首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of 4,5‐diphenylisoxazoles ( 11a–p ), 3,4‐diphenyl‐5‐trifluoromethylisoxazoles ( 15, 21 ), and 4,5‐diphenyl‐3‐methylsulfonamidoisoxazole ( 23 ) possessing a variety of substituents (H, F, MeS, MeSO, MeSO2) at the para‐position of one of the phenyl rings were synthesized for evaluation as analgesic, and selective COX‐2 inhibitory antiinflammatory (AI), agents. Although the 4,5‐diphenylisoxazole group of compounds (11a–p) exhibited potent analgesic and AI activities, those compounds evaluated ( 11a, 11b, 11m ) were more selective inhibitors of COX‐1 than COX‐2, with the exception of 4‐(4‐methylsulphonylphenyl)‐5‐phenylisoxazole ( 11n ) that showed a modest COX‐2 selectivity index (SI) of 2.1. In contrast, 3‐(4‐methylsulphonylphenyl)‐4‐phenyl‐5‐trifluoromethylisoxazole ( 15 ), which retained good analgesic and AI activities, was a highly potent and selective COX‐2 inhibitor (COX‐1 IC50 > 500 μM; COX‐2 IC50 < 0.001 μM) with a COX‐2 SI of > 500,000, relative to the reference drug celecoxib (COX‐1 IC50 = 22.9 μM; COX‐2 IC50 = 0.0567 μM) with a COX‐2 SI of 404. The 3‐phenyl‐4‐(4‐methylsulphonylphenyl) regioisomer ( 21 ) was a less potent inhibitor (COX‐1 IC50 = 252 μM; COX‐2 IC50 = 0.2236 μM) with a COX‐2 SI of 1122, relative to the regioisomer ( 15 ). The related compound 4,5‐diphenyl‐3‐methylsulfonamidoisoxazole ( 23 ) exhibited similar (to 21 ) potency and COX‐2 selectivity (COX‐1 IC50 > 200 μM; COX‐2 IC50 = 0.226 μM) with an SI of 752. A molecular modeling (docking) study for the most potent, and selective, COX‐2 inhibitor (15) in the active site of the human COX‐2 enzyme showed the C‐5 CF3 substituent is positioned 3.37 Å from the phenolic OH of Tyr355, and 6.91 Å from the Ser530 OH. The S‐atom of the MeSO2 substituent is positioned deep (7.40 Å from the entrance) inside the COX‐2 secondary pocket (Val523). These studies indicate a C‐5 CF3 ( 15, 21 ), or C‐3 NHSO2Me ( 23 ), central isoxazole ring substituent is crucial to selective inhibition of COX‐2 for this class of compounds. Drug Dev. Res. 51:273–286, 2000. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
A new series of 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4H)‐imidazolone derivatives 4a–l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1H NMR, DEPT‐Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)‐1, COX‐2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX‐2 rather than COX‐1, and the IC50 values (0.25–1.7 µM) were lower than that of indomethacin (IC50 = 9.47 µM) and somewhat higher than that of celecoxib (IC50 = 0.071 µM). The selectivity index for COX‐2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC50 values of 0.02–74.03 µM, while the IC50 of the reference zileuton was 0.83 µM. The most active compound 4c (4‐chlorobenzoxazole derivative) was found to have dual COX‐2/LOX activity. All the synthesized compounds were docked inside the active site of the COX‐2 and LOX enzymes. They linked to COX‐2 through the N atom of the azole scaffold, while C?O of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site.
  相似文献   

3.
A series of 9‐methoxy‐6H‐[1]benzothiopyrano[4,3‐b]quinolin‐10‐ols with a Mannich side chain were synthesized and evaluated for their anti‐Hepatitis B virus (HBV) activity in HepG2.2.15 cells. Some compounds showed significant anti‐HBV activity with IC50 values less than 41 μM. Among them, compound 9b was the most effective anti‐HBV agent (IC50 = 1.7 μM, SI = 60.3).  相似文献   

