首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deoxycytidine analogue 2',2'-difluoro-2'-deoxycytidine (dFdC, gemcitabine) is a potent radiosensitiser, but has limited efficacy in combination with radiotherapy in patients with pancreatic cancer due to acute toxicity. We investigated whether cyclopentenyl cytosine (CPEC), targetting the 'de novo' biosynthesis of cytidine triphosphate (CTP), could increase dFdC cytotoxicity alone or in combination with irradiation in a panel of human pancreatic cancer cells (Panc-1, Miapaca-2, BxPC-3). To investigate the role of deoxycytidine kinase (dCK), the rate-limiting enzyme in the activation of dFdC, human lung cancer cells without (dFdC-resistant SWg) and with an intact dCK gene (dFdC-sensitive SWp) were included. We found that CPEC (100-1000 nmol l(-1)) specifically reduced CTP levels in a dose-dependent manner that lasted up to 72 h in all cell lines. Preincubation with CPEC resulted in a dose-dependent increase in dFdC incorporated into the DNA only in dFdC-sensitive cells. Consequently, CPEC increased the effectiveness of dFdC (300 nmol l(-1) for 4 h) only in dFdC-sensitive cells, which was accompanied by an increase in apoptosis. We also found that CPEC enhanced the radiosensitivity of cells treated with dFdC (30-300 nmol l(-1) for 4 h). These results indicate that CPEC enhances the cytotoxicity of dFdC alone and in combination with irradiation in several human tumour cell lines with an intact dCK gene.  相似文献   

2.
The new combination between the nucleoside analogue gemcitabine and the cholesterol-lowering drug fluvastatin was investigated in vitro and in vivo on the human pancreatic tumour cell line MIAPaCa-2. The present study demonstrates that fluvastatin inhibits proliferation, induces apoptosis in pancreatic cancer cells harbouring a p21ras mutation at codon 12 and synergistically potentiates the cytotoxic effect of gemcitabine. The pharmacologic activities of fluvastatin are prevented by administration of mevalonic acid, suggesting that the shown inhibition of geranyl-geranylation and farnesylation of cellular proteins, including p21rhoA and p21ras, plays a major role in its anticancer effect. Fluvastatin treatment also indirectly inhibits the phosphorylation of p42ERK2/mitogen-activated protein kinase, the cellular effector of ras and other signal transduction peptides. Moreover, fluvastatin administration significantly increases the expression of the deoxycytidine kinase, the enzyme required for the activation of gemcitabine, and simultaneously reduces the 5'-nucleotidase, responsible for deactivation of gemcitabine, suggesting a possible additional role of these enzymes in the enhanced cytotoxic activity of gemcitabine. Finally, a significant in vivo antitumour effect on MIAPaCa-2 xenografts was observed with the simultaneous combination of fluvastatin and gemcitabine, resulting in an almost complete suppression and a marked delay in relapse of tumour growth. In conclusion, the combination of fluvastatin and gemcitabine is an effective cytotoxic, proapoptotic treatment in vitro and in vivo against MIAPaCa-2 cells by a mechanism of action mediated, at least in part, by the inhibition of p21ras and rhoA prenylation. The obtained experimental findings might constitute the basis for a novel translational research in humans.  相似文献   

