an extracellular pH of 7.35. Addition of 4, 4-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) or amiloride decreased pHi, as did removal of extracellular Na+, while removal of extracellular Cl- was followed by an increase in pHi. Following exposure to an acid transient induced by increasing the CO2 content from 5 to 15%, pHi rapidly returned to base line, with an average initial rate of recovery of 0.10 pH units min-1 (corresponding to a mean acid extrusion rate of 6.3±0.36 mmolo 1-1 min-1). Regulation of pHi was impaired when either amiloride or DIDS was added or Cl- was removed. This inhibition was enhanced when both DIDS and amiloride were present, and pHi regulation was completely blocked in the absence of extracellular Na+. The rapid regulation of pHi normally seen following a transient alkalinisation was not inhibited by amiloride or removal of Na+, but was partially inhibited by DIDS and by the absence of extracellular Cl-. The results are compatible with the presence of at least three different pHi-regulating mechanisms: a Na+/H+ antiporter, a Na+-dependent HCO 3 - /Cl- exchanger (both regulating pHi during a transient acidification), and a passive Cl-/HCO 3 - exchanger (regulating pHi during transient alkalinisation). The results fail to provide firm evidence of the presence of an electrogenic Na+/HCO 3 - symporter.  相似文献   

3.
In the present study we used the pH sensitive absorbance of 5(and6)-carboxy-4,5-dimethylfluorescein to investigate intracellular pH (pHi) regulation in A10 vascular smooth muscle cells: (1) The steady state pHi in A10 cells averaged 7.01±0.1 (mean±SEM,n=26) at an extracellular pH of 7.4 (28 mM HCO3/5% CO2). (2) Removal of extracellular sodium led to an intracellular acidification of 0.36±0.07 pH-units (mean±SEM,n=8). (3) pHi-Recovery after an acute intracellular acid load (by means of NH4Cl-prepulse) was reversibly blocked by 1 mM amiloride and was dependent on the presence of sodium. The velocity of pHi recovery increased with increasing sodium concentrations with an apparentK m for external sodium of about 30 mM and aV max of about 0.35 pH units/min. These findings are compatible with a Na/H exchanger being responsible for pHi recovery after an acid load. (4) Removal of extracellular chioride induced an intracellular alkalinization of 0.23±0.03 pH-units (mean±SEM,n=10). The alkalinization was dependent on the presence of extracellular bicarbonate (5) Removal of chloride during pHi recovery from an alkaline load (imposed by acetate prepulse) stopped and reversed pHi backregulation. Chloride removal had no effect in the absence of bicarbonate or in the presence of 10–4 M DIDS, suggesting that the effects were mediated by a Cl/HCO3 exchanger. In conclusion we have demonstrated evidence for a Na/H exchanger and a Cl/HCO3 exchanger in A10 vascular smooth muscle cells.Abbreviations used CDMF 5(and6)-carboxy-4,5-dimethylfluorescein - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonic acid - NMDG N-methyl-d-glucamine; pHi, intracellular pH - pHo extracellular pH - Mops 3-[N-Morpholino]propanesulfonic acid - Hepes 2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid - Tris Tris(hydroxymethyl)-aminomethane - EDTA ethylenediamine-tetraacetic acid - EGTA ethyleneglycol-bis-(-amino-ethylether)N,N-tetraacetic acid  相似文献   

4.
We have studied the regulation of intracellular pH (pHi), and HCO 3 -dependent membrane currents in cultured astrocytes from neonatal rat cerebellum, using the fluorescent pH-sensitive dye 2,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) and the whole-cell patch-clamp technique. The steady-state pHi was 6.96 in both nominally CO2/HCO 3 -free, HEPES-buffered saline (6.96 ±0.14;n=48) and in a saline containing 5% CO2/24 mM HCO 3 (6.96±0.18;n=48) (at pH 7.4). Inhibition of the Na+/H+ exchange by amiloride (2 mM) caused a significant decrease of pHi in nominally CO2/HCO 3 -free saline. Addition of CO2/HCO 3 in the continuous presence of amiloride induced a large and fast intracellular alkalinization. Removal of external Na+ also caused a fall of pHi, and addition of CO2/HCO 3 in Na+-free saline evoked a further fall of pHi, while the outward current was reduced or even reversed. The stilbene 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS, 0.3 mM) reduced the pHi recovery from the CO2/HCO 3 -evoked acidification, and blocked the prominent intracellular acidification upon removal of CO2/HCO 3 . Removal of external Cl had little effect on these pHi changes. Lowering the external pH from 7.4 to 6.6 in CO2/HCO 3 -containing saline produced a large and rapid intracellular acidification and inward current, which were both greatly reduced by DIDS and in the absence of CO2/HCO 3 . The results suggest that the CO2/HCO 3 -dependent current is partly due to a reversible bidirectional, electrogenic Na+-HCO 3 cotransporter, which helps to regulate pHi in these cells. In addition, a prominent Na+/H+ exchanger contributes to extrude acid equivalents from these astrocytes to maintain the steadystate pHi.  相似文献   

