首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肝素化胶原/壳聚糖多孔支架的制备及其血管化的研究   总被引:4,自引:0,他引:4  
本研究旨在构建一种能快速血管化的人工真皮替代物。用冻干法制备了胶原/壳聚糖多孔支架,并对其进行肝素化,观察此支架的结构特征、亲水性、体外降解性和组织相容性,同时将血管生成素引入到此支架,对复合有血管生成素的肝素化支架的体内血管化进行了初步研究。结果表明,肝素化胶原/壳聚糖多孔支架具有合适的三维多孔结构、良好的吸水性和较理想的酶解稳定性,体内实验表明,此支架具有良好的组织相容性,血管生成素可加快支架的血管化。  相似文献   

2.
Full-thickness skin defects represent a significant and urgent clinical problem. Dermal substitutes serving as a regenerative template to induce dermal reconstruction provide a promising method to treat serious skin defects. Although collagen–chitosan dermal scaffolds display good biocompatibility and a suitable porous structure for angiogenesis and tissue regeneration, their poor mechanical properties compromise their application. To develop a well-supported dermal substitute, a poly(l-lactide-co-glycolide) (PLGA) knitted mesh was fabricated and integrated with collagen–chitosan scaffold (CCS) to obtain a PLGA knitted mesh-reinforced CCS (PLGAm/CCS). The morphology of this PLGAm/CCS was investigated in vitro. To characterize the tissue response, specifically angiogenesis and tissue regeneration, the PLGAm/CCS was transplanted in combination with thin split-thickness autografts to repair full-thickness skin wounds using a one-step surgical procedure in Sprague–Dawley rats. These results were then compared with CCSs. At weeks 2, 4 and 8 after the operation, the healing wounds were imaged to analyse wound changes, and tissue specimens were harvested for histology, immunohistochemistry, real-time quantitative polymerase chain reaction and Western blot analysis. The results demonstrated that collagen–chitosan sponge in the PLGAm/CCS remained porous, interconnected and occupied the openings of PLGA mesh, and the incorporation of the PLGA knitted mesh into CCS improved the mechanical strength with little influence on its mean pore size and porosity. Following transplantation, PLGAm/CCS inhibited wound contraction, and effectively promoted neotissue formation and blood vessel ingrowth. In conclusion, the mechanical strength of the scaffolds plays an important role in the process of tissue regeneration and vascularization. The ability of PLGAm/CCS to promote angiogenesis and induce in situ tissue regeneration demonstrates its potential in skin tissue engineering.  相似文献   

3.
Shi H  Han C  Mao Z  Ma L  Gao C 《Tissue engineering. Part A》2008,14(11):1775-1785
Artificial dermis lacks a vascular network, and angiogenesis is slow in vivo. Controlled delivery of angiogenin (ANG), a potent inducer of angiogenesis, should promote angiogenesis in artificial dermis. In this study, a porous collagen-chitosan scaffold was fabricated and heparinized using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) with a freeze-drying method. Using radioiodine labeling, the effect of heparin on the binding of ANG to the scaffold was studied. The release of ANG from the heparinized scaffold was investigated using a radioiodine labeling method or an enzyme-linked immunosorbent assay method. In vivo angiogenesis of the scaffold was studied for 28 days. All scaffolds possess three-dimensional porous structures, and their mean pore sizes increase upon EDC-NHS cross-linking. The binding of ANG to the scaffold showed a linear correlation with ANG concentration. With ANG concentrations of 160 ng/mL, the binding of ANG to the heparinized scaffold was 36.5%. In vitro, ANG was released from the heparinized scaffold in a controlled manner. The presence of ANG enhanced the angiogenesis of the heparinized scaffold after subcutaneous implantation into rabbits. The results of this study indicate that a porous collagen-chitosan scaffold loaded with ANG may be valuable in the development of artificial dermis requiring enhanced angiogenesis.  相似文献   

