首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrical stimulation of the dorsal regions of the periaqueductal gray (PAG) leads to defensive reactions characterized as freezing and escape responses. Until recently it was thought that this freezing behavior could be due to the recruitment of neural circuits in the ventrolateral periaqueductal gray (vlPAG), while escape would be mediated by other pathways. Nowadays, this view has been changing mainly because of evidence that freezing and escape behaviors thus elicited are not altered after lesions of the vlPAG. It has been suggested that there are at least two pathways for periaqueductal gray-mediated defensive responses, one involving the hypothalamus and the cuneiform nucleus (CnF) which mediates responses to immediate danger and another one involving the amygdala and vlPAG which mediates cue-elicited responses, either learned or innate. To examine this issue further we measured Fos protein expression in brain areas activated by electrical stimulation of the dorsolateral PAG (dlPAG) at the freezing and escape thresholds. The data obtained showed that freezing-provoking stimulation caused increases in Fos expression in the dorsomedial PAG (dmPAG), while escape-provoking stimulation led to increases at both dmPAG and dlPAG. Surprisingly, neither escape- nor freezing-provoking stimulations altered Fos expression in the central nucleus of amygdala (CeA). Escape-provoking stimulation caused increased Fos expression in the ventromedial hypothalamus (VMH), dorsal premammilary nucleus (PMd) and in the cuneiform nucleus. Significant increases in Fos labeling were found in the dmPAG and PMd following freezing-provoking stimulation. Therefore, the present data support the notion of a neural segregation for defensive behaviors in the dorsal columns of PAG, with increased Fos expression in the dmPAG following freezing, while dlPAG is affected by both freezing and escape responses. dlPAG, CnF, VMH and PMd are part of a brain aversion network activated by fear unconditioned stimuli. The present data also suggests that the defensive responses generated at the dlPAG level do not recruit the neural circuits of the vlPAG and CeA usually activated by conditioned fear stimuli.  相似文献   

2.
Considering the periaqueductal gray's (PAG) general roles in mediating motivational responses, in the present study, we compared the Fos expression pattern in the PAG induced by innate behaviors underlain by opposite motivational drivers, in rats, namely, insect predation and defensive behavior evoked by the confrontation with a live predator (a cat). Exposure to the predator was associated with a striking Fos expression in the PAG, where, at rostral levels, an intense Fos expression was found largely distributed in the dorsomedial and dorsolateral regions, whereas, at caudal levels, Fos-labeled cells tended to be mostly found in the lateral and ventrolateral columns, as well as in the dorsal raphe nucleus. Quite the opposite, insect predation was associated with increased Fos expression predominantly in the rostral two thirds of the lateral PAG, where the majority of the Fos-immunoreactive cells were found at the oculomotor nucleus levels. Remarkably, both exposure to the cat and insect predation upregulated Fos expression in the supraoculomotor region and the laterodorsal tegmental nucleus. Overall, the present results clearly suggest that the PAG activation pattern appears to reflect, at least partly, the animal's motivational status. It is well established that the PAG is critical for the expression of defensive responses, and, considering the present findings, it will be important to investigate how the PAG contributes to the expression of the predatory behavior, as well.  相似文献   

3.
Exposure to cat odor, an innate threat stimulus for rats, engages a conditioning process whereby the environment in which the odor was experienced comes to elicit fear. Additionally, response to cat odor appears to change with repeated exposure, with benzodiazepines having an anxiolytic effect upon first, but not second, cat odor exposure. We explored the neural correlates of these two phenomena using Fos immunohistochemistry. Rats were exposed to cat odor (a worn cat collar) and were allowed to hide from this stimulus. A ‘trial 1’ group was perfused after a single exposure, and a ‘trial 2’ group after two exposures. A ‘context’ group was exposed to cat odor once, then perfused after re-exposure to the odor-paired context. Trial 1, trial 2 and context groups showed similar defensive responses including avoidance and hiding. The trial 1 group showed Fos expression in limbic, hypothalamic and brainstem regions associated with defensive behavior. The trial 2 group showed a similar pattern although with less activation in the lateral septum, anterior and ventromedial hypothalamus, and dorsolateral periaqueductal gray. The context-exposed group showed Fos expression in a subset of the regions activated by cat odor itself: the dorsal premammillary nucleus, ventrolateral periaqueductal grey, cuneiform nucleus and locus ceruleus. Little activation was seen in the amygdala or hippocampus. These results show that stimuli associated with predatory threat come to activate similar brain regions to the threat stimulus itself.  相似文献   

