首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familial hemiplegic migraine type 1 (FHM-1) is caused by mutations in CACNA1A, the gene encoding for the Ca(v)2.1 subunit of voltage-gated calcium channels. Although various studies attempted to determine biophysical consequences of these mutations on channel activity, it remains unclear exactly how mutations can produce a FHM-1 phenotype. A lower activation threshold of mutated channels resulting in increased channel activity has been proposed. However, hyperactivity may also be caused by a reduction of the inhibitory pathway carried by G-protein-coupled-receptor activation. The aim of this study is to determine functional consequences of the FHM-1 S218L mutation on direct G-protein regulation of Ca(v)2.1 channels. In HEK 293 cells, DAMGO activation of human mu-opioid receptors induced a 55% Ba(2+) current inhibition through both wild-type and S218L mutant Ca(v)2.1 channels. In contrast, this mutation considerably accelerates the kinetic of current deinhibition following channel activation by 1.7- to 2.3-fold depending on membrane potential values. Taken together, these data suggest that the S218L mutation does not affect G-protein association onto the channel in the closed state but promotes its dissociation from the activated channel, thereby decreasing the inhibitory G-protein pathway. Similar results were obtained with the R192Q FHM-1 mutation, although of lesser amplitude, which seems in line with the less severe associated clinical phenotype in patients. Functional consequences of FHM-1 mutations appear thus as the consequence of the alteration of both intrinsic biophysical properties and of the main inhibitory G-protein pathway of Ca(v)2.1 channels. The present study furthers molecular insight in the physiopathology of FHM-1.  相似文献   

2.
We have recently shown that injection of the P/Q-type (Ca(v)2.1/alpha(1A)) calcium channel blocker, omega-agatoxin IVA, into the periaqueductal gray (PAG) facilitates meningeal dural stimulation-evoked trigeminal nociceptive processing. We injected the GABA(A) antagonist bicuculline into the PAG in addition to the agatoxin and observed bicuculline's effect on neurons responding to dural stimulation recorded in the trigeminal nucleus caudalis of rats in order to determine if P/Q channel-mediated changes acted through GABAergic mechanisms. The inhibition of trigeminal nociceptive neurons characteristic of bicuculline administered into the PAG was maintained in the presence of blocked PAG P/Q-type calcium channels. This suggests the PAG descending pain modulatory pathway is not affected by P/Q-type calcium channel blockade at the postsynaptic GABAergic inhibitory interneuron and the facilitation produced by agatoxin is mediated by another mechanism. These findings have implications for disorders involving the PAG or P/Q-type channels, such as migraine, in particular for the development of preventative treatments, suggesting GABAergic and voltage-gated calcium channels could be separately modulated.  相似文献   

3.
Wu ZZ  Pan HL 《Neuroscience letters》2004,368(1):96-101
Voltage-gated Ca(2+) channels in the primary sensory neurons are important for neurotransmitter release and regulation of nociceptive transmission. Although multiple classes of Ca(2+) channels are expressed in the dorsal root ganglion (DRG) neurons, little is known about the difference in the specific channel subtypes among the different types of DRG neurons. In this study, we determined the possible difference in high voltage-activated Ca(2+) channel currents between isolectin B(4) (IB(4))-positive and IB(4)-negative small-sized (15-30 microm) DRG neurons. Rat DRG neurons were acutely isolated and labeled with IB(4) conjugated to a fluorescent dye. Whole-cell patch clamp recordings of barium currents flowing through calcium channels were performed on neurons with and without IB(4). The peak current density of voltage-gated Ca(2+) currents was not significantly different between IB(4)-positive and IB(4)-negative neurons. Also, both nimodipine and omega-agatoxin IVA produced similar inhibitory effects on Ca(2+) currents in these two types of neurons. However, block of N-type Ca(2+) channels with omega-conotoxin GVIA produced a significantly greater reduction of Ca(2+) currents in IB(4)-positive than IB(4)-negative neurons. Furthermore, the IB(4)-positive neurons had a significantly smaller residual Ca(2+) currents than IB(4)-negative neurons. These data suggest that a higher density of N-type Ca(2+) channels is present in IB(4)-positive than IB(4)-negative small-sized DRG neurons. This differential expression of the subtypes of high voltage-activated Ca(2+) channels may contribute to the different function of these two classes of nociceptive neurons.  相似文献   