4.
Establishing sufficient vascularization in scaffold remains a challenge for tissue-engineering. To improve angiogenesis, we incorporated vascular endothelial growth factor (VEGF) in collagen-coating over the porous polycaprolactone (PCL) scaffolds. The release kinetics of loaded VEGF from collagen-coated PCL (col-PCL) scaffolds was same as from scaffolds without the collagen. The bioactivity of VEGF delivered by the col-PCL scaffolds was confirmed by human umbilical vein endothelial cell (HUVEC) proliferation and chorioallantoic membrane (CAM) assay. The col-PCL scaffolds were implanted subcutaneously in mice for 7 and 14 days. At day 7, vascularization within scaffolds loaded with VEGF was superior to that in the scaffolds without VEGF. However, the vessel connectivity to host circulatory system was incomplete and restricted to the scaffold edges. At day 14, blood vessels in scaffolds reached density similar to the subcutaneous tissue and were perfusable throughout the implant thickness. Prewashing the scaffolds with saline to remove the unbound growth factor decreased the initial burst release and sustained the VEGF-mediated angiogenesis in vivo. In conclusion, our study demonstrates that physically adsorbed VEGF stimulated angiogenesis in collagen-coated PCL scaffolds.  相似文献   

5.
Combining bovine collagen with chitosan followed by freeze-drying has been shown to produce porous scaffolds suitable for skin and connective tissue engineering applications. In this study collagen extracted from porcine and avian skin was compared with bovine collagen for the production of tissue engineered scaffolds. A similar purity of the collagen extracts was shown by electrophoresis, confirming the reliability of the extraction process. Collagen was solubilized, cross-linked by adding chitosan to the solution and freeze-dried to generate a porous structure suitable for tissue engineering applications. Scaffold porosity and pore morphology were shown to be source dependant, with bovine collagen and avian collagen resulting into the smallest and largest pores, respectively. Scaffolds were seeded with dermal fibroblasts and cultured for 35 days to evaluate the suitability of the different collagen–chitosan scaffolds for long-term tissue engineered dermal substitute maturation in vitro. Cell proliferation and scaffold biocompatibility were found to be similar for all the collagen–chitosan scaffolds, demonstrating their capability to support long-term cell adhesion and growth. The scaffolds contents was assessed by immunohistochemistry and showed increased deposition of extracellular matrix by the cells as a function of time. These results correlate with measurements of the mechanical properties of the scaffolds, since both the ultimate tensile strength and tensile modulus of the cell seeded scaffolds had increased by the end of the culture period. This experiment demonstrates that porcine and avian collagen could be used as an alternative to bovine collagen in the production of collagen–chitosan scaffolding materials.  相似文献   

6.
Guo R  Xu S  Ma L  Huang A  Gao C 《Biomaterials》2011,32(4):1019-1031
Repair of deep burn by use of the dermal equivalent relies strongly on the angiogenesis and thereby the regeneration of dermis. To enhance the dermal regeneration, in this study plasmid DNA encoding vascular endothelial growth factor-165 (VEGF-165)/N,N,N-trimethyl chitosan chloride (TMC) complexes were loaded into a bilayer porous collagen-chitosan/silicone membrane dermal equivalents (BDEs), which were applied for treatment of full-thickness burn wounds. The DNA released from the collagen-chitosan scaffold could remain its supercoiled structure but its degree was decayed along with the prolongation of incubation time. The released DNA could transfect HEK293 cells in vitro with decayed efficiency too. Human umbilical vein endothelial cells (HUVECs) in vitro cultured in the scaffold loaded with TMC/pDNA-VEGF complexes expressed a significantly higher level of VEGF and showed higher viability than those cultured in the controls, i.e. blank scaffold, and scaffolds loaded with naked pDNA-VEGF and TMC/pDNA-eGFP, respectively. The four different BDEs were then transplanted in porcine full-thickness burn wounds. Results showed that the TMC/pDNA-VEGF group had a significantly higher number of newly-formed and mature blood vessels, and fastest regeneration of the dermis. RT-qPCR and western blotting found that the experimental group also had the highest expression of VEGF, CD31 and α-SMA in both mRNA and protein levels. Furthermore, ultra-thin skin grafting was performed on the regenerated dermis 14 days later, leading to complete repair of the burn wounds with normal histology. Moreover, the tensile strength of the repaired tissue increased along with the time prolongation of post grafting, resulting in a value of approximately 70% of the normal skin at 105 days.  相似文献   