5.
To examine the intracellular pH (pHi) regulation in primary cultures of rabbit distal convoluted tubules (DCTb) we used the pH-sensitive dye 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF/AM) and a video-microscopy technique. DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The culture epithelia were grown on semi-transparent permeable supports. Before pHi measurement, DCTb primary cultures were maintained for 48–96 h in growth-factor-free medium to obtain quiescent cells. We had previously shown that two mechanisms are involved in the regulation of intracellular pH: a basolateral Na+/H+ exchanger and an apical Cl/HCO 3 exchanger [1]. The pHi of DCTb cells was significantly decreased by the addition of 60 nM human calcitonin (from 7.30±0.04 to 7.08±0.04). This response to calcitonin was dose-dependent and mimicked by both forskolin and permeant cyclic AMP derivatives. An initial acidification (of 0.25 pH unit in 7–8 min) was observed after the addition of basolateral amiloride (1 mM). The persistence of the effect induced by human calcitonin in these conditions, suggests that the Na+/H+ exchanger is not involved in the response. However, the acidification response was blocked in both the absence of chloride at the apical side and by the apical addition of 0.1 mM 4,4-diisothiocyanostilbene-2,2-disulphonic acid (DIDS). These experiments suggest that the target for the human calcitonin effect on pHi is the Cl/HCO 3 exchanger. This study confirms the importance of this transporter in pHi regulation within the physiological pHi range and the influence of calcitonin in the regulation of DCTb cell function.  相似文献   

6.
The ubiquitous AE2/SLC4A2 anion exchanger is acutely and independently regulated by intracellular (pHi) and extracellular pH (pHo), whereas the closely related AE1/SLC4A1 of the red cell and renal intercalated cell is relatively pH-insensitive. We have investigated the contribution of nonconserved charged residues within the C-terminal transmembrane domain (TMD) of AE2 to regulation by pH through mutation to the corresponding AE1 residues. AE2-mediated Cl/Cl exchange was measured as 4,4′-di-isothiocyanatostilbene-2,2′-disulfonic acid-sensitive 36Cl efflux from Xenopus oocytes by varying pHi at constant pHo, and by varying pHo at near-constant pHi. All mutations of nonconserved charged residues of the AE2 TMD yielded functional protein, but mutations of some conserved charged residues (R789E, R1056A, R1134C) reduced or abolished function. Individual mutation of AE2 TMD residues R921, F922, P1077, and R1107 exhibited reduced pHi sensitivity compared to wt AE2, whereas TMD mutants K1153R, R1155K, R1202L displayed enhanced sensitivity to acidic pHi. In addition, pHo sensitivity was significantly acid- shifted when nonconserved AE2 TMD residues E981, K982, and D1075 were individually converted to the corresponding AE1 residues. These results demonstrate that multiple conserved charged residues are important for basal transport function of AE2 and that certain nonconserved charged residues of the AE2 TMD are essential for wild-type regulation of anion exchange by pHi and pHo. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. K. Stewart and C. E. Kurschat have contributed equally to this work.  相似文献   