4.
The dorsal premammillary nucleus (PMd) is thought to play a critical role in the expression of fear responses to environmental threats. We have previously reported that, during an encounter with a predator, the PMd presents an impressive increase in Fos levels and cell body-specific chemical lesions therein virtually eliminated the expression of escape and freezing responses. Therefore, the PMd may be viewed as a strategic starting point to delineate prosencephalic circuits seemingly critical for the organization of innate fear responses. In the present review, we provide a comprehensive examination of the neural circuits putatively involved in influencing this hypothalamic site, and supplement this analysis with recent observations from our laboratory on the expression of Fos protein in the central nervous system of rats exposed to a live predator.  相似文献   

5.
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment.  相似文献   

6.
Early postnatal exposure to both exogenous and endogenous oxytocin (OT) can have long-term effects on behavior and physiology, although the mechanisms of these effects are not known. c-Fos expression was used to investigate the immediate neural effects of neonatal manipulations of OT in male and female prairie voles. On the day of birth prairie vole pups received an intraperitoneal injection of OT, a selective OT antagonist (OTA), or saline (vehicle control), while an additional group was handled but not injected. One hour after treatment brains were collected and fixed via spinning immersion and immunocytochemistry was then used to label for c-Fos immunoreactivity (IR). There were significant differences between males and females. Handled only females displayed significantly higher levels of c-Fos IR in the mediodorsal thalamic nucleus (MD) than males while handled males had higher c-Fos IR in the paraventricular nucleus of the hypothalamus than females. Exogenous OT stimulated neuronal activity in the supraoptic nucleus (SON) in males, while treatment with OTA increased Fos IR in the SON and was associated with reduced Fos IR in the MD in females. The results indicate that neuronal activity and responses to OT are sexually dimorphic in newborn prairie voles. In females changes in Fos expression were stimulated by treatment with OTA, suggesting that endogenous OT affects cellular activity while males responded to exogenous OT.  相似文献   

7.
Stratford TR 《Brain research》2005,1048(1-2):241-250
Chemical inhibition of neurons in the nucleus accumbens shell (AcbSh) elicits intense, behaviorally specific, feeding in satiated rats. We have demonstrated previously that this treatment activates a number of brain regions, most significantly the lateral hypothalamus (LH). This activation could be elicited through a direct neural connection with the AcbSh or secondarily through changes in autonomic activity, stress, or circulating levels of orexigenic or satiety factors. In the present study, we used the immunohistochemical localization of Fos protein to map neuronal activation after unilateral muscimol injections into the AcbSh to determine whether AcbSh-mediated Fos expression remains lateralized in the circuit and whether secondary systemic changes in the rat can be excluded as primary factors in the activation of downstream component nuclei. Rats receiving only saline injections exhibited very little Fos immunoreactivity. In contrast, unilateral injections of muscimol into the AcbSh consistently increased Fos expression in several brain regions. Three distinct patterns of expression were observed. Fos synthesis in the LH was increased only on the side of the brain ipsilateral to the muscimol injection. Fos expression remained primarily ipsilateral to the injection site in the septohypothalamic, paraventricular hypothalamic (PVN), paratenial thalamic, and lateral habenular nuclei, and medial substantia nigra, but was increased bilaterally in the piriform cortex, supraoptic nucleus, central nucleus of the amygdala, and nucleus of the solitary tract. Smaller numbers of Fos-immunoreactive cells were seen unilaterally in the bed nucleus of the stria terminalis, medial ventral pallidum, arcuate nucleus, and ventral tegmental area and bilaterally in the supraoptic and tuberomammillary nuclei. The labeling in the LH, PVN, and other unilaterally labeled structures provides evidence that these brain regions are components of an AcbSh-mediated neural circuit and suggests that they may be involved in the expression of AcbSh-mediated feeding behavior.  相似文献   