3.
PURPOSE: Hypoxia, frequently found in the center of solid tumor, is associated with resistance to chemotherapy by activation of signaling pathways that regulate cell pro-liferation, angiogenesis, and apoptosis. We determined whether hypoxia can increase the resistance of human pancreatic carcinoma cells to gemcitabine-induced apoptosis by activation of phosphatidylinositol 3'-kinase (PI3K)/Akt, MEK/mitogen-activated protein kinase (extracellular signal-regulated kinase) [MAPK(Erk) kinase (MEK)], and nuclear factor kappa B (NF-kappa B) signaling pathways. EXPERIMENTAL DESIGN: We evaluated the phosphorylation of Akt and MAPK(Erk), DNA binding activity of NF-kappa B, and apoptosis induced by gemcitabine in L3.6pl human pancreatic cancer cells under normoxic and hypoxic conditions. We then examined the effects of the PI3K inhibitor LY294002, MEK inhibitor U0126, and the epidermal growth factor receptor tyrosine kinase inhibitor PKI 166 on these signaling pathways and induction of apoptosis. RESULTS: Hypoxic conditions increased phosphorylation of Akt and MAPK(Erk) and NF-kappa B DNA binding activity in L3.6pl cells. The activation of Akt and NF-kappa B was prevented by LY294002, whereas the activity of MAPK(Erk), but not NF-kappa B, was inhibited by U0126. The increased activation of Akt, NF-kappa B, and MAPK(Erk) was inhibited by PKI 166. Under hypoxic conditions, L3.6pl cells were resistant to apoptosis induced by gemcitabine. The addition of LY294002 or PKI 166 abrogated cell resistance to gemcitabine, whereas U0126 only partially decreased this resistance. CONCLUSIONS: These data demonstrate that hypoxia can induce resistance of pancreatic cancer cells to gemcitabine mainly through the PI3K/Akt/NF-kappa B pathways and partially through the MAPK(Erk) signaling pathway. Because PKI 166 prevented the activation of PI3K/Akt/NF-kappa B and MAPK(Erk) pathways, the combination of this tyrosine kinase inhibitor with gemcitabine should be an effective therapy for pancreatic cancer.  相似文献   

4.
Some murine melanomas and hepatocellular carcinomas (HCCs) have been shown to be auxotrophic for arginine. Arginine deiminase (ADI; EC 3.5.3.6.), an arginine-degrading enzyme isolated from Mycoplasma, can inhibit growth of these tumors. We found that ADI was specific for arginine and did not degrade other amino acids. Although arginine is not an essential amino acid for most cells, all human melanomas and HCCs tested were found to be inhibited by ADI in vitro. Arginine is synthesized from citrulline in two steps by argininosuccinate synthetase and argininosuccinate lyase. Melanomas and HCCs did not express argininosuccinate synthetase mRNA but did express argininosuccinate lyase mRNA, suggesting that the arginine auxotrophy of these cells was a result of an inability to produce argininosuccinate synthetase. Human melanomas and HCCs were transfected with an expression plasmid containing argininosuccinate synthetase cDNA. The transfected cells were much more resistant to ADI than the parental cells in vitro and in vivo. Initial attempts to use ADI in vivo indicated that this enzyme had little efficacy, consistent with its short circulation half-life. Formulation of ADI with polyethylene glycol to produce ADI-SS PEG(20,000 mw) resulted in an enzyme with a much longer circulation half-life that, and although equally effective in vitro, was more efficacious in the treatment of mice implanted with human melanomas and HCCs. These data indicate that sensitivity of melanoma and HCC is due to the absence of argininosuccinate synthetase in these cells and that an effective formulation of ADI, which causes a sustained decrease in arginine, may be a useful treatment for arginine auxotrophic tumors including melanoma and HCC.  相似文献   