4.
Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.  相似文献   

5.
Calcitonin gene-related peptide (CGRP) and transient receptor potential vanilloid-1 (TRPV1) play an important role in the development of pain and migraine pathogenesis. Increase in plasma CGRP levels is associated with delayed migraine-like attacks in migraine patients. Although several lines of evidence have indicated a key role of CGRP in migraine pain, its mechanisms remain unclear. In this study, we aimed to investigate the functional role of CGRP on trigeminal nociceptive pathway by determining the alteration in TRPV1 levels in trigeminal ganglion (TG) and the activation of trigeminal nucleus caudalis (TNC) of rat. Post intravenous injection of CGRP (600 ng/kg) at 60 min significantly increased the levels of TRPV1, CGRP, phosphorylated protein kinase C and phosphorylated cyclic AMP responsive element-binding protein in TG of rats. The number of small and medium TRPV1 and CGRP positive immunostaining neurons accompanying with co-localization of TRPV1 with CGRP neurons were significantly increased in TG of CGRP-injected rats. The sustained increase in c-Fos expression in TNC neurons was also observed in CGRP-injected rats. These results indicate that CGRP may participate in trigeminal nociceptive system sensitization by induced increase in TRPV1 and CGRP levels in TG neurons and activation of the central neurons in TNC.  相似文献   

6.
To identify the roles of VGCC subtypes in damages/impairs of inhibitory transmission during epileptogenesis, we investigated temporal- and spatial-specific alterations in voltage-gated Ca(2+) channel (VGCC) immunoreactivities within parvalbumin (PV, a Ca(2+) binding protein) positive neurons in the rat hippocampus following status epilepticus (SE). Compared to controls, only P/Q-type (alpha1A) VGCC immunoreactivity was enhanced in PV positive neurons at the early point following SE. The alteration in P/Q-type (alpha1A) VGCC immunoreactivity showed an inverse proportionality to that in PV immunoreactivity in the dentate gyrus and the CA1 region. These findings suggest that SE may induce prolonged up-regulation in P/Q-type VGCC expression within PV positive neurons.  相似文献   

7.
Using whole cell patch-clamp recordings, we pharmacologically characterized the voltage-gated Ca2+ channel (VGCC) currents of chicken nucleus magnocellularis (NM) neurons using barium as the charge carrier. NM neurons possessed both low- and high-voltage-activated Ca2+ channel currents (HVA I(Ba2+)). The N-type channel blocker (omega-conotoxin-GVIA) inhibited more than half of the total HVA I(Ba2+), whereas blockers of L- and P/Q-type channels each inhibited a small fraction of the current. Metabotropic glutamate receptor (mGluR)-mediated modulation of the HVA I(Ba2+) was examined by bath application of glutamate (100 microM), which inhibited the HVA I(Ba2+) by an average of 16%. The inhibitory effect was dose dependent and was partially blocked by omega-conotoxin-GVIA, indicating that mGluRs modulate N and other type HVA I(Ba2+). The nonspecific mGluR agonist, (1S,3R)-1-aminocyclopentane-1,3-dicarbosylic acid (1S,3R-ACPD), mimicked the inhibitory effect of glutamate on HVA I(Ba2+). Group I-III mGluR agonists showed inhibition of the HVA current with the most potent being the group III agonist L(+)-2-amino-4-phosphonobutyric acid. 1S,3R-ACPD (200 microM) had no effect on K+ or Na+ currents. The firing properties of NM neurons were also not altered by 1S,3R-ACPD. We propose that the inhibition of VGCC currents by mGluRs limits depolarization-induced Ca2+ entry into these highly active NM neurons and regulates their Ca2+ homeostasis.  相似文献   

8.
The role of the P/Q-type voltage-gated Ca(2+) channels (VGCCs) in release of neurotransmitters involved in nociception is not fully understood. Rolling mouse Nagoya (tg(rol)), a P/Q-type channel mutant mouse, expresses P/Q-type VGCC whose activation curve has a higher half activation potential and a smaller slope factor than the wild type channel. We previously reported that tg(rol) mice showed hypoalgesic responses to noxious stimuli. In this study, we examined the VGCC current in dorsal root ganglion (DRG) neurons by the whole-cell patch-clamp method. Both ω-agatoxin IVA (0.1 μM) and ω-conotoxin GVIA (1 μM) inhibited the VGCC current by about 40-50% in both the homozygous tg(rol) (tg(rol)/tg(rol)) and wild type (+/+) mice. The voltage-activation relationships of the total VGCC current and the ω-agatoxin IVA-sensitive component in the tg(rol)/tg(rol) mice shifted positively compared to the +/+ mice, whereas that sensitive to the ω-conotoxin GVIA was not different between the two genotypes. The time constant of activation of the VGCC current at -20 mV was longer in the tg(rol)/tg(rol) mice than in the +/+ mice. These changes in the properties of the VGCC in the tg(rol)/tg(rol) mouse may reduce the amount of the released neurotransmitters and account for the hypoalgesic responses.  相似文献   