7.
The purpose of this study was to investigate intracytoplasmic pH (pHi) regulation in primary cultures of proximal (PCT) and distal bright (DCTb) convoluted tubules. PCT and DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The cultured epithelia were grown on semi-transparent permeable supports. The pHi was determined by video microscopy and digital image processing using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and measuring the ratio of BCECF fluorescence excited by two successive wavelengths (490 nm and 450 nm). Resting pHi values, determined in bicarbonatefree medium (extracellular pH: 7.40), were 7.25±0.02 (n=23) and 7.17±0.04 (n=30) for cultured PCT and DCTb respecitively. After the acid-loading procedure, cultured proximal cells recovered their pHi by means of the classic Na+/H+ antiporter, sensitive to amiloride and located in the apical membrane only. In cultured DCTb part of the pHi recovery was mediated by a Na+/H+ exchange present in the basolateral side. Moreover, at physiological initial pHi values, chloride removal from the apical solution caused the pHi to increase in the presence of bicarbonate. In acidified cultured DCTb cells, a partial pHi recovery was induced in sodium-free media by 15 mM HCO 3 in the presence of an outward chloride gradient. This pHi change was completely abolished by 4,4-diisothiocyanostilbene 2,2-disulfonic acid (1 mM). These data suggest that DCTb cells possess in apical anion/base exchanger that resembles the Na+-independent Cl/HCO 3 exchanger.  相似文献   

8.
 The purpose of this study was to examine how intracellular pH (pHi) regulation and histamine release are affected by HCO3 in rat peritoneal mast cells. The pHi was measured using the pH-sensitive dye 2′, 7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). We observed a pHi of 6.88±0.012 (n=24) in resting mast cells exposed to a HEPES buffer (pH 7.4), but a sustained drop of 0.21 pH units to 6.67±0.015 (n=23) when we exposed the mast cells to a HEPES/HCO3 buffer equilibrated at all time with 5% CO2 (pH 7.4). This fall in pHi is inhibited by the carbonic anhydrase inhibitor dichlorphenamide and is Na+-independent, indicating the involvement of Na+-independent Cl/HCO3 exchange activity. Furthermore removal of external Clin the presence but not in the absence of HCO3 reversed the Cl/HCO3 exchange and induced an alkaline load. The recovery from this alkaline load was dependent on external Clbut independent of Na+. Both the alkalinization and the recovery were inhibited by the anion transport inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS). In addition, 36Cluptake measurements confirm the presence of a Cl/HCO3 exchanger. Histamine release stimulated by antigen and compound 48/80 was substantially reduced in the presence of HEPES/ HCO3 buffer (pHo 7.4, pHi 6.66). Histamine release was increased, however, when pHi was clamped to 6.66 in HCO3 -free media (pHo 6.9). We conclude that: (1) Na+-independent Cl/HCO3 exchange determines steady-state pHi in rat peritoneal mast cells; and (2) the reduction in histamine release observed in the presence of HCO3 is not due to its effect on pHi per se, but rather on other changes in ion transport. Received: 29 January 1998 / Received after revision and accepted: 3 April 1998  相似文献   

9.
Kinetic properties of the Na+-H+ antiport in the acinar cells of the isolated, superfused mouse lacrimal gland were studied by measuring intracellular pH (pHi) and Na+ activity (aNai) with the aid of double-barreled H+- and Na+-selective microelectrodes, respectively. Bicarbonate-free solutions were used throughout. Under untreated control conditions, pHi was 7.12±0.01 and aNai was 6.7±0.6 mmol/l. The cells were acid-loaded by exposure to an NH 4 + solution followed by an Na+-free N-methyl-d-glucamine (NMDG+) solution. Intracellular Na+ and H+ concentrations were manipulated by changing the duration of exposure to the above solutions. Subsequent addition of the standard Na+ solution rapidly increased pHi. This Na+-induced increase in pHi was almost completely inhibited by 0.5 mmol/l amiloride and was associated with a rapid, amiloride-sensitive increase in aNai. The rate of pHi recovery induced by the standard Na+ solution increased in a saturable manner as pHi decreased, and was negligible at pHi 7.2–7.3, indicating an inactivation of the Na+-H+ antiport. The apparent K m for intracellular H+ concentration was 105 nmol/l (pH 6.98). The rate of acid extrusion from the acid-loaded cells increased proportionally to the increase in extracellular pH. Depletion of aNai to less than 1 mmol/l by prolonged exposure to NMDG+ solution significantly increased the rate of Na+-dependent acid extrusion. The rate of acid extrusion increased as the extracellular Na+ concentration increased following Michaelis-Menten kinetics (V max was 0.55 pH/min and the apparent K m was 75 mmol/l at pHi 6.88). The results clearly showed that the Na+-H+ antiport activity is dependent on the chemical potential gradient of both Na+ and H+ ions across the basolateral membrane, and that the antiporter is asymmetric with respect to the substrate affinity of the transport site. The data agree with the current model of activation and inactivation of the antiporter by an intracellular site through changes in the intracellular Na+ and H+ concentrations.  相似文献   