5.
Despite recent additions to the armory of chemotherapeutic agents for colorectal cancer (CRC) treatment, the results of chemotherapy remain unsatisfactory. 5-Fluorouracil (5-FU) still represents the cornerstone of treatment and resistance to its actions is a major obstacle to successful chemotherapy. Therefore, new active agents in CRC and agents that increase the chemosensitivity of cancer cells to 5-FU are still urgently required. Violacein, a pigment isolated from Chromobacterium violaceum in the Amazon river, has a diverse spectrum of biological activities, and represents a novel cytotoxic drug with known antileukemic properties. To assess the suitability of violacein as a chemotherapeutic agent in CRC its cytotoxic effects were evaluated both as a single agent and in combination with 5-FU. Its underlying mechanisms of action were further investigated by studying its effects on the cell cycle, apoptosis and cell survival pathways [phosphatidylinositol-3-kinase/Akt, p44/42 mitogen activated protein kinase and nuclear factor kappaB (NF-kappaB)] in colon cancer cell lines. Violacein inhibits the growth of all four colon cancer cell lines tested. It induces apoptosis, and potentiates the cytotoxic effect of 5-FU in a poorly differentiated microsatellite unstable cell line (HCT116). Violacein causes cell cycle block at G(1), upregulates p53, p27 and p21 levels and decreases the expression of cyclin D1. Violacein leads to dephosphorylation of retinoblastoma protein and activation of caspases and a pancaspase inhibitor abrogates its biological activity. Our data provide evidence that violacein acts through the inhibition of Akt phosphorylation with subsequent activation of the apoptotic pathway and downregulation of NF-kappaB signaling. This leads to the increase in chemosensitivity to 5-FU in HCT116 colon cancer cells. Taken together, our findings suggest that violacein will be active in the treatment of colorectal tumors and offers new prospects for overcoming 5-FU resistance.  相似文献   

6.
Pancreatic cancer is one of the most lethal of human malignancies. Nearly 100% cases of pancreatic cancer carry mutations in KRas. P-21-activated kinases (PAKs) are activated by and act downstream of KRas. Glaucarubinone, a natural product first isolated from the seeds of the tree Simarouba glauca, was originally developed as an antimalarial drug, and has more recently been recognised as an anticancer agent. The aims of this study were to determine whether glaucarubinone, alone or in combination with the front-line chemotherapeutic agent gemcitabine, would inhibit the growth of pancreatic cancer cells in vitro or in vivo and the mechanism involved. Growth of the human pancreatic cancer cell lines PANC-1 and MiaPaCa-2 was measured by 3H-thymidine incorporation in vitro, and by volume as xenografts in SCID mice. The expression and activities of the two serine/threonine kinases PAK1 and PAK4, which are key regulators of cancer progression, were measured by Western blotting. Here we report that glaucarubinone decreased proliferation and migration of pancreatic cancer cells in vitro, and reduced their growth as xenografts in vivo. Treatment with glaucarubinone and gemcitabine reduced proliferation in vitro and tumor growth in vivo more than treatment with either glaucarubinone or gemcitabine alone. Treatment with glaucarubinone reduced PAK1 and PAK4 activities, which were further decreased by the combination of glaucarubinone and gemcitabine. These results indicate that glaucarubinone reduced pancreatic cancer cell growth at least in part via inhibition of pathways involving PAK1 and PAK4. The synergistic inhibition by glaucarubinone and gemcitabine observed both in vitro and in vivo suggests that glaucarubinone may be a useful adjunct to current regimes of chemotherapy.  相似文献   

7.
PURPOSE: Gemcitabine is an inhibitor of ribonucleotide reductase (RR) and DNA synthesis and is an effective agent in the treatment of pancreas cancer. The present study investigates whether the multitargeted antifolate pemetrexed would be synergistic with gemcitabine against MIA PaCa-2, PANC-1, and Capan-1 pancreatic cancer cell lines. EXPERIMENTAL DESIGN: Cells were treated with gemcitabine and pemetrexed, and the type of drug interaction was assessed using the combination index. Cytotoxicity of gemcitabine was examined with inhibitors of (a) deoxycytidine kinase (dCK), which activates gemcitabine by phosphorylation, and (b) 5'-nucleotidase (drug dephosphorylation) and cytidine deaminase (drug deamination), the main inactivating enzymes. The effects of gemcitabine and pemetrexed on cell cycle were analyzed by flow cytometry, and apoptosis was examined by fluorescence microscopy. Finally, quantitative, real-time PCR was used to study the pharmacogenetics of the drug combination. RESULTS: Synergistic cytotoxicity and enhancement of apoptosis was demonstrated, mostly with the sequence pemetrexed-->gemcitabine. Pemetrexed increased cells in S phase, the most sensitive to gemcitabine, and a positive correlation was found between the expression ratio of dCK:RR and gemcitabine sensitivity. Indeed, pemetrexed significantly enhanced dCK gene expression (+227.9, +86.0, and +135.5% in MIA PaCa-2, PANC-1, and Capan-1 cells, respectively), and the crucial role of this enzyme was confirmed by impairment of gemcitabine cytotoxicity after dCK saturation with 2'-deoxycytidine. CONCLUSIONS: These data demonstrate that the gemcitabine and pemetrexed combination displays schedule-dependent synergistic cytotoxic activity, favorably modulates cell cycle, induces apoptosis, and enhances dCK expression in pancreatic cancer cells.  相似文献   