9.
The ataxic groggy rat (strain name; GRY) is an autosomal recessive neurological mutant found in a closed colony of Slc:Wistar rats. Recent genetic analysis has identified the missense (M251K) mutation in the alpha(1) subunit of the Ca(V)2.1 (P/Q-type) voltage-dependent Ca(2+) channel gene (Cacna1a) of GRY rat. In this study, we found that high-voltage-activated (HVA) Ca(2+) channel currents in acutely dissociated Purkinje cells of GRY rats showed increased (not decreased) current density and depolarizing shift of the activation and inactivation curves compared with those of normal Wistar rats. In contrast low-voltage-activated (LVA) Ca(2+) channel currents of GRY rats showed no significant changes. These results suggest that functional alteration of Ca(2+) channel currents in cerebellar Purkinje cells of GRY rats is attributed to the change of HVA Ca(2+) channel currents, and that increased HVA Ca(2+) channel function underlies the cerebellar dysfunction and ataxic phenotype of GRY rats.  相似文献   

10.
Wu ZZ  Chen SR  Pan HL 《Neuroscience》2008,153(4):1256-1267
Both mu- and delta-opioid agonists selectively inhibit nociception but have little effect on other sensory modalities. Voltage-activated Ca(2+) channels in the primary sensory neurons are important for the regulation of nociceptive transmission. In this study, we determined the effect of delta-opioid agonists on voltage-activated Ca(2+) channel currents (I(Ca)) in small-diameter rat dorsal root ganglion (DRG) neurons that do and do not bind isolectin B(4) (IB(4)). The delta-opioid agonists [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE) and deltorphin II produced a greater inhibition of high voltage-activated I(Ca) in IB(4)-negative than IB(4)-positive neurons. Furthermore, DPDPE produced a greater inhibition of N-, P/Q-, and L-type I(Ca) in IB(4)-negative than IB(4)-positive neurons. However, DPDPE had no significant effect on the R-type I(Ca) in either type of cells. We were surprised to find that DPDPE failed to inhibit either the T-type or high voltage-activated I(Ca) in all the DRG neurons with T-type I(Ca). Double immunofluorescence labeling showed that the majority of the delta-opioid receptor-immunoreactive DRG neurons had IB(4) labeling, while all DRG neurons immunoreactive to delta-opioid receptors exhibited Cav(3.2) immunoreactivity. Additionally, DPDPE significantly inhibited high voltage-activated I(Ca) in Tyrode's or N-methyl-d-glucamine solution but not in tetraethylammonium solution. This study provides new information that delta-opioid agonists have a distinct effect on voltage-activated Ca(2+) channels in different phenotypes of primary sensory neurons. High voltage-activated Ca(2+) channels are more sensitive to inhibition by delta-opioid agonists in IB(4)-negative than IB(4)-positive neurons, and this opioid effect is restricted to DRG neurons devoid of functional T-type Ca(2+) currents.  相似文献   

11.
Of the 18 missense mutations in the CACNA1A gene, which are associated with familial hemiplegic migraine type 1 (FHM1), only mutations S218L, R583Q and T666M were identified in more than two independent families. Including the four novel families presented here, of which two represent de novo cases, the R1347Q mutation has now been identified in six families. A genotype-phenotype comparison of R1347Q mutation carriers revealed a wide clinical spectrum ranging from (trauma triggered) hemiplegic migraine with and without ataxia, loss of consciousness and epilepsy. R1347Q is the third most frequent mutation in hemiplegic migraine patients and should therefore be screened with priority for confirmation of clinical diagnosis. This study clearly demonstrates that the availability of multiple families better reflects the full clinical spectrum associated with FHM1 mutations.  相似文献   