7.
Artificial dermis (AD) has been used to regenerate dermis-like tissues in the treatment of full-thickness skin defects, but it takes 2 or 3 weeks to complete dermal regeneration. Our previous study demonstrated that injection of basic fibroblast growth factor (bFGF)-impregnated gelatin microspheres (MS) into the AD accelerates the regeneration of dermis-like tissue. However, injection of gelatin MS before clinical use is complicated and time consuming. This study investigated a new scaffold, in which collagen and gelatin are integrated, and which is capable of sustained bFGF release. We produced collagen/gelatin sponges with a gelatin concentration of 0wt%, 10wt%, 30wt%, and 50wt%. The mean pore size in each sponge decreased with the gelatin concentration. In an in vitro study, proliferation of fibroblasts in each sponge was not significantly different over 7 days of culture. As for in vivo sustained release of bFGF, a radioisotope study demonstrated that retention of bFGF in gelatin 10wt% and 30wt% sponges was significantly larger than that in gelatin 0wt% sponge. The collagen/gelatin sponges were grafted on full-thickness skin defects created on a rabbit ear, and we evaluated regeneration of dermis-like tissue by measuring the amount of hemoglobin and size of dermis-like tissue on histological sections. Seven days after implantation, the amount of hemoglobin in dermis-like tissue in gelatin 10wt% sponge was significantly larger than those in control and gelatin 50wt% sponge. Twenty-eight days after implantation, the area of dermis-like tissue in gelatin 10wt% sponge was significantly larger than those in the other specimens. We conclude that the collagen sponge integrated with 10wt% gelatin has the most potential for sustained release of bFGF and that the combination of collagen/gelatin 10wt% sponge and bFGF is a promising therapeutic modality for the treatment of full-thickness skin defects.  相似文献   

8.
Lee JE  Kim KE  Kwon IC  Ahn HJ  Lee SH  Cho H  Kim HJ  Seong SC  Lee MC 《Biomaterials》2004,25(18):4163-4173
The objectives of this study were (1) to develop a three-dimensional collagen/chitosan/glycosaminoglycan (GAG) scaffold in combination with transforming growth factor-beta1 (TGF-beta 1)-loaded chitosan microspheres, and (2) to evaluate the effect of released TGF-beta 1 on the chondrogenic potential of rabbit chondrocytes in such scaffolds. TGF-beta 1 was loaded into chitosan microspheres using an emulsion-crosslinking method. The controlled release of TGF-beta 1, as measured by enzyme-linked immunosorbent assay (ELISA), was monitored for 7 days. The porous scaffolds containing collagen and chitosan were fabricated by using a freeze drying technique and crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC) in the presence of chondroitin sulfate (CS), as a GAG component. The TGF-beta 1 microspheres were encapsulated into the scaffold at a concentration of 10 ng TGF-beta 1/scaffold and then chondrocytes were seeded in the scaffold and incubated in vitro for 3 weeks. Both proliferation rate and glycosaminoglycan (GAG) production were significantly higher in the TGF-beta 1 microsphere-incorporated scaffolds than in the control scaffolds without microspheres. Extracellular matrix staining by Safranin O and immunohistochemistry for type II collagen were elevated in the scaffold with TGF-beta 1 microspheres. These results suggest that TGF-beta 1 microspheres when incorporated into a scaffold have the potential to enhance cartilage formation.  相似文献   

9.
The purpose of this study is to develop a novel recombinant human bone morphogenetic protein-2 (rhBMP-2) sustained release scaffold for dental implant osseointegration, and to evaluate the effect of this scaffold on promoting bone formation. RhBMP-2 was encapsulated in the poly-D,L-lactide-co-glycolide (PLGA) biodegradable microspheres, which were subsequently dispersed in a chitosan/collagen composite scaffold. This rhBMP-2 microspheres-loaded scaffold (S-MB) was compared with a chitosan/collagen scaffold without microspheres that directly encapsulated rhBMP-2 (S-B) in vitro and in vivo. The microstructure of the new scaffold was examined with scanning electron microscopy. The release profile of rhBMP-2 in vitro was measured at interval periods. The effect of rhBMP-2 encapsulated scaffolds on enhancing bone formation through implantation in dogs' mandibles was identified by histological examination of the regenerated bone after 4 weeks of implantation. Due to PLGA microspheres being loaded, the S-MB exhibited lower values at porosity and swelling rate, as well as a higher effective release dose than that of the S-B. Bone density, bone-implant contact, and bone-fill values measured from dog experiments demonstrated that the S-MB induced bone regeneration more quickly and was timely substituted by new bone. It was concluded that this sustained carrier scaffold based on microspheres was more effective to induce implant osseointegration.  相似文献   