8.
PURPOSE: Individuals with metastatic melanoma have a poor prognosis. Many human melanomas are auxotrophic for arginine, and arginine is not an essential amino acid in humans. We hypothesized that this auxotrophy may be therapeutically exploited. A novel amino acid-degrading enzyme (arginine deiminase) conjugated to polyethylene glycol (ADI-SS PEG 20,000 mw) was used to lower plasma arginine in individuals with metastatic melanoma. PATIENTS AND METHODS: Two cohort dose-escalation studies were performed. A phase I study in the United States enrolled 15 patients, and a phase I to II study in Italy enrolled 24 patients. The Italian patients also received two subsequent cycles of treatment, each consisting of four once-weekly injections of 160 U/m2. The goals of these studies were to determine pharmacokinetics (PK), pharmacodynamics (PD), safety, and the antitumor activity of ADI-SS PEG 20,000 mw. RESULTS: PK and PD studies indicated that a dose of 160 U/m2 lowered plasma arginine from a resting level of approximately 130 micromol/L to less than 2 micromol/L for at least 7 days; nitric oxide levels also were lowered. There were no grade 3 or 4 toxicities directly attributable to the drug. Six of 24 phase I to II patients responded to treatment (five partial responses and one complete response; 25% response rate) and also had prolonged survival. CONCLUSION Elimination of all detectable plasma arginine in patients with metastatic melanoma was well tolerated and may be effective in the treatment of this cancer. Further testing of ADI-SS PEG 20,000 mw in a larger population of individuals with metastatic melanoma is warranted.  相似文献   

9.
Kim JH  Kim JH  Yu YS  Kim DH  Min BH  Kim KW 《Oncology reports》2007,18(6):1373-1377
In spite of recent advances in the treatment of retinoblastoma, chemotherapy is still challenging in high-stage intraocular retinoblastoma or metastatic retinoblastoma. Here, we investigated whether arginine deprivation via arginine deiminase (ADI) could be a new anti-tumor therapy in retinoblastoma cells. Expression of argininosuccinate synthetase (ASS) was detected in human retinoblastoma tissues. Even with a high expression of ASS, ADI effectively inhibited the proliferation of retinoblastoma cells and induced retinoblastoma cell death in a dose-dependent manner. These results indicate that arginine deprivation via ADI could be another treatment option for retinoblastoma due to low ASS activity in retinoblastoma cells.  相似文献   

10.
目的:观察缺氧状态对人胰腺癌细胞吉西他滨化疗敏感性的影响并分析其相关机制。方法:将人胰腺癌细胞SW1990分为常氧组、缺氧组、常氧+吉西他滨组和缺氧+吉西他滨组。MMT法检测各组细胞增殖、流式细胞仪检测细胞凋亡、Real-time PCR和Western blot分别检测缺氧诱导因子-1α(HIF-1α)、多药耐药基因(MDR-1)mRNA和蛋白的表达。结果:与常氧+吉西他滨组相比,低氧+吉西他滨组的细胞增殖率明显增加,细胞凋亡率显著下降(P<0.05);低氧组和低氧+吉西他滨组HIF-1α蛋白表达分别显著高于常氧组(P<0.05或P<0.01);与常氧组相比,低氧组和低氧+吉西他滨组的MDR1 mRNA和蛋白表达水平均显著升高(P<0.05或P<0.01)。结论:缺氧状态可增加人胰腺癌细胞SW1990对吉西他滨的化疗抵抗,其机制与缺氧环境可诱导HIF-1α和MDR1基因表达有关。  相似文献   