4.
Abstract: 2‐(4‐Aminophenyl)‐3‐(3,5‐dihydroxylphenyl) propenoic acid (CSN‐07001) is a new compound based on the combination of resveratrol and propenoic acid derivatives. In vitro cyclooxygenase (COX)/5‐lipoxygenase (5‐LOX) inhibition assays showed that the test compound exhibited a dual inhibitory activity against the COX (COX‐1 IC50 = 2.20 μM, COX‐2 IC50 = 1.76 μM) and 5‐LOX (IC50 = 0.28 μM) enzymes. Further, the enhanced COX‐1/COX‐2/5‐LOX expression in lipopolysaccaride‐induced lung inflammation in mice was also suppressed by CSN‐07001 in a concentration‐dependent manner. In vivo studies showed that CSN‐07001 exhibited potent anti‐inflammatory and antinociceptive effects in different experimental models. We further examined the risk of gastric damage induced by CSN‐07001. The test compound was gastric‐sparing in that it elicited markedly fewer stomach lesions than indomethacin in rats. Taken together, our data indicate that CSN‐07001 exhibits a novel class of dual inhibitors of COX and 5‐LOX having therapeutic potential as non‐steroidal anti‐inflammatory agents with an enhanced gastric safety profile.  相似文献   

5.
A series of N‐(2‐(3,5‐dimethoxyphenyl)benzoxazole‐5‐yl)benzamide derivatives ( 3am ) was synthesized and evaluated for their in vitro inhibitory activity against COX‐1 and COX‐2. The compounds with considerable in vitro activity (IC50 < 1 μM) were evaluated in vivo for their anti‐inflammatory potential by the carrageenan‐induced rat paw edema method. Out of 13 newly synthesized compounds, 3a , 3b , 3d , 3g , 3j , and 3k were found to be the most potent COX‐2 inhibitors in the in vitro enzymatic assay, with IC50 values in the range of 0.06–0.71 μM. The in vivo anti‐inflammatory activity of these six compounds ( 3a , 3b , 3d , 3g , 3j , and 3k ) was assessed by the carrageenan‐induced rat paw edema method. Compounds 3d (84.09%), 3g (79.54%), and 3a (70.45%) demonstrated significant anti‐inflammatory activity compared to the standard drug ibuprofen (65.90%) and were also found to be safer than ibuprofen, by ulcerogenic studies. A docking study was done using the crystal structure of human COX‐2, to understand the binding mechanism of these inhibitors to the active site of COX‐2.
  相似文献   