8.
In many mammalian species the neuroendocrine regulation of male and female reproductive behavior is sexually dimorphic. By contrast, many features of female sexual behavior in the musk shrew (Suncus murinus) more closely resemble those of males than of females of other species. Female musk shrews require testosterone (T), which is neurally aromatized to estrogen, to induce sexual behavior. Aromatization occurs in the medial preoptic area (MPOA), and this region is critical for the expression of female receptivity. To compare neural responses to sexual behavior in females and males, we compared the number of Fos-like immunoreactive (Fos-ir) neurons after mating in musk shrews. In both males and females the number of Fos-ir neurons was increased by mating activity in the granule layer of the accessory olfactory bulb (gr-AOB), the bed nucleus of the stria terminalis (BNST), MPOA, the medial amygdala (MeA), and the region corresponding to the midbrain central tegmental field (CTF). Although Fos was induced by mating in several regions, this response was only dimorphic in the ventral medial nucleus of the hypothalamus (VMN), where mating significantly increased Fos-ir in females, but not in males. In both sexes, only the gr-AOB displayed an increase in Fos-ir after exposure to chemosensory cues alone. Thus, the pattern of Fos expression in the brain after mating is only sexually dimorphic in one region, the VMN. Further, in spite of past behavioral studies done in this species, which show a role for pheromones in induction of receptivity, these data show that exposure to pheromones does not induce Fos in structures caudal to the olfactory bulbs.  相似文献   

9.
It has been shown that electrical stimulation of the central nucleus of the inferior colliculus (IC) at freezing or escape thresholds activates different neural circuits in the brain. Since electrical stimulation activates cell bodies and fibers of passage it is necessary to use chemical stimulation that activates only post-synaptic receptors. To examine this issue in more detail, we took advantage of the fact that GABAergic neurons exert tonic control over the neural substrates of aversion in the IC. Reduction of GABA transmission in this structure was performed with the use of semicarbazide - an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) - and the GABA-A receptor antagonist bicuculline. Depending on the dose employed local infusions of semicarbazide (6.0 microg/0.2 microl) or bicuculline (40 ng/0.2 microl) into this region caused freezing and escape, respectively. The results obtained showed that freezing behavior induced by semicarbazide was associated with an increase in Fos expression in the dorsomedial column of the PAG (dmPAG) only, while bicuculline-induced escape was related to widespread increase in Fos labeling, notably in the periaqueductal gray, hypothalamus nuclei, amygdaloid nuclei, the laterodorsal nucleus of thalamus (LD), the cuneiform nucleus (CnF) and the locus coeruleus (LC). Thus, the present data support the notion that freezing and escape behaviors induced by GABA blockade in the IC are neurally segregated: acquisition of aversive information of acoustic nature from the IC probably uses the dmPAG column as a relay station to higher brain centers whereas bicuculline-induced escape activates structures involved in both sensory processing and motor output of defensive behavior. These results support the existence of distinct neural circuits mediating the sensory and motor responses of the defense reaction. The extent of the brain activation during freezing appears to be limited to the anatomical connections of the dmPAG, whereas an overall activation of the limbic system predominates during escape behavior induced by IC stimulation.  相似文献   