11.
PURPOSE: Recently, we reported that a large number of human hepatocellular cancer (HCC) cell lines were auxotrophic for arginine. Here we report the results obtained with the amino acid-degrading enzyme arginine deiminase (ADI) conjugated to polyethylene glycol (ADI-SS PEG 20,000 mw) as a means of lowering plasma arginine to treat HCC. The study was a cohort dose-escalation phase I/II study. PATIENTS AND METHODS: Pharmacodynamic studies indicated an ADI-SS PEG 20,000 mw dose level of 160 U/m(2) was sufficient to lower plasma arginine from a resting level of approximately 130 micromol/L to below the level of detection (< 2 micromol/L) for more than 7 days, a dose later defined as the optimal biologic dose. All patients were to receive three cycles at the optimum biologic dose. RESULTS: This therapy was well tolerated, even in patients who had no detectable plasma arginine for 3 continuous months of therapy. Of the 19 patients enrolled, two had a complete response, seven had a partial response, seven had stable disease, and three had progressive disease. The median survival for the 19 patients enrolled on this study was 410 days, with four patients still alive at present (> 680 days). CONCLUSION: Elimination of all detectable plasma arginine in patients with HCC was well tolerated and seemed to be effective in the treatment of some patients with HCC. Further testing of ADI-SS PEG 20,000 mw in a larger population of individuals with HCC as well as other human tumors auxotrophic for arginine is warranted.  相似文献   

12.
Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is underexpressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non-neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG-ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG-ADI on the in vivo growth of pancreatic xenografts was examined. Eighty-seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG-ADI specifically inhibited growth of those cell lines lacking ASS. PEG-ADI treatment induced caspase activation and induction of apoptosis. PEG-ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by approximately 50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG-ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed.  相似文献   

13.
Since arginine deiminase (ADI; EC 3.5.3.6) inhibits cell proliferation by arresting cells in the G1 phase, we tested its synergistic effect on cell death induced by dexamethasone (DEX), which also induces apoptosis by G1 cell cycle arrest. ADI inhibited cell proliferation and induced apoptosis in human leukemic CEM cells in a dose-dependent manner. Simultaneous treatment with ADI and DEX showed synergistic effects on DNA fragmentation and LDH release. In addition, ADI exerted its anti-proliferative activity against DEX-resistant CEM cells. ADI suppressed expression of c-myc, a potential key regulator of cell proliferation and apoptosis, and increased expression of p27Kip1 cyclin-dependent kinase inhibitor. These results suggest that ADI efficiently increases the anti-cancer effect of DEX on human leukemic CEM cells through G1 cell cycle arrest involving downregulation of c-myc and upregulation of p27Kip1.  相似文献   

14.
目的:评价吉西他滨对人胰腺癌移植瘤的放疗增敏作用。方法:建立人胰腺癌裸鼠移植瘤模型,36只裸鼠随机分为6组:对照组(A)、单纯放疗组(B)、吉西他滨25mg/kg组(C)、吉西他滨50mg/kg组(D)、吉西他滨25mg/kg+放疗组(E)、吉西他滨50mg/kg+放疗组(F)。对照组予腹腔注射生理盐水,单纯放疗组荷瘤鼠背部肿瘤局部以6MeV电子线照射。C、D组分别以25mg/kg、50mg/kg吉西他滨腹腔注射,E、F组分别以25mg/kg、50mg/kg吉西他滨腹腔注射加背部肿瘤6MeV电子线照射。然后每两天测量肿瘤的长短径、比较各组的瘤体积、肿瘤生长延缓天数、抑瘤率,利用增敏系数(EF)评价吉西他滨的增敏作用。结果:与对照组比较,25mg/kg、50mg/kg单剂量吉西他滨对移植瘤生长有明显抑制作用(P〈0.01);两组剂量吉西他滨联合放疗组局部肿瘤生长受到明显抑制,抑瘤率分别为88.22%、91.23%,明显高于单纯放疗组(44.11%,P〈0.05)和吉西他滨两个剂量单药组(72.88%、77.53%,P〈0.05)。联合组(E、F组)肿瘤生长延缓天数(瘤体积增长2倍)分别为9、15天,高于单纯放疗组(4天,P〈0.05)和吉西他滨两个剂量单药组(4、4天,P〈0.05)。结论:吉西他滨可显著增强人胰腺癌裸鼠移植瘤放射治疗敏感性。  相似文献   