10.
Ongoing research has achieved much progress towards the development of new artificial skin substitute products. However, effective implant material for correcting full-thickness defects (such as those arising from extensive burns, tumor resection, hereditary or congenital defects and chronic wounds) has not yet become available.Following split-thickness skin grafting, contraction and scar formation are unavoidable. These phenomena are believed to be due to poor dermis regeneration. Collagen dermis substitute has been developed for the treatment of deep, poorly vascularized tissue defects. However, their application is problematic, because scaffolds of this kind fail to adequately induce the neoangiogenesis needed for regeneration. To overcome these shortcomings a number of matrices have been chemically modified. Furthermore, these matrices first require implantation and follow-up by skin grafting 3 to 5 weeks later.In this article we describe new materials made of modified collagen which enhance dermal regeneration and neoangiogenesis. The procedure was applied in successfully dealing with full-thickness defects in pigs, with subsequent split-thickness skin grafting being performed immediately afterwards. Histological findings revealed that the neodermis obtained resembles a normal dermis structure.These scaffolds have the potential of serving as an off-the-shelf skin replacement in the reconstruction of deep wounds, thus supporting wound-healing processes.  相似文献   

11.
Macroporous chitosan scaffolds reinforced by beta-tricalcium phosphate (beta-TCP) and calcium phosphate invert glasses were fabricated using a thermally induced phase separation technique. These porous composite materials were specially designed as both a drug carrier for controlled drug release and a scaffold for bone regeneration. The controlled drug release of antibiotic gentamicin-sulfate (GS) loaded scaffolds and morphology of osteosarcoma MG63 cells cultured on the scaffolds were studied. In comparison with the GS loaded pure chitosan scaffolds, the initial burst release of GS was decreased through incorporating calcium phosphate crystals and glasses into the scaffolds, and the sustained release for more than 3 weeks was achieved. The possible mechanisms for the controlled drug release were investigated by SEM, FTIR, and measurements of the pH values of the PBS solution during the drug release test. SEM micrographs showed no apparent morphological differences for osteoblastic cells grown on the pure chitosan scaffolds and those grown on composite scaffolds. The cells were attached and migrated on these scaffolds, and exhibited a biological appearance, suggesting a good cellular compatibility.  相似文献   

12.
Recently, much attention has been paid to tissue engineering and local gene delivery system in periodontal tissue regeneration. Gene-activated matrix (GAM) blends these two strategies, serving as a local bioreactor with therapeutic gene expression and providing a structural template to fill the lesion defects for cell adhesion, proliferation and synthesis of extracellular matrix (ECM). In this study, we designed a novel GAM with embedded chitosan/plasmid nanoparticles encoding platelet derived growth factor (PDGF) based on porous chitosan/collagen composite scaffold. The chitosan/collagen scaffold acted as three-dimensional carrier and chitosan nanoparticles condensed plasmid DNA. The plasmid DNA entrapped in the scaffolds showed a sustained and steady release over 6 weeks and could be effectively protected by chitosan nanoparticles. MTT assay demonstrated that periodontal ligament cells (PDLCs) cultured into the novel GAM achieved high proliferation. Luciferase reporter gene assay displayed that the novel GAM could express 1.07 x 10(4) LU/mg protein after 1 week and 8.97 x 10(3) LU/mg protein after 2 weeks. The histological results confirmed that PDLCs maintained a fibroblast figure and the periodontal connective tissue-like structure formed in the scaffolds after 2 weeks. Semi-quantitative immunohistochemical results suggested that PDGF protein expressed at a relatively high level after 2 weeks. From this study, it can be concluded that the novel GAM had potential in the application of periodontal tissue engineering.  相似文献   

13.
The most commonly used biomaterials fail to ensure sufficient angiogenesis for fast in vivo incorporation. This results in central necrosis and consequent infection. One way of obtaining a high angiogenic response is the application of vascular endothelial growth factor (VEGF). To obtain a sustained release of these cytokines, heparin was incorporated into collagen matrices using 1-ethyl-3(3-dimethyl-aminopropyl) carbodiimide (EDC) and N-hydroxysuccinmide (NHS). The functionality of the heparinized collagen matrices was then enhanced by immobilization of VEGF via its heparin-binding domain. This procedure changed in vitro degradation behavior and water-binding capacity. Accelerated endothelial cell proliferation was also achieved. A range of different heparin and EDC/NHS concentrations in combination with VEGF induced variation in endothelial cell growth and tubulogenic formation. Polymerized collagen scaffolds presented biointeractive systems with integrated angiogenic activity. This may become a useful tool in the clinical therapy of disorders connected with wound healing.  相似文献   