12.
13.
Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons   总被引:4,自引:0,他引:4  
Purine receptors have been implicated in central neurotransmission from nociceptive primary afferent neurons, and ATP-mediated currents in sensory neurons have been shown to be mediated by both P2X3 and P2X2/3 receptors. The aim of the present study was to quantitatively examine the distribution of P2X2 and P2X3 receptors in primary afferent cell bodies in the rat trigeminal ganglion, including those innervating the dura. In order to determine the classes of neurons that express these receptor subtypes, purine receptor immunoreactivity was examined for colocalization with markers of myelinated (neurofilament 200; NF200) or mostly unmyelinated, non-peptidergic fibers (Bandeiraea simplicifolia isolectin B4; IB4). Forty percent of P2X2 and 64% of P2X3 receptor-expressing cells were IB4 positive, and 33% of P2X2 and 31% of P2X3 receptor-expressing cells were NF200 positive. Approximately 40% of cells expressing P2X2 receptors also expressed P2X3 receptors and vice versa. Trigeminal ganglion neurons innervating the dura mater were retrogradely labeled and 52% of these neurons expressed either P2X2 or P2X3 or both receptors. These results are consistent with electrophysiological findings that P2X receptors exist on the central terminals of trigeminal afferent neurons, and provide evidence that afferents supplying the dura express both receptors. In addition, the data suggest specific differences exist in P2X receptor expression between the spinal and trigeminal nociceptive systems.  相似文献   

14.
Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. Whole cell voltage- and current-clamp recordings were performed on acutely dissociated small DRG neurons of rats. The total Kv current density was significantly higher in IB+-positive than that in IB(4)-negative neurons. Also, 4-aminopyridine (4-AP) produced a significantly greater reduction in Kv currents in IB4-positive than in IB4-negative neurons. In contrast, IB4-negative neurons exhibited a larger proportion of tetraethylammonium-sensitive Kv currents. Furthermore, IB4-positive neurons showed a longer latency of firing and required a significantly larger amount of current injection to evoke action potentials. 4-AP significantly decreased the latency of firing and increased the firing frequency in IB4-positive but not in IB4-negative neurons. Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP-sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.  相似文献   

15.
Anoxia on slow inward currents of immature hippocampal neurons   总被引:3,自引:0,他引:3  
1. The effects of brief anoxia (2-4 min) on membrane currents--especially the tetrodotoxin (TTX)-insensitive, Cd2+-sensitive slow inward currents, presumed to be Ca2+ currents--were studied by single-electrode voltage clamp in CA1 and CA3 neurons in submerged hippocampal slices from adult and newborn Wistar rats (PN1-13). 2. In mature neurons, anoxia had no effect on Q-type inward relaxations, but slowly activating C-type outward currents were depressed. The most striking change was the suppression of Ca inward currents (especially the slowly inactivating L-type, by greater than 95%). This effect of anoxia was not sensitive to the N-methyl-D-aspartate (NMDA) receptor blocker, D-aminophosphonovalerate. Anoxia also reversibly abolished the NMDA-evoked inward current. 3. In neurons from newborn animals (PN1-6), Q-type inward relaxations and postanoxic outward currents were very small or undetectable. The slow inward (Ca) currents were smaller than in mature cells, but they showed a clearer separation between low-threshold, fast-inactivating and high-threshold, slowly inactivating currents. Both types of current were more resistant to anoxia (mean depression of L-type was by only 53.3 +/- 5.6%, mean +/- SE). 4. In such immature neurons, the NMDA-evoked inward currents were also more resistant to anoxia. 5. By PN7-13, increasing maturation was reflected in 1) larger voltage-dependent inward currents, 2) increasingly evident Q-type relaxations and postanoxic outward currents, and 3) near-complete blockade of inward currents by anoxia (at PN11-13, mean depression of L-type currents was by 98.5 +/- 1.5%).  相似文献   

16.
Besides a reduction of L-type Ca2+-currents (Ca(V)1), muscarine and the peptidic M1-selective agonist, MT-1, reduced currents through Ca(V)2.1 (P/Q) and Ca(V)2.2 (N) Ca2+ channel types. This modulation was strongly blocked by the peptide MT-7, a specific muscarinic M1-type receptor antagonist but not significantly reduced by the peptide MT-3, a specific muscarinic M4-type receptor antagonist. Accordingly, MT-7, but not MT-3, blocked a muscarinic reduction of the afterhyperpolarizing potential (AHP) and decreased the GABAergic inhibitory postsynaptic currents (IPSCs) produced by axon collaterals that interconnect spiny neurons. Both these functions are known to be dependent on P/Q and N types Ca2+ channels. The action on the AHP had an important effect in increasing firing frequency. The action on the IPSCs was shown to be caused presynaptically as it coursed with an increase in the paired-pulse ratio. These results show: first, that muscarinic M1-type receptor activation is the main cholinergic mechanism that modulates Ca2+ entry through voltage-dependent Ca2+ channels in spiny neurons. Second, this muscarinic modulation produces a postsynaptic facilitation of discharge together with a presynaptic inhibition of the GABAergic control mediated by axon collaterals. Together, both effects would tend to recruit more spiny neurons for the same task.  相似文献   