15.
PURPOSE: Pancreatic cancer still remains a treatment-refractory cancer. Standard therapy for metastatic cancer is gemcitabine (dFdC) chemotherapy. Since heavy water (deuterium oxide, D2O) was shown to be active in pancreatic cancer in vitro, we examined the simultaneous or sequential cytotoxic effects of D2O and dFdC in pancreatic cancer cell lines (AsPC-1, BxPC-3, and PANC-1). Moreover, we investigated the effect of D2O treatment on the colony formation of peripheral blood mononuclear cells (PBMNC) as well as the apoptosis inducing activity of D2O and dFdC and the regulation of tumor suppressor gene p21. RESULTS: Simultaneous incubation of human pancreatic carcinoma cells with D2O and dFdC led to a decrease of IC50 values of dFdC alone in all cell lines examined. Sequential application of D2O and dFdC caused synergistic effects. Treatment with 10-30% D2O did not show any significant inhibition effects on the colony formation of peripheral blood mononuclear cells (PBMNC), indicating limited adverse effects of D2O on bone marrow cells. Treatment with D2O in combination with dFdC significantly (p<0.05) increased the induction of apoptosis in PANC-1 and AsPC-1 cells and led to an overexpression of p21 tumor suppressor gene compared to incubation with dFdC alone. As the combination of D2O and dFdC might offer an additional option for the control of pancreatic cancer, this treatment should be investigated in a pancreas carcinoma animal model in order to scrutinize the in vitro data.  相似文献   

16.
Gemcitabine is one of the most used anti-neoplastic drugs with documented activity in almost all major localizations of cancer.In pancreatic cancer treatment,gemcitabine occupies a prominent place as a first line chemotherapy,partly because of the paucity of other efficacious chemotherapy options.In fact,only a minority of pancreatic cancer patients display a response or even stability of disease with the drug.There are currently no clinically applicable means of predicting which patient will derive a clinical benefit from gemcitabine although several proposed markers have been studied. These markers are proteins involved in drug up-take,activation and catabolism or proteins that define the ability of the cell to undergo apoptosis in response to the drug.Several of these markers are reviewed in this paper.We also briefly discuss the possible role of stem cells in drug resistance to gemcitabine.  相似文献   

17.
目的:评价吉西他滨对人胰腺癌移植瘤的放疗增敏作用.方法:建立人胰腺癌裸鼠移植瘤模型,36只裸鼠随机分为6组:对照组(A)、单纯放疗组(B)、吉西他滨25mg/kg组(C)、吉西他滨50mg/kg组(D)、吉西他滨25mg/kg+放疗组(E)、吉西他滨50mg/kg+放疗组(F).对照组予腹腔注射生理盐水,单纯放疗组荷瘤鼠背部肿瘤局部以6MeV电子线照射.C、D组分别以25mg/kg、50mg/kg吉西他滨腹腔注射,E、F组分别以25mg/kg、50mg/kg吉西他滨腹腔注射加背部肿瘤6MeV电子线照射.然后每两天测鼍肿瘤的长短径、比较各组的瘤体积、肿瘤生长延缓天数、抑瘤率,利用增敏系数(EF)评价吉西他滨的增敏作用.结果:与对照组比较,25mg/kg、50mg/kg单剂量吉西他滨对移植瘤生长有明显抑制作用(p<0.01);两组剂量吉西他滨联合放疗组局部肿瘤生长受到明显抑制,抑瘤率分别为88.22%、91.23%,明显高于单纯放疗组(44.11%,P<0.05)和吉西他滨两个剂量单药组(72.88%、77.53%,P<0.05).联合组(E、F组)肿瘤生长延缓天数(瘤体积增长2倍)分别为9、15天,高于单纯放疗组(4天,P<0.05)和吉西他滨两个剂量单药组(4、4天,P<0.05).结论:吉西他滨可显著增强人胰腺癌裸鼠移植瘤放射治疗敏感性.  相似文献   