14.
Du F  Wang H  Zhao W  Li D  Kong D  Yang J  Zhang Y 《Biomaterials》2012,33(3):762-770
One of the major challenges of tissue-engineered small-diameter blood vessels is restenosis caused by thrombopoiesis. The goal of this study was to develop a 3D gradient heparinized nanofibrous scaffold, aiding endothelial cells lined on the lumen of blood vessel to prevent thrombosis. The vertical graded chitosan/poly ?-caprolactone (CS/PCL) nanofibrous vessel scaffolds were fabricated with chitosan and PCL by sequential quantity grading co-electrospinning. To mimic the natural blood vessel microenvironment, we used heparinization and immobilization of vascular endothelial growth factor (VEGF) in the gradient CS/PCL. The quantity of heparinized chitosan nanofibers increased gradually from the tunica adventitia to the lumen surfaces in the gradient CS/PCL wall of tissue engineered vessel. More heparin reacted to chitosan nanofiber in gradient CS/PCL than in uniform CS/PCL nanofibrous scaffolds. Antithrombogenic properties of the scaffolds were enhanced by the heparinization of these scaffolds, as shown by activated partial thromboplastin time and platelet adhesion assay. Compared to the uniform CS/PCL scaffold, the release of VEGF from the gradient CS/PCL was more stable and sustained, and the burst release of VEGF was reduced approximately 42.5% within the initial 12 h. The adhesion and proliferation of human umbilical vein endothelial cells (HUVEC) were enhanced on the gradient CS/PCL scaffold. Furthermore, HUVEC grew and formed an entire monolayer on the top side of the gradient CS/PCL scaffold. Therefore, use of vertical gradient heparinized CS/PCL nanofibrous scaffolds could provide an approach to create small-diameter blood vessel grafts with innate properties of mammalian vessels of anticoagulation and rapid induction of re-endothelialization.  相似文献   

15.
16.
Bone morphogenetic protein-2 (BMP-2) delivered in a suitable implantable matrix has the potential to repair local skeletal defects by inducing new bone formation from undifferentiated pluripotent stem cells resident in host tissue. In this study, we examined in vitro the potential of a derivatized hyaluronic acid (Hyaff-11) scaffold as a delivery vehicle for recombinant human BMP-2 (rhBMP-2) in bone and cartilage repair therapies. Hyaff-11 scaffolds were fabricated using a phase inversion/particulate leaching method and soak-loaded with rhBMP-2. In vitro release kinetics of rhBMP-2, demonstrated using enzyme-linked immunosorbant assay and alkaline phosphatase (ALP) assay revealed a slow, sustained rhBMP-2 release during 28 days, with a cumulative release of 31.82% of the initial rhBMP-2 loaded. rhBMP-2 was released in bioactive form as demonstrated by ALP induction of pluripotent cell line, C3H10T1/2 (T1/2), down the osteoblast lineage when incubated with the release supernatants. rhBMP-2 retention in Hyaff-11 scaffolds was greater than that from collagen gels, which released most of the initially loaded rhBMP-2 by 14 days. rhBMP-2-loaded Hyaff-11 scaffolds were also seeded with T1/2 cells and evaluated at 3, 7, 14, and 28 days for viability and expression of osteoblast phenotype. Cells remained viable throughout the study and expressed a time- and dose-dependent ALP and osteocalcin expression in the rhBMP-2 groups. Based on these observations, Hyaff-11 scaffolds may be suitable delivery systems for rhBMP-2 in bone/cartilage repair because of their ability to retain rhBMP-2, release low levels of bioactive rhBMP-2 to the local environment in a sustained manner, and stimulate differentiation of pluripotent stem cells.  相似文献   

17.
Novel poly(L-lactic acid) (PLLA)-chitosan hybrid scaffolds were developed in order to be used as tissue-engineering scaffolds and drug release carriers. The incorporation of chitosan into the PLLA porous structure allows for producing chitosan-based scaffold devices with interesting damping and stiffness aimed at being used in tissue engineering of bone or cartilage. The pore structure of the hybrid scaffolds was influenced by the concentration of the chitosan solution introduced into the PLLA scaffold. For lower concentrations, chitosan was mainly deposited onto the PLLA surface, whereas for higher concentration chitosan formed also microfibrilar structures within the pore walls of the PLLA foam that may act as additional soft anchorage sites for cells. Equilibrium water uptakes up to about 110% were achieved in 24 h. An anti-inflammatory drug, ketoprofen, was loaded within the chitosan component of the hybrid scaffolds by immersing the scaffolds in a drug-ethanol solution. The drug was released sharply within the initial periods ( approximately 2-4 h), but the rate decreased further, showing a sustained release. The drug release rate can be controlled by the chitosan content and cross-link densities, suggesting the effectiveness of the hybrid scaffold as a drug delivery system.  相似文献   