10.
Sexual behavior can be usefully parsed into an appetitive and a consummatory component. Both appetitive and consummatory male‐typical sexual behaviors (respectively, ASB and CSB) are activated in male Japanese quail by testosterone (T) acting in the medial preoptic nucleus (POM), but never observed in females. This sex difference is based on a demasculinization (= organizational effect) by estradiol during embryonic life for CSB, but a differential activation by T in adulthood for ASB. Males expressing rhythmic cloacal sphincter movements (RCSMs; a form of ASB) or allowed to copulate display increased Fos expression in POM. We investigated Fos brain responses in females exposed to behavioral tests after various endocrine treatments. T‐treated females displayed RCSM, but never copulated when exposed to another female. Accordingly they showed an increased Fos expression in POM after ASB but not CSB tests. Females treated with the aromatase inhibitor Vorozole in ovo and T in adulthood displayed both male‐typical ASB and CSB, and Fos expression in POM was increased after both types of tests. Thus, the neural circuit mediating ASB is present or can develop in both sexes, but is inactive in females unless they are exposed to exogenous T. In contrast, the neural mechanism mediating CSB is not normally present in females, but can be preserved by blocking the embryonic production of estrogens. Overall these data confirm the difference in endocrine controls and probably neural mechanisms supporting ASB and CSB in quail, and highlight the complexity of mechanisms underlying sexual differentiation of behavior.  相似文献   

11.
The popular drug 3,4 methylenedioxymethamphetamine (MDMA, "Ecstasy", "the Love Drug") produces feelings of love and closeness in humans and induces analogous prosocial and antiaggressive effects in laboratory animals. Here we examined the specific brain regions that may be involved in these prosocial effects. Male Wistar rats were pretreated with a moderate dose of MDMA (5 mg/kg) or vehicle and then either kept alone in a familiar test chamber for 60 min (groups MDMA-ALONE and VEHICLE-ALONE) or allowed to engage in social interaction in the familiar test chamber with an unfamiliar same-sex conspecific for 60 min (groups MDMA-SOCIAL and VEHICLE-SOCIAL). Rats in the MDMA-SOCIAL group showed much greater overall social interaction than rats in the VEHICLE-SOCIAL group, with microanalysis revealing increased general investigation of other rats but decreased anogenital sniffing. Analysis of neural activation across 39 brain regions using Fos immunohistochemistry showed the following results: (1) VEHICLE-SOCIAL and VEHICLE-ALONE groups did not differ in Fos expression, indicating that a social context per se did not affect Fos expression, (2) MDMA-treated groups showed significantly increased Fos expression relative to VEHICLE treated groups in 30 brain regions, (3) the MDMA-SOCIAL group showed augmented Fos expression relative to the MDMA-ALONE group in six brain regions including the caudate-putamen (medial), medial preoptic area, paraventricular thalamic nucleus, central amygdala, ventromedial hypothalamic nucleus, and the medial amygdala (posterodorsal), and (4) the MDMA-SOCIAL group (but not the MDMA-ALONE group) showed augmented Fos expression relative to the VEHICLE groups in the nucleus accumbens, ventral tegmental area and periaqueductal grey. These results indicate that a moderate dose of MDMA given in a social context causes considerably greater brain activation than the same dose given to solitary rats. This activation involves specific neural circuits that are known to regulate affiliative behavior, perhaps by modulating the incentive value of social stimuli. A possible role for the neuropeptide oxytocin in mediating the prosocial effects of MDMA is discussed.  相似文献   

12.
Most stressors generate a set of endocrine and neural adaptations that form a stress response. The corticotropin-releasing factor neurons of the paraventricular nucleus of hypothalamus integrate endocrine and neural inputs, and cause a cascade of events with resultant increased levels of pituitary adrenocorticotropic hormone and adrenal hormones. Although activation of the hypothalamic-pituitary-adrenal axis is associated with a large variety of stressors, the effects of seizures on hypothalamic corticotropin-releasing factor neurons are essentially unknown. The goal of the present study was to elucidate the effects of generalized convulsive seizures on distinct and separate corticotropin-releasing factor cell populations in brain. Seizure-activated neurons were identified immunocytochemically through their expression of the Fos protein. Seizures were induced by intraperitoneal injection of kainic acid. In the paraventricular nucleus, the vast majority of corticotropin-releasing factor-like parvocellular neurons also expressed Fos-like protein following seizure elicitation. This response was specific to corticotropin-releasing factor neurons of the paraventricular nucleus, as corticotropin-releasing factor neurons in central nucleus of the amygdala or bed nucleus of the stria terminalis did not simultaneously localize Fos following seizures.  相似文献   