10.
The dependence of intracellular free calcium ([Ca2+]i) and tension on membrane potential and intracellular pH (pHi) was studied in single isolated fibres of the crayfish claw-opener muscle using ion-selective microelectrodes. Tension (T) was quantified as a percentage of the maximum force, or as force per cross-sectional area (N/cm2). In resting fibres, pHi had a mean value of 7.06. Contractions evoked by an increase extracellular potassium ([K+]0) produced a fall in pHi of 0.01–0.05 units. The lowest measured levels of resting [Ca2+]i corresponded to a pCai (= –log [Ca2+]i) of 6.8. Intracellular Ca2+ transients recorded during K+-induced contractions did not reveal any distinct threshold for force development. Both the resting [Ca2+]i and resting tension were decreased by an intracellular alkalosis and increased by an acidosis. The sensitivity of resting tension to a change in pHi (quantified as –dT/ dpHi) showed a progressive increase during a fall in pHi within the range examined (pHi 6.2–7.5). The pHi/[Ca2+]i and pHi/tension relationships were monotonic throughout the multiphasic pHi change caused by NH4Cl. A fall of 0.5–0.6 units in pHi did not produce a detectable shift in the pCai/tension relationship at low levels of force development. The results indicate that resting [Ca2+]i is slightly higher than the level required for contractile activation. They also show that the dependence of tension on pHi in crayfish muscle fibres is attributable to a direct H+ and Ca2+ interaction at the level of Ca2+ sequestration and/or transport. Finally, the results suggest that in situ, the effect of pH on the Ca2+ sensitivity of the myofibrillar system is not as large as could be expected on the basis of previous work on skinned crustacean muscle fibres.  相似文献   

11.
 We have evaluated the pyrene-based ratiometric fluorescent dye, 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS), by using it in conjunction with glass pH-sensitive microelectrodes to measure intracellular pH (pHi) in voltage-clamped snail neurones. Intracellular acidification with propionic acid, and alkalinization following the activation of H+ channels allowed the calibration of the dye to be compared with that of the pH microelectrode over the pH range 6.50–7.50. HPTS calibrated in vitro and glass pH-sensitive microelectrodes produced similar absolute resting pHi values, 7.16±0.05 (n=10) and 7.17±0.06 (n=9) respectively in nominally CO2/HCO3 -free saline. At both extremes of the pH range there were small discrepancies. At acidic pHi, 6.87±0.09 (n=5), the intracellular HPTS measurement differed by –0.08±0.03 pH units from the pH-sensitive microelectrode measurement. At alkaline pHi,7.32±0.10 (n=5), HPTS measurements produced pH values that differed by +0.07±0.04 pH units from those of the pH-sensitive microelectrode. Some of the discrepancy could be accounted for by the slow response of the recessed-tip pH-sensitive microelectrode (time constant 77±15 s, n=3). Further experiments showed that HPTS, used at an intracellular concentration of 200 μM to 2 mM, did not block activity-dependent pHi changes. The intracellular HPTS concentration was calculated by measurement of intracellular chloride during a series of HPTS-KCl injections. Comparison of HPTS with 2′,7′-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), at the same concentration, showed that HPTS produces a larger change in ratio over the pH range 6.00–8.00. Received: 19 February 1998 / Received after revision and accepted: 22 April 1998  相似文献   