18.
In tissue engineering and wound-healing applications, dermal substitutes are used to provide fibroblasts with the mechanical support for their growth and then to facilitate the skin formation. In this study, three-dimensional porous poly(lactic-co-glycolic acid) (PLGA) 65/35 scaffolds were prepared and then the composites of the scaffolds and human fetal dermal fibroblasts were fabricated as a tissue-engineered dermal substitute. The function and tissue compatibility of the artificial dermal substitute were evaluated at the levels of gene expression (by RT-PCR) and protein expression (total collagen quantities), as well as by histological and immunohistochemical analysis. The PCR products indicated that the mRNA of type-I collagen, mainly secreted by the fibroblasts onto the PLGA scaffolds, was clearly expressed after 4 weeks. The amount of total collagen synthesized from the cells was shown to increase gradually during the initial culture period and slightly decreased afterwards. After 8 weeks of culture, the fibroblasts were well attached and migrated entirely throughout the pores of the PLGA scaffold with normal function. Furthermore, the positively stained type-I collagen was intensively detected throughout the pores. These results suggest that the function and tissue compatibility may be important criteria in evaluating an artificial tissue-engineered skin.  相似文献   

19.
In tissue engineering and wound-healing applications, dermal substitutes are used to provide fibroblasts with the mechanical support for their growth and then to facilitate the skin formation. In this study, three-dimensional porous poly(lactic-co-glycolic acid) (PLGA) 65/35 scaffolds were prepared and then the composites of the scaffolds and human fetal dermal fibroblasts were fabricated as a tissue-engineered dermal substitute. The function and tissue compatibility of the artificial dermal substitute were evaluated at the levels of gene expression (by RT-PCR) and protein expression (total collagen quantities), as well as by histological and immunohistochemical analysis. The PCR products indicated that the mRNA of type-I collagen, mainly secreted by the fibroblasts onto the PLGA scaffolds, was clearly expressed after 4 weeks. The amount of total collagen synthesized from the cells was shown to increase gradually during the initial culture period and slightly decreased afterwards. After 8 weeks of culture, the fibroblasts were well attached and migrated entirely throughout the pores of the PLGA scaffold with normal function. Furthermore, the positively stained type-I collagen was intensively detected throughout the pores. These results suggest that the function and tissue compatibility may be important criteria in evaluating an artificial tissue-engineered skin.  相似文献   

20.
目的 以丝素蛋白/壳聚糖支架为载体将骨碎补总黄酮应用于兔软骨损伤局部,观察修复效果,为临床提供实验数据。方法 制备丝素蛋白/壳聚糖支架、骨碎补总黄酮缓释微球与负载骨碎补总黄酮缓释微球的丝素蛋白/壳聚糖支架,扫描电子显微镜下观察支架形貌,同时检测该支架的体外缓释能力。24只新西兰大白兔随机分3组,利用电钻在股骨滑车部位构建直径3.5 mm、深1.5 mm的软骨损伤模型,空白组软骨缺损处不植入任何材料,对照组植入单纯的丝素蛋白/壳聚糖支架,实验组植入负载骨碎补总黄酮缓释微球的丝素蛋白/壳聚糖支架,术后12周、24周行标本大体与组织学观察,RT-PCR检测修复组织Sox-9、II型胶原与聚集蛋白聚糖mRNA的表达量,Western blot检测软骨缺损部位II型胶原蛋白表达,分析软骨修复效果。结果 丝素蛋白/壳聚糖支架具有良好的三维孔隙结构,孔洞之间相互联通;制备的载药微球表面较光滑,为较规则的圆球形;载药微球均匀分散于丝素蛋白/壳聚糖支架基质中。丝素蛋白/壳聚糖支架可在体外持续稳定地释放骨碎补总黄酮,实验组软骨损伤修复效果优于对照组,对应的ICRS评分与Wakitani组织学评分高于对照组...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号