18.
The effect of the CTP synthetase inhibitor cyclopentenyl cytosine (CPEC) on the metabolism and cytotoxicity of 2′,2′-difluorodeoxycytidine (dFdC, gemcitabine) and the expression and activity of deoxycytidine kinase (dCK) was studied in human neuroblastoma cell lines. The cytotoxicity of dFdC and CPEC was studied in a panel of MYCN-amplified and MYCN-single-copy neuroblastoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-assays. dFdC-metabolism was studied in SK-N-BE(2)c cells using [3H]-radiolabeled dFdC. dCK activity and expression were measured using enzyme assays, immunoblot and quantitative PCR, respectively. Both MYCN-amplified and MYCN-single-copy neuroblastoma cell lines were highly sensitive to dFdC, with concentration of the drug resulting in 50% effect when compared to untreated controls (ED50) values in the nanomolar range after a 3-h exposure to dFdC. There was no correlation of the observed ED50 with the dCK activity. Treatment with dFdC induced cell death in MYCN-amplified cells whereas MYCN-single-copy-cell lines underwent neuronal differentiation. Pre-incubation with CPEC significantly increased dFdC-cytotoxicity from 1.3 to 5.3-fold in 13 out of 15 cell lines. [3H]dFdC-anabolism increased 6–44 fold in SK-N-BE(2)c cells after incubation with CPEC and was paralleled by a significant increase in expression and activity of dCK. In conclusion, the combination of dFdC and CPEC is highly toxic to neuroblastoma in vitro.  相似文献   

19.
20.
SRC and its activated form, phospho-SRC (pSRC), are aberrantly activated in pancreatic cancer and SRC represents a potential target for pancreatic cancer therapy. In this paper, we examined the inhibitory effect of dasatinib, a potent SRC inhibitor in combination with paclitaxel or gemcitabine on human and murine pancreatic cancer cell lines. The results showed that p-SRC can be highly expressed in most human and mouse pancreatic cancer cell lines compared with normal human cell lines and can be induced by paclitaxel or gemcitabine in HPAC cells. Dasatinib can enhance the efficacy of paclitaxel or gemcitabine by reducing the cell viability and inhibiting the cell proliferation. Dasatinib with paclitaxel combination exhibits statistically greater inhibition of the cell migration ability than single agent alone, paclitaxel with gemcitabine or FOLFIRINOX (combination of fluorouracil, leucovorin, irinotecan, and oxaliplatin) in HAPC, PANC-1, and BXPC-3 human pancreatic cancer cell lines as well as 8–285 APR and 8–365 APR mouse pancreatic cancer cell lines. In addition, dasatinib with gemcitabine combination also showed statistically greater inhibition of cell migration than single agent alone, paclitaxel with gemcitabine, or FOLFIRINOX in HAPC, PANC-1 and 8–285 APR cells. The combination of dasatinib with paclitaxel or gemcitabine also showed greater inhibition of the colony formation ability of pancreatic cancer cells compared with single-agent monotherapy or FOLFIRINOX. Dasatinib with paclitaxel or gemcitabine combination also inhibits p-SRC, p-STAT3, p-AKT, and/or p-ERK in these pancreatic cancer cells. Therefore, our results support that combined dasatinib and paclitaxel or gemcitabine therapy may be a viable therapeutic approach for human pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号