6.
A group of (Z) and (E)‐1,1‐dihalo‐2‐(4‐substituted‐phenyl)‐3‐phenylcyclopropane [ (Z)‐10 , (E)‐11 ] stereoisomers having a variety of substituents (H, Br, Cl, F, NO2, SO2Me) at the para‐position of the C‐2 phenyl ring in conjunction with either two chloro or bromo substituents at C‐1 were synthesized for in vivo evaluation as analgesic and antiinflammatory (AI) agents, and as potential selective cyclooxygenase‐2 (COX‐2) inhibitors. This group of compounds ( 10‐11 ) exhibited significant analgesic activity since 4% NaCl‐induced abdominal constriction was reduced by 44–73% at 30 min, and 48–77% at 60 min, post‐drug administration relative to the reference drugs aspirin and celecoxib (58 and 32% inhibition at 30 min post‐drug administration) for a 50 mg/kg intraperitoneal dose. In the 1,1‐dichloro group of compounds, a Cl or MeSO2 substituent at the para‐position of the C‐2 phenyl ring generally provided superior analgesic activity. The most active analgesic compound, (E)‐1,1‐dichloro‐2‐(4‐methanesufonylphenyl)‐3‐phenylcyclopropane ( 11h ) inhibited abdominal constriction by 72 and 77% at 30 and 60 min post‐drug administration, respectively. AI activities, determined using the carrageenan‐induced rat paw edema assay, showed that this class of ( Z)‐10 and ( E)‐11 compounds exhibited AI activities in the inactive‐to‐moderate activity range (1.5–45% inhibition) for a 50 mg/kg oral dose. The AI potency order, with respect to the para‐substitutent on the C‐2 phenyl ring, for the ( Z)‐10 compounds was NO2 > MeSO2 ≈ H ≥ Cl, and for the ( E)‐11 compounds was H ≥ MeSO2 > Cl ≈ Br. (E)‐1,1‐dibromo‐2‐(4‐methanesufonylphenyl)‐3‐phenylcyclopropane ( 11l ), which was the most active AI compound, reduced inflammation by 45 and 37% at 3 and 5 h post‐drug administration, respectively. The ( E)‐11 stereoisomer was generally a more potent AI agent than the corresponding ( Z)‐10 stereoisomer. In vitro COX‐1 and COX‐2 inhibition studies showed that (E)‐1,1‐dichloro‐2‐(4‐nitrophenyl)‐3‐phenylcyclopropane ( 11c ) inhibited COX‐1 (IC50 = 278.8 μM) and COX‐2 (IC50 = 80.5 μM) for a COX‐2 selectivity index of 3.5, whereas (E)‐1,1‐dichloro‐2‐(4‐methanesulfonylphenyl)‐3‐phenylcyclopropane ( 11h ) was a more potent inhibitor of COX‐1 and COX‐2, but it was more selective for COX‐1 (COX‐1 IC50 = 0.59 μM, COX‐2 IC50 = 3.04 μM). A molecular modeling (docking) study for (E)‐1,1‐dichloro‐2‐(4‐methanesulfonylphenyl)‐3‐phenylcyclopropane ( 11h ) on the active site of the human COX‐2 isozyme shows it binds in the center of the active site with the 1,1‐dichloro substituents oriented in the direction of the mouth of the channel towards Arg120, and the C‐2 MeSO2 moiety oriented towards the apex of the active site with the S‐atom of the MeSO2 substituent positioned about 6.56 Å inside the entrance to the secondary pocket (Val523) of COX‐2. In contrast, the corresponding (Z)‐10h stereoisomer assumes a different position in the COX‐2 binding site where the S‐atom of the MeSO2 moiety is near (4.02 Å) the Ser530 OH, but a much greater distance from the COX‐2 secondary pocket (Val523). The results from these docking studies are consistent with the observation that (E)‐11h is an inhibitor of both COX isozymes, whereas the (Z)‐10h stereoisomer is an inactive COX inhibitor (COX‐1 IC50 > 100 μM, COX‐2 IC50 > 200 μM). Drug Dev. Res. 55:79–90, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

7.
A novel 2‐(piperidin‐4‐yl)‐1H‐benzo[d]imidazole derivative 5 with good anti‐inflammatory activity was identified from our in‐house library. Based on hit compound 5 , two series of 2‐(piperidin‐4‐yl)‐1H‐benzo[d]imidazole derivative 6a – g and 7a – h were designed and synthesized as novel anti‐inflammatory agents. Most of synthesized compounds exhibited good inhibitory activity on NO and TNF‐α production in LPS‐stimulated RAW 264.7 macrophages, in which the compound 6e showed most potent inhibitory activity on NO (IC50 = 0.86 μm ) and TNF‐α (IC50 = 1.87 μm ) production. Further evaluation revealed that compound 6e displayed more potent in vivo anti‐inflammatory activity than ibuprofen did on xylene‐induced ear oedema in mice. Additionally, Western blot analysis revealed that compound 6e could restore phosphorylation level of IκBα and protein expression of p65 NF‐κB in LPS‐stimulated RAW 264.7 macrophages.  相似文献   

8.
A novel series of imidazo[4,5‐c]pyridine‐based CDK2 inhibitors were designed from the structure of CYC202 via scaffold hopping strategy. These compounds were synthesized and biologically evaluated for their CDK2 inhibitory and in vitro anti‐proliferation potential against cancer cell lines. Several compounds exhibited potent CDK2 inhibition with IC50 values of less than 1 µM. The most potent compound 5b showed excellent CDK2 inhibitory (IC50 = 21 nM) and in vitro anti‐proliferation activity against three different cell lines (HL60, A549, and HCT116). The molecular docking and dynamic studies portrayed the potential binding mechanism between 5b and CDK2, and several key interactions between them were observed, which would be the reason for its potent CDK2 inhibitory and anti‐proliferation activities. Therefore, the pyridin‐3‐ylmethyl moiety would serve as an excellent pharmacophore for the development of novel CDK2 inhibitors for targeted anti‐cancer therapy.
  相似文献   