13.
Hamson DK  Watson NV 《Brain research》2004,1006(2):233-240
This study utilized Fos expression to map the distribution of activated cells in brainstem areas following masculine sexual behavior. Males displaying both appetitive and consumatory sexual behaviors (Cop) were compared to animals prevented from copulation (NC) and to socially isolated (SI) animals. Following copulation, Fos was preferentially augmented in the caudal ventral medulla (CVM), a region mediating descending inhibition of penile reflexes, and which may be regulated by a forebrain circuit that includes the medial preoptic area (MPOA). Copulation-induced Fos was observed in the medial divisions of both the dorsal cochlear nucleus (DC) and trapezoid bodies (Tz), areas which are part of a circuit processing auditory information. In addition, the medullary linear nucleus (Li) displayed comparable amounts of Fos in Cop and NC as compared to the SI animals. Other regions of the pontomedullary reticular system, which may mediate sleep and arousal, did not exhibit Fos expression associated with consumatory sexual behavior. We suggest that Fos is associated with the inhibition of sexual behavior following ejaculation in the CVM, and that auditory information arising from the DC and Tz is combined with copulation-related sensory information in the subparafasicular nucleus and projected to the hypothalamus. In addition, equal amounts of Fos expression observed in the Li in both the Cop and NC animals suggests that this region is involved in sexual arousal. Overall, the data suggest that processing by brainstem nuclei directly contributes to the regulation of mating behavior in male rats.  相似文献   

14.
GABAergic neurons exert tonic control over the neural substrates of aversion in the dorsal periaqueductal gray (dPAG). It has been shown that electrical stimulation of this region at freezing or escape thresholds activates different neural circuits in the brain. Since electrical stimulation activates cell bodies and fibers of passage, it is necessary to use chemical stimulation that activates only post-synaptic receptors. To investigate this issue further, reduction of GABA transmission was performed with local injections of either the GABA-A receptor antagonist bicuculline or the glutamic acid decarboxylase (GAD) inhibitor semicarbazide into the dorsolateral periaqueductal gray (dlPAG). Local infusions of semicarbazide (5.0 microg/0.2 microl) or bicuculline (40 ng/0.2 microl) into this region caused freezing and escape, respectively. The results obtained showed that freezing behavior induced by semicarbazide was associated with an increase in Fos expression in the laterodorsal nucleus of the thalamus (LD) and ventrolateral periaqueductal gray (vlPAG), while bicuculline-induced escape was related to widespread increase in Fos labeling, notably in the columns of the periaqueductal gray, hypothalamus nuclei, the central amygdaloid nucleus (Ce), the LD, the cuneiform nucleus (CnF) and the locus coeruleus (LC). Thus, the present data support the notion that freezing and escape behaviors induced by GABA blockade in the dlPAG are neurally segregated: freezing activates only structures that are mainly involved in sensory processing, and bicuculline-induced escape activates structures involved in both sensory processing and motor output of defensive behavior. Therefore, the freezing elicited by activation of dlPAG appears to be related to the acquisition of aversive information, whereas most brain structures involved in the defense reaction are recruited during escape.  相似文献   

15.
When Syrian hamsters (Mesocricetus auratus) are defeated by a larger, more aggressive hamster, they subsequently exhibit submissive and defensive behavior, instead of their usual aggressive and social behavior, even toward a smaller, non-aggressive opponent. This change in behavior is termed conditioned defeat, and we have found that the amygdala, bed nucleus of the stria terminalis, and ventral hippocampus, among others, are crucial brain areas for either the acquisition and/or expression of this behavioral response to social stress. In the present study, we tested the hypothesis that the nucleus accumbens is also a necessary component of the circuit mediating the acquisition and expression of conditioned defeat. We found that infusion of the GABAA agonist muscimol into the nucleus accumbens prior to defeat training failed to affect acquisition of conditioned defeat, but infusion prior to testing significantly decreased submissive behavior and significantly increased aggressive behavior directed toward the non-aggressive intruder. These data indicate that, unlike the basolateral complex of the amygdala, the nucleus accumbens is not a critical site for the plasticity underlying conditioned defeat acquisition, but it does appear to be an important component of the circuit mediating the expression of the behavioral changes that are produced in response to a previous social defeat. Of note, this is the first component of the putative “conditioned defeat neural circuit” wherein we have found that pharmacological manipulations are effective in restoring the territorial aggressive response in previously defeated hamsters.  相似文献   