17.
The modulatory effect of D(2) dopamine receptor activation on calcium currents was studied in neostriatal projection neurons at two stages of rat development: postnatal day (PD)14 and PD40. D(2)-class receptor agonists reduced whole cell calcium currents by about 35% at both stages, and this effect was blocked by the D(2) receptor antagonist sulpiride. Nitrendipine partially occluded this modulation at both stages, indicating that modulation of Ca(V)1 channels was present throughout this developmental interval. Nevertheless, modulation of Ca(V)1 channels was significantly larger in PD40 neurons. omega-Conotoxin GVIA occluded most of the Ca(2+) current modulation in PD14 neurons. However, this occlusion was greatly decreased in PD40 neurons. omega-Agatoxin TK occluded a great part of the modulation in PD40 neurons but had a negligible effect in PD14 neurons. The data indicate that dopaminergic D(2)-mediated modulation undergoes a change in target during development: from Ca(V)2.2 to Ca(V)2.1 Ca(2+) channels. This change occurred while Ca(V)2.2 channels were being down-regulated and Ca(V)2.1 channels were being up-regulated. Presynaptic modulation mediated by D(2) receptors reflected these changes; Ca(V)2.2 type channels were used for release in young animals but very little in mature animals, suggesting that changes took place simultaneously at the somatodendritic and the synaptic membranes.  相似文献   

18.
Ca(v)2.1 channels, which mediate P/Q-type Ca2+ currents, undergo Ca2+/calmodulin (CaM)-dependent inactivation and facilitation that can significantly alter synaptic efficacy. Here we report that the neuronal Ca2+-binding protein 1 (CaBP1) modulates Ca(v)2.1 channels in a manner that is markedly different from modulation by CaM. CaBP1 enhances inactivation, causes a depolarizing shift in the voltage dependence of activation, and does not support Ca2+-dependent facilitation of Ca(v)2.1 channels. These inhibitory effects of CaBP1 do not require Ca2+, but depend on the CaM-binding domain in the alpha1 subunit of Ca(v)2.1 channels (alpha12.1). CaBP1 binds to the CaM-binding domain, co-immunoprecipitates with alpha12.1 from transfected cells and brain extracts, and colocalizes with alpha12.1 in discrete microdomains of neurons in the hippocampus and cerebellum. Our results identify an interaction between Ca2+ channels and CaBP1 that may regulate Ca2+-dependent forms of synaptic plasticity by inhibiting Ca2+ influx into neurons.  相似文献   

19.
Familial hemiplegic migraine is a rare autosomal dominant subtype of migraine with aura. Three genes have been identified, all involved in ion transport. There is considerable clinical variation associated with FHM mutations. Genotype–phenotype correlation studies are needed, but are challenging mainly because the number of carriers of individual mutations is low. One exception is the recurrent T666M mutation in the FHM1 CACNA1A gene that was identified in almost one-third of FHM families and showed variable associated clinical features and severity, both within and among FHM families. Similar studies in the FHM2 ATP1A2 gene have not been performed because of the low number of carriers with individual mutations. Here we report on the recurrence of ATP1A2 mutations M731T and T376M that affect sodium–potassium pump functioning in two Portuguese FHM families. Considerably increasing the number of mutation carriers with these mutations indicated a clear genotype–phenotype correlation: both mutations are associated with pure FHM. In addition, we show that recurrent mutations for ATP1A2 are more frequent than previously thought, which has implications for genotype–phenotype correlations and genetic testing.  相似文献   

20.
The activity of calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The aim of this study was to investigate the immunoreactivity of phosphorylated CaMKIIα (pCaMKIIα) in subpopulations of trigeminal ganglion (TG) neurons in rat models of early diabetes type 1 (dm1) and 2 (dm2). DM1 model was induced with intraperitoneally (i.p.) injected streptozotocin (STZ) (55 mg/kg). DM2 rats were fed with the high fat diet (HFD) for 2 weeks and then received 35 mg/kg of STZ i.p. Two weeks and 2 months after the STZ-diabetes induction, rats were sacrificed and immunohistochemical analysis for detection of pCaMKIIα immunoreactivity and double immunofluorescence labelling with isolectin (IB4) was performed. Increased intensity of pCaMKIIα immunofluorescence, restricted to IB4-negative small-diameter neurons, was seen in TG neurons two months after STZ-DM1 induction. DM1 model, as well as the obesity (control dm2 groups) resulted in neuronal impaired growth while dm2 model led to neuron hypertrophy in TG. Observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. In future, innovative strategies for modulation of CaMKIIα activity in specific subpopulations of neurons could be a novel approach in therapy of diabetic trigeminal neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号