9.
Recent studies have demonstrated that inhibition of p38α MAP kinase could effectively inhibit pro‐inflammatory cytokines including TNF‐α and interleukins. Thus, inhibition of this enzyme can prove greatly beneficial in the therapy of chronic inflammatory diseases. A new series of N‐[3‐(substituted‐4H‐1,2,4‐triazol‐4‐yl)]‐benzo[d]thiazol‐2‐amines ( 4a–n ) were synthesized and subjected to in vitro evaluation for anti‐inflammatory activity (BSA anti‐denaturation assay) and p38α MAPK inhibition. Among the compounds selected for in vivo screening of anti‐inflammatory activity ( 4b , 4c , 4f , 4g , 4j , 4m , and 4n ), compound 4f was found to be the most active with an in vivo anti‐inflammatory efficacy of 85.31% when compared to diclofenac sodium (83.68%). It was also found to have a low ulcerogenic risk and a protective effect on lipid peroxidation. The p38α MAP kinase inhibition of this compound (IC50 = 0.036 ± 0.12 μM) was also found to be superior to the standard SB203580 (IC50 = 0.043 ± 0.27 μM). Furthermore, the in silico binding mode of the compound on docking against p38α MAP kinase exemplified stronger interactions than those of SB203580.
  相似文献   

10.
Preclinical Research
This article describes the properties of a novel topical NSAID (Nonsteroidal anti‐inflammatory drug) patch, SFPP (S(+)‐flurbiprofen plaster), containing the potent cyclooxygenase (COX) inhibitor, S(+)‐flurbiprofen (SFP). The present studies were conducted to confirm human COX inhibition and absorption of SFP and to evaluate the analgesic efficacy of SFPP in a rat adjuvant‐induced arthritis (AIA) model. COX inhibition by SFP, ketoprofen and loxoprofen was evaluated using human recombinant COX proteins. Absorption of SFPP, ketoprofen and loxoprofen from patches through rat skin was assessed 24 h after application. The AIA model was induced by injecting Mycobacterium tuberculosis followed 20 days later by the evaluation of the prostaglandin PGE2 content of the inflamed paw and the pain threshold. SFP exhibited more potent inhibitory activity against COX‐1 (IC50 = 8.97 nM) and COX‐2 (IC50 = 2.94 nM) than the other NSAIDs evaluated. Absorption of SFP was 92.9%, greater than that of ketoprofen and loxoprofen from their respective patches. Application of SFPP decreased PGE2 content from 15 min to 6 h and reduced paw hyperalgesia compared with the control, ketoprofen and loxoprofen patches. SFPP showed analgesic efficacy, and was superior to the ketoprofen and loxoprofen patches, which could be through the potent COX inhibitory activity of SFP and greater skin absorption. The results suggested SFPP can be expected to exert analgesic effect clinically. Drug Dev Res 76 : 20–28, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
In accordance with our antiviral drug development attempt, acylhydrazone derivatives bearing amino acid side chains were synthesized for the evaluation of their antiviral activity against various types of viruses. Among these compounds, 8 S , 11 S , and 12 S showed anti‐HIV‐1 activity with a 50% inhibitory concentration (IC50) = 123.8 µM (selectivity index, SI > 3), IC50 = 12.1 µM (SI > 29), IC50 = 17.4 µM (SI > 19), respectively. Enantiomers 8 R , 11 R , and 12 R were inactive against the HIV‐1 strain IIIB. Hydrazones 8 S , 11 S , and 12 S which were active against HIV‐1 wild type showed no inhibition against a double mutant NNRTI‐resistant strain (K103N;Y181C). Molecular docking calculations of R‐ and S‐enantiomers of 8 , 11 , and 12 were performed using the hydrazone‐bound novel site of HIV‐1 RT.  相似文献   