12.
To examine the mechanisms of H+ transport in the mid-inner medullary collecting duct of hamsters, we measured the intracellular pH (pHi) in the in vitro perfused tubules by microscopic fluorometry using 2,7-bis(carboxyethyl)-carboxyfluorescein (BCECF) as a fluorescent probe. In the basal condition, pHi was 6.74±0.04 (n=45) in HCO 3 -free modified Ringer solution. Either elimination of Na+ from the bath or addition of amiloride (1 mM) to the bath produced a reversible fall in pHi After acid loading with 25 mM NH4Cl, pHi spontaneously recovered with an initial recovery rate of 0.096±0.012 (n=23) pH unit/min. In the absence of ambient Na+, after removal of NH 4 + , the pHi remained low (5.95±0.10, n=8) and showed no signs of recovery. Subsequent restoration of Na+ only in the lumen had no effect on pHi. However, when Na+ in the bath was returned to the control level, pHi recovered completely. Amiloride (1 mM) in the bath completely inhibited the Na+-dependent pHi recovery. Furthermore, elimination of Na+ from the bath, but not from the lumen, decreased pHi from 6.97±0.07 to 6.44±0.05 (n=12) in the HCO 3 /Ringer solution or 6.70±0.03 to 6.02±0.05 (n=8) in the HCO 3 free solution. pHi spontaneously returned to 6.76±0.08 with a recovery rate of 0.017±0.5 pH unit/min in the presence of CO2/HCO 3 , whereas it did not recover in the absence of CO2/HCO 3 . Although elimination of ambient Na+ depolarized the basolateral membrane voltage (V B) from –78±1.2 to –72 ±0.6 mV (n=5, P<0.01), the level of V B was not sufficient to explain the pHi recovery solely by HCO 3 entry driven by the voltage. These results indicate that (a) pHi of the inner medullary collecting duct is regulated mainly by a Na+/H+ exchanger in the basolateral membranes, (b) no apparent Na+-dependent H+ transport system exists in the luminal membranes and (c) Na+-independent H+ transport may also operate in the presence of CO2/HCO 3 Preliminary data were reported at the Conference on Bicarbonate, Chloride, and Proton Transport Systems, New York, USA, in January 1989  相似文献   

13.
Intracellular pH (pHi) and viability of gastric surface cells of the rat stomach in response to luminal acidification, and the role of Na+/H+ exchange in maintaining pHi homeostasis were studied in vivo using a fluorescent microscopic technique. pHi was measured during superfusion with buffers of pH 1.2–7.4. When the pH of the superfusate was 7.4, baseline pHi was unchanged. Superfusion with pH 3 buffer rapidly decreased pHi to 6.7, with subsequent recovery to baseline pHi within 15 min despite continuing acid exposure. Superfusion with buffers of pH 1.7 and 1.2 decreased pHi continuously to below 6.2 with no recovery observed. Despite the relentless decline in pHi during superfusion with pH-1.2 and –1.7 solutions, over 75% of the surface cells were still viable, as measured by exclusion of the vital dye propidium iodide. We then examined the role of Na+/H+ exchange in the regulation of pHi. Superfusion with amiloride did not affect recovery of pHi from intracellular acidification induced by a NH4Cl prepulse. Exposure to the potent, lipophilic Na+/H+ exchange inhibitor 5-(N,N-hexaniethylene)-amiloride (HMA), either in the superfusate or by close arterial perfusion, decreased baseline pHi from 7.1 to 6.8. Close arterial perfusion of HMA additionally attenuated the recovery of pHi to baseline during superfusion with pH 3 buffer. We conclude that luminal protons permeate into the cytoplasm of gastric surface cells, where they are eliminated by an Na+/H+ exchanger, most probably localized to the basolateral membrane.  相似文献   

14.
The presence of an H+/K+-ATPase and its contribution to the regulation of intracellular pH (pHi) was investigated in Caco-2 cells. The H+/K+-ATPase was detected immunologically using the monoclonal antibody 5-B6, which was raised against hog gastric H+/K+-ATPase. Cell pH was determined using the pH-sensitive dye 2,7-bis(carboxyethyl)-carboxyfruorescein. Control pHi, measured in HCO 3 -free medium, was 7.62±0.03 (n=27) when cells were cultured for 14 days and decreased to 7.40±0.03 (n=18) after 35 days in culture. Recovery of pHi following a NH 4 + /NH3 pulse could be reduced by either 100 M SCH 28080 or 1 mM amiloride, or by removing extracellular Na+. The inhibitory effects of SCH 28080 and amiloride were additive, demonstrating the involvement of a gastric-like H+/K+-ATPase and a Na+/H+ exchanger in regulating pHi. Recovery rates at pHi 6.8 were not significantly different in cells cultured for up to 21 days, but were significantly lower in cells cultured for 28 and 35 days. This decrease in recovery rate was due to a decrease in the SCH-28080-insensitive recovery, indicating a reduction of the relative importance of Na+/H+ exchange to the recovery. Recovery of pHi was also inhibited by 1 mM N-ethylmaleimide. However, it is unlikely that N-ethylmaleimide inhibited a vacuolar type of H+-ATPase, since bafilomycin A1 had no effect on pHi recovery. In conclusion, Caco-2 cells contain a SCH-28080-sensitive mechanism for regulating pHi, which is most conveniently studied after 28 days in culture, when the relative contribution of a Na+/H+ exchanger to pHi regulation is decreased.  相似文献   