16.
Freezing and escape responses induced by gradual increases in the intensity of the electrical current applied to dorsal regions of the periaqueductal gray (dPAG) cause a distinct pattern of Fos distribution in the brain. From these studies, it has been suggested that a pathway involving the dPAG itself, dorsomedial hypothalamus and the cuneiform nucleus (CnF) would mediate responses to immediate danger and another one involving the amygdala and ventrolateral periaqueductal gray (vlPAG) would mediate cue-elicited responses. As electrical stimulation activates body cells and fibers of passage the need of studies with chemical stimulation of only post-synaptic fibers of the dPAG is obvious. To examine further this issue we measured Fos protein expression in brain areas activated by stimulation of the dPAG with glutamate (5 nmol/0.2 microL) and N-methyl-D-aspartate (NMDA) at doses that provoke either freezing (4 nmol/0.2 microL) or escape (7 nmol/0.2 microL) responses, respectively. The results showed that glutamate-induced freezing caused a selective increase in Fos expression in the superior and inferior colliculi as well as in the laterodorsal nucleus of the thalamus. On the other hand, NMDA-induced escape led to widespread increases in Fos labeling in almost all structures studied. Differently from glutamate, NMDA at doses provoking freezing caused significant increase of Fos labeling in the dPAG and CnF. Therefore, the present data support the notion that freezing behavior induced by activation of either non-NMDA or NMDA receptors in the dorsolateral periaqueductal gray (dlPAG) is neurally segregated: glutamate activates only structures that are mainly involved in the sensorial processing and NMDA-induced freezing structures involved in the motor output of defensive behavior. Therefore, the freezing elicited by the activation of non-NMDA receptors seem to be related to the acquisition of aversive information, whereas that resulting from the activation of NMDA receptors could serve as a preparatory response for flight.  相似文献   

17.
Largely ignored in tests of defensive burying is the capacity for individual animals to display marked variations in active coping behaviors. To expose the neurobiological correlates of this behavioral differentiation rats were exposed to a mousetrap that was remotely triggered upon approach to remove the quality of pain. Relative to animals showing no significant levels of defensive burying activity, rats showing sustained elevations in defensive burying displayed higher levels of arginine vasopressin (AVP) mRNA and increased numbers of androgen receptor positive cells in the medial amygdala and posterior bed nuclei of the stria terminalis, brain regions that integrate emotional appraisal and sensory information. In contrast, animals showing little to no defensive burying responses displayed relatively higher levels of AVP and oxytocin (OT) mRNA within the supraoptic nucleus and subregions of the paraventricular nucleus of the hypothalamus responsible for neuroendocrine and autonomic function. Finally, animals showing sustained levels of burying also displayed increased levels of testosterone and pituitary-adrenal hormones under stress conditions. These findings implicate roles for central AVP and OT in mediating differential avoidance behaviors and demonstrate the utility of using a pain-free test of defensive burying as a framework for exploring naturally occurring differences in coping style and neuroendocrine capacity.  相似文献   

18.
1. Violence and aggression are major public health problems. 2. The authors have used techniques of electrical brain stimulation, anatomical-immunohistochemical techniques, and behavioral pharmacology to investigate the neural systems and circuits underlying aggressive behavior in the cat. 3. The medial hypothalamus and midbrain periaqueductal gray are the most important structures mediating defensive rage behavior, and the perifornical lateral hypothalamus clearly mediates predatory attack behavior. The hippocampus, amygdala, bed nucleus of the stria terminalis, septal area, cingulate gyrus, and prefrontal cortex project to these structures directly or indirectly and thus can modulate the intensity of attack and rage. 4. Evidence suggests that several neurotransmitters facilitate defensive rage within the PAG and medial hypothalamus, including glutamate, Substance P, and cholecystokinin, and that opioid peptides suppress it; these effects usually depend on the subtype of receptor that is activated. 5. A key recent discovery was a GABAergic projection that may underlie the often-observed reciprocally inhibitory relationship between these two forms of aggression. 6. Recently, Substance P has come under scrutiny as a possible key neurotransmitter involved in defensive rage, and the mechanism by which it plays a role in aggression and rage is under investigation. 7. It is hoped that this line of research will provide a better understanding of the neural mechanisms and substrates regulating aggression and rage and thus establish a rational basis for treatment of disorders associated with these forms of aggression.  相似文献   