12.
A novel series of 3,6,6‐trimethyl‐4‐oxo‐4,5,6,7‐tetrahydroindazole‐1‐acetic acid derivatives was designed and synthesized by a new one‐step pathway. Structure elucidation of the synthesized compounds was confirmed by various spectral and elemental analyses. The prepared compounds were evaluated for their ability to inhibit cyclooxygenase‐2 (COX‐2) and cyclooxygenase‐1 (COX‐1) enzymes in vitro. Among the synthesized compounds, the 2‐(3,6,6‐trimethyl‐4‐oxo‐4,5,6,7‐tetrahydroindazol‐1‐yl)acetic acid 4 emerged as the most potent COX‐2 inhibitor (IC50 value: 150 nM) with the highest selectivity index (COX‐1/COX‐2 inhibition ratio: 570.6). Docking studies of compound 4 in the active site of COX‐2 recognized its potential binding mode to the enzyme. Based on the preliminary results, compound 4 was considered as a lead compound for further optimization.  相似文献   

13.
A library of substituted tetrahydroacridin‐9‐amine derivatives were designed, synthesized, and evaluated as dual cholinesterase and amyloid aggregation inhibitors. Compound 8e (N‐(3,4‐dimethoxybenzyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine) was identified as a potent inhibitor of butyrylcholinesterase (BuChE IC50 = 20 nm ; AChE IC50 = 2.2 μm ) and was able to inhibit amyloid aggregation (40% inhibition at 25 μm ). Compounds 9e (6‐chloro‐N‐(3,4‐dimethoxybenzyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine, AChE IC50 = 0.8 μm ; BuChE IC50 = 1.4 μm ; Aβ‐aggregation inhibition = 75.7% inhibition at 25 μm ) and 11b (6‐chloro‐N‐(3,4‐dimethoxyphenethyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine, AChE IC50 = 0.6 μm ; BuChE IC50 = 1.9 μm ; Aβ‐aggregation inhibition = 85.9% inhibition at 25 μm ) were identified as the best compounds with dual cholinesterase and amyloid aggregation inhibition. The picolylamine‐substituted compound 12c (6‐chloro‐N‐(pyridin‐2‐ylmethyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine) was the most potent AChE inhibitor (IC50 = 90 nm ). These investigations demonstrate the utility of 3,4‐dimethoxyphenyl substituent as a novel pharmacophore possessing dual cholinesterase inhibition and anti‐Aβ‐aggregation properties that can be used in the design and development of small molecules with multitargeting ability to treat Alzheimer's disease.  相似文献   

14.
In this study, novel acridone‐1,2,4‐oxadiazole‐1,2,3‐triazole hybrids were designed, synthesized, and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activity. Among various synthesized compounds, 10‐((1‐((3‐(4‐methoxyphenyl)‐1,2,4‐oxadiazol‐5‐yl)methyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)acridin‐9(10H)‐one 10b showed the most potent anti‐acetylcholinesterase activity (IC50 = 11.55 μm ) being as potent as rivastigmine. Also docking outcomes were in good agreement with in vitro results confirming the dual binding inhibitory activity of compound 10b .  相似文献   