15.
The intracellular pH (pHi) of mouse peritoneal neutrophils, initially 0.2 U, drops after a 15-min incubation of these cells with a peptide extract of fetal brain tissue. Treatment with the preparation leads to appreciable changes in the distribution of neutrophils by the examined parameter. For macrophages, the acidifying effect of the agent and its effect on the pattern of cell distribution in terms of pH values are far less expressed. The effects of the agent in dilutions 1∶102 and 1∶104 on the mean pHi are virtually the same. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 120, N o 12, pp. 626–630, December, 1995 Presented by V. I. Kulakov, Member of the Russian Academy of Medical Sciences  相似文献   

16.
The relationship among intracellular pH (pHi), –log10 intracellular Ca2+ concentration (pCai) and gap junctional conductance, the participation of Ca2+ stores, and the role of calmodulin in channel regulation have been studied inXenopus oocytes, expressing the native connexin (Cx38), exposed to external solutions bubbled with 100% CO2. The time courses of pHi [measured with 2,7-bis(2-carboxyethyl)-5,6-carboxylluorscein (BCECF)], (pCai) (measured with the membrane-associated fura-C18) and junctional conductance (measured with a double voltage-clamp protocol) were compared. The data obtained confirm previous evidence for a closer relationship of junctional conductance with (pCai) than with pHi. Evidence for an inhibitory effect of intracellularly injected ruthenium red or 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA) on CO2-induced uncoupling, coupled to negative results with Ca2+-free external solutions, point to a low-pHi-induced Ca2+ release from internal stores, likely to be primarily mitochondria. The hypothesis proposing a participation of calmodulin in channel gating was tested by studying the effects of calmodulin expression inhibition by intracellular injection of oligonucleotides antisense to the two calmodulin mRNAs expressed in the oocytes. Calmodulin mRNA was permanently eliminated in 5 h. The oocytes injected with the antisense nucleotides progressively lost the capacity to uncouple with CO2 within 72 h. The effect of CO2 on junctional conductance was reduced by 60% in 24 h, by 76% in 48 h and by 93% in 72 h. Oocytes that had lost gating sensitivity to CO2. partially recovered gating competency following calmodulin injection. The data suggest that lowered pHi uncouples gap junctions by a Ca2+-calmodulin-mediated mechanism.  相似文献   

17.
Intracellular pH (pHi) was measured in the isolated, perfused rabbit mandibular salivary gland by31P NMR spectroscopy. In the unstimulated gland perfused with HCO 3 /CO2-buffered Ringer's solution, pHi was 7.27±0.01. Continuous stimulation with acetylcholine elicited dose- and time-dependent changes in pHi. 10–6 mol/l acetylcholine caused a brief intracellular acidosis (–0.19±0.06 pH units) followed by an increase in pHi to a more alkaline steady-state value (7.33±0.02). In the absence of perfusate HCO 3 or in the presence of 10–4 mol/l DIDS (4,4-diisothiocyanatostilbene-2,2-disulphonic acid), the transient acidosis was abolished and pHi increased rapidly to give a sustained alkalosis (7.49±0.03 and 7.44±0.03 respectively). In the presence of 10–3 mol/l amiloride, the response to acetylcholine was a rapid decrease in pHi to 7.02±0.02. The data suggest that, during perfusion with HCO 3 /CO2-buffered solutions, stimulation with acetylcholine results in a transient loss of HCO 3 from the acinar cells (causing a transient acidosis), and, independently, the activation of Na+–H+ exchange (causing a sustained alkalosis). In the unstimulated gland, DIDS and the HCO 3 -free perfusate caused decreases in pHi to 7.12±0.02 and 7.04±0.01 respectively. In contrast, amiloride had little effect. The relatively high value of pHi maintained by the unstimulated gland is therefore probably not due to Na+–H+ exchange.  相似文献   