19.
Incubation temperature during embryonic development determines gonadal sex in the leopard gecko, Eublepharis macularius. In addition, both incubation temperature and gonadal sex influence behavioral responses to androgen and estrogen treatments in adulthood. Although these findings suggest that temperature and sex steroids act upon a common neural substrate to influence behavior, it is unclear where temperature and hormone effects are integrated. To begin to address this question, we identified areas of the leopard gecko brain that express androgen receptor (AR) and estrogen receptor (ER) mRNA. We gonadectomized adult female and male geckos from an incubation temperature that produces a female-biased sex ratio and another temperature that produces a male-biased sex ratio. Females and males from both temperatures were then treated with equivalent levels of various sex steroids. Region-specific patterns of AR mRNA expression and ER mRNA expression were observed upon hybridization of radiolabeled (35S) cRNA probes to thin sections of reproductive tissues (male hemipenes and female oviduct) and brain. Labeling for AR mRNA was very intense in the epithelium, but not within the body, of the male hemipenes. In contrast, expression of ER mRNA was prominent in most of the oviduct but not in the luminal epithelium. Within the brain, labeling for AR mRNA was conspicuous in the anterior olfactory nucleus, the lateral septum, the medial preoptic area, the periventricular preoptic area, the external nucleus of the amygdala, the anterior hypothalamus, the ventromedial hypothalamus, the premammillary nucleus, and the caudal portion of the periventricular nucleus of the hypothalamus. Expression of ER mRNA was sparse in the septum and was prominent in the ventromedial hypothalamus, the caudal portion of the periventricular nucleus of the hypothalamus, and a group of cells near the torus semicircularis. Many of these brain regions have been implicated in the regulation of hormone-dependent, sex-typical reproductive and agonistic behaviors in other vertebrates. Consequently, these nuclei are likely to control such behaviors in the leopard gecko and also are candidate neural substrates for mediating temperature effects on behavior.  相似文献   

20.
Martínez V  Wang L  Taché Y 《Brain research》2006,1086(1):168-180
We assessed brain nuclei activated during noxious mechanical distension of the proximal colon in conscious rats, using Fos as a marker of neuronal activation, and functional reflex changes in gastric emptying associated to colon distension. The role of capsaicin-sensitive afferents in Fos and gastric responses to distension was also investigated. Compared with sham distension, isovolumetric phasic distension of the proximal colon (10 ml, 30 s on/off for 10 min) increased significantly Fos expression 1 h after distension in selective brain areas, most prominently, the paraventricular and supraoptic nuclei of the hypothalamus (13-fold and 80-fold, respectively), the locus coeruleus-Barrington's nucleus complex (2-fold), area postrema (7-fold) and the nucleus tractus solitarius (4-fold). Increased Fos expression was also observed in the cingulate cortex, posterior paraventricular nucleus of the thalamus, periaqueductal gray and ventrolateral medulla. Distension of the proximal colon significantly inhibited gastric emptying by 82% and 34%, as measured 30 and 60 min after the distension respectively, compared with control. Pretreatment with systemic capsaicin prevented both the brain increase in Fos expression and the inhibition of gastric emptying induced by the colon distension. These results show that visceral pain arising from the proximal colon activates a complex neuronal network that includes specific brain nuclei involved in the integration of autonomic, neuroendocrine and behavioral responses to pain and an inhibitory motor reflex in other gut areas (delayed gastric emptying). Capsaicin-sensitive afferent pathways are involved in mediating brain neuronal activation and functional changes associated with noxious visceral stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号