15.
A group of 2,3‐diphenylcycloprop‐2‐enes having a variety of substituents at the para‐position of the C‐2 phenyl ring (H, F), and C‐3 phenyl ring (H, F, SMe, SOMe, SO2Me), in conjunction with either a C‐1 carbonyl, oxime, oxime acetate, benzoyl hydrazone, or hydrogen substituent were synthesized for in vivo evaluation as analgesic and antiinflammatory (AI) agents, and as potential selective cyclooxygenase‐2 (COX‐2) inhibitors. This group of cycloprop‐2‐ene compounds exhibited significant analgesic activity, since 4% NaCl‐induced abdominal constriction was reduced by 43–90% at 30 min, and 41–100% at 60 min, after drug administration relative to the reference drugs aspirin and celecoxib (58% and 32% inhibition at 30 min after drug administration) for a 50 mg/kg intraperitoneal dose. AI activities, determined using the carrageenan‐induced rat paw edema assay, showed that this class of cycloprop‐2‐ene compounds exhibited AI activities in the inactive‐to‐modest activity range (0–26% inhibition) for a 50 mg/kg oral dose. The AI potency order for a group of 2,3‐diphenylcycloprop‐2‐enes with respect to the C‐1 substituent was oxime>hydrogen>carbonyl>benzoyl hydrazone. 2,3‐Diphenylcycloprop‐2‐en‐1‐one oxime ( 20 ) was the most active AI agent, inducing a 26% reduction in inflammation, relative to the reference drugs ibuprofen and celecoxib, which showed 52% and 58% reductions in inflammation, at 5 h after drug administration. In vitro COX‐1 and COX‐2 inhibition studies showed that 2,3‐diphenylcycloprop‐2‐en‐1‐one oxime ( 20 ) is a selective COX‐2 inhibitor (COX‐1 IC50>100 μM; COX‐2 IC50=2.94 μM; COX‐2 selectivity index>34). A molecular modeling study that docked the oxime ( 20 ) in the active site of the human COX‐2 isozyme showed that it binds in the vicinity of the mouth of the COX‐2 binding site with the O‐atom of the oxime (=N–OH) moiety separated from the NH2 group of Arg120 by about 3.65 Å. This orientation of the oxime compound ( 20 ) in the COX‐2 binding site could be due to a potentially strong ionic interaction between the =NOH oxime moiety and the guanidinium moiety of Arg120. Drug Dev. Res. 57:6–17, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

16.
2‐Hydrazinyl‐N‐(4‐sulfamoylphenyl)acetamide 3 was the key intermediate for the synthesis of novel hydrazones 4–10 and pyrazole derivatives 11–17 . All compounds were tested for their in vivo anti‐inflammatory activity and their ability to inhibit the production of PGE2 in serum samples of rats. IC50 values for the most active compounds for inhibition of COX‐1 and COX‐2 enzymes were determined in vitro, and they were also tested for their ulcerogenic effect. Molecular docking was performed on the active site of COX‐2 to predict their mode of binding to the amino acids. Most of the synthesized compounds showed good anti‐inflammatory activity especially compounds 3, 4, 8, 9, 15, and 17 which showed better activity than diclofenac as the reference drug. Compounds 3, 8, 9, 13, and 15–17 were less ulcerogenic than indomethacine as the reference drug. Most of the synthesized compounds interacted with Tyr 385 and Ser 530 in molecular docking study with additional hydrogen bond for compound 17 . Compound 17 showed good selectivity index value of 11.1 for COX‐1/COX‐2 inhibition in vitro.  相似文献   

17.
A series of bis(4‐amino‐5‐cyano‐pyrimidines) was synthesized and evaluated as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To further explore the multifunctional properties of the new derivatives, their antioxidant and antibacterial activities were also tested. The results showed that most of these compounds could effectively inhibit AChE and BChE. Particularly, compound 7c exhibited the best AChE inhibitory activity (IC50 = 5.72 ± 1.53 μM), whereas compound 7h was identified as the most potent BChE inhibitor (IC50 = 12.19 ± 0.57 μM). Molecular modeling study revealed that compounds 7c, 7f , and 7b showed a higher inhibitory activity than that of galantamine against both AChE and BChE. Anticholinesterase activity of compounds 7h, 7b , and 7c was significant in vitro and in silico for both enzymes, since these compounds have hydrophobic rings (Br‐phenyl, dimethyl, and methoxyphenyl), which bind very well in both sites. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activities. Indeed, in the superoxide–dimethyl sulfoxide alkaline assay, compound 7j showed very high inhibition (IC50 = 0.37 ± 0.28 μM). Also, compound 7l exhibited strong and good antibacterial activity against Staphylococcus epidermidis and Staphylococcus aureus, respectively. Taking into account the results of biological evaluation, further modifications will be designed to increase potency on different targets. In this study, the obtained results can be a new starting point for further development of multifunctional agents for the treatment of Alzheimer's disease.  相似文献   