18.
The intracellular pH (pHi) of the colonic tumour cell line HT29 cl.19A was studied by microspectrofluorometry using the pH-sensitive dye BCECF. Single cells within a confluent monolayer, grown in a polarized manner on permeable supports, were examined. An amiloride-sensitive Na+/H+ exchange and a stilbene-insensitive Cl /HCO3 exchange mechanism have been identified in the basolateral membrane. Removal of Na+ from the basolateral solution caused a decrease of pHi by 0.50±0.09 unit (n=4). Amiloride or Na+-free solution at the apical side had no effect on pHi. Cl removal at the basolateral side led to an increase of pHi by 0.20±0.03 unit (n=4) whereas apical removal had no influence on pHi. This effect was independent of Na+ and was insensitive to 0.2 mM 4,4-diisothiocyanatodihydrostilbene-2, 2-disulphonic acid. A basolateral Cl/ HCO3 exchanger is the most likely explanation for this observation. The Na+/H+ exchange mechanism in the basolateral membrane is an acid extruder, whereas the C1/HCO3 exchanger is an acid loader. Both of these mechanisms are important for the maintenance of intracellular pH in HT29 cl.19A cells.  相似文献   

19.
A new triple-barrelled ion-sensitive microelectrode was used to investigate the importance of bicarbonate for the regulation of intracellular Na+ and pH (Nai and pHi, respectively) of neuropile glial cells in the central nervous system of the leech Hirudo medicinalis. Addition of CO2/HCO 3 produced an increase of the Nai activity and an intracellular alkalinization, indicating bicarbonate accumulation in the glial cells. Changes of external pH (from 7.4 to 7.0 and 7.8) produced large and rapid shifts of pHi and Nai and of the membrane potential in the presence, but not in the absence, of bicarbonate. Thus, acid/base transport and Na+ movements across the glial membrane into and out of the cells were accelerated severalfold in CO2/HCO 3 -buffered saline as compared to a CO2/HCO 3 -free, HEPES-buffered saline. The results suggest that the electrogenic, reversible, cotransport of Na+ and HCO 3 in the glial cell membrane [3, 9] can produce significant changes in intraglial pH and Na activity, and can carry a significant fraction of the total Na+ flux across the cell membrane.  相似文献   

20.
We have estimated the changes in cytosolic pH (pHi) that occur when human platelets are stimulated by thrombin. Changes in pHi were estimated (i) from the H+ efflux across the plasma membrane using an extracellular pH electrode and (ii) using an intracellular pH-sensitive fluorescent dye (BCECF). Stimulation of platelets with thrombin (0.5 unit/ml) resulted in an H+ efflux that averaged 7.7±1.6 mol/1011 platelets (means±SD) leading to an increase in pHi, from 7.05±0.04 to 7.45±0.05. Both H+ efflux and pHi changes were unaffected by 0.1 mM 4,4-diisothiocyanostilbene-2,2 disulphonate (DIDS), 0.1 mM 4-acetamido 4-isothiostilbene-2,2-disulphonic acid (SITS), or 0.5 mM bumetanide, suggesting no involvement of anion transport systems, e.g. an HCO 3 /Cl exchange. Removal of HCO 3 or Cl from the suspending buffer had no effect on the extent of the rise in pHi. After blockade of Na+/H+ exchange by 100 M ethylisopropylamiloride (EIPA), thrombin induced a decrease in pHi the rate of which averaged 0.39 unit/min in HCO 3 -containing medium, and 0.57 unit/min in HCO 3 -free medium. The cytosolic buffer capacity for H+ was determined by the nigericin/ NH4Cl technique in BCECF-loaded platelets and averaged 25.3 mmol/(1xpH) in buffer containing 8 mM HCO 3 , but only 17.2 mmol/(1xpH) in HCO 3 -free buffer. The total amount of H+ transferred by Na+/H+ exchange can be estimated from our measurements at 10 mmol/l platelet cytosol in the absence of HCO 3 and to 14 mmol/l platelet cytosol in the presence of HCO 3 , and is in good agreement with the estimated amount of Na+ uptake by ADP-stimulated platelets. We conclude that net extrusion of H+ from stimulated platelets is predominantly mediated by Na+/H+ exchange without an apparent contribution of HCO 3 /Cl exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号