18.
A novel series of benzoxazole/benzothiazole derivatives 4a–c – 11a–e were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 4c was found to be the most potent derivative against HepG2, HCT‐116, and MCF‐7 cells, with IC50 values = 9.45 ± 0.8, 5.76 ± 0.4, and 7.36 ± 0.5 µM, respectively. Compounds 4b, 9f , and 9c showed the highest anticancer activities against HepG2 cells with IC50 values of 9.97 ± 0.8, 9.99 ± 0.8, and 11.02 ± 1.0 µM, respectively, HCT‐116 cells with IC50 values of 6.99 ± 0.5, 7.44 ± 0.4, and 8.15 ± 0.8 µM, respectively, and MCF‐7 cells with IC50 values of 7.89 ± 0.7, 8.24 ± 0.7, and 9.32 ± 0.7 µM, respectively, in comparison with sorafenib as reference drug with IC50 values of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 4a–c, 9b,c,e,f,h , and 11c,e were further evaluated for their VEGFR‐2 inhibition. Compounds 4c and 4b potently inhibited VEGFR‐2 at IC50 values of 0.12 ± 0.01 and 0.13 ± 0.02 µM, respectively, which are nearly equipotent to the sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

19.
Novel series of benzoxazole s 4 a‐f ‐16 were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 5 e was found to be the most potent against HepG2, HCT‐116, and MCF‐7 with IC50 = 4.13 ± 0.2, 6.93 ± 0.3, and 8.67 ± 0.5 µM, respectively. Compounds 5 c , 5 f , 6 b , 5 d , and 6 c showed the highest anticancer activities against HepG2 cells with IC50 of 5.93 ± 0.2, 6.58 ± 0.4, 8.10 ± 0.7, 8.75 ± 0.7, and 9.95 ± 0.9 µM, respectively; HCT‐116 cells with IC50 of 7.14 ± 0.4, 9.10 ± 0.8, 7.91 ± 0.6, 9.52 ± 0.5, and 12.48 ± 1.1 µM, respectively; and MCF‐7 cells with IC50 of 8.93 ± 0.6, 10.11 ± 0.9, 12.31 ± 1.0, 9.95 ± 0.8, and 15.70 ± 1.4 µM, respectively, compared with sorafenib as a reference drug with IC50 of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 5 c‐f and 6 b,c were further evaluated for their vascular endothelial growth factor receptor‐2 (VEGFR‐2) inhibition. Compounds 5 e and 5 c potently inhibited VEGFR‐2 at lower IC50 values of 0.07 ± 0.01 and 0.08 ± 0.01 µM, respectively, compared with sorafenib (IC50 = 0.1 ± 0.02 µM). Compound 5 f potently inhibited VEGFR‐2 at low IC50 value (0.10 ± 0.02 µM) equipotent to sorafenib. Our design was based on the essential pharmacophoric features of the VEGFR‐2 inhibitor sorafenib. Molecular docking was performed for all compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

20.
Two series of new 1‐(alkyl/aryl)‐3‐{2‐[(5‐oxo‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)amino]phenyl}thioureas 2a – h and 5‐[2‐(substituted amino)‐1H‐benzimidazol‐1‐yl]‐4H‐pyrazol‐3‐ols 3a – i were designed and synthesized as anti‐inflammatory agents. The cyclooxygenase inhibitory activity of the newly synthesized compounds was investigated. All the compounds showed non‐selective inhibition of COX‐1 and COX‐2 enzymes which was consistent with their docking results. Compounds 2c , 2f , 2g , 3b , and 3g that showed the highest COX‐2 inhibitory activity were selected for further in vivo testing as anti‐inflammatory agents using diclofenac as a reference drug. Two of the test compounds ( 2c and 3b ) showed potent anti‐inflammatory activity comparable to that of diclofenac with lower ulcerogenic effect relative to indomethacin. SAR study of the two series as cyclooxygenase inhibitors and anti‐inflammatory agents was also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号