首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major objective in the treatment of Alzheimer's disease is amyloid plaque reduction. Transgenic mouse models of Alzheimer's disease provide a controlled and consistent environment for studying amyloid plaque deposition in Alzheimer's disease. Magnetic resonance imaging is an attractive tool for longitudinal studies because it offers non-invasive monitoring of amyloid plaques. Recent studies have demonstrated the ability of magnetic resonance imaging to detect individual plaques in living mice. This review discusses the mouse models, MR pulse sequences, and parameters that have been used to image plaques and how they can be optimized for future studies.  相似文献   

2.
One of the cardinal pathologic features of Alzheimer's disease (AD) is the formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop "human-like" plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques noninvasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content, not plaque size. In vivo MRI-ex vivo MRI-in vitro histologic correlations are provided. Histologically verified plaques as small as 50 microm in diameter were visualized in living animals. To our knowledge this work represents the first demonstration of noninvasive in vivo visualization of individual AD plaques without the use of a contrast agent.  相似文献   

3.
Amyloid deposits are one of the hallmarks of Alzheimer's disease (AD), one of the most devastating neurodegenerative disorders. In transgenic mice modeling Alzheimer's pathology, the MR transverse relaxation time (T(2)) has been described to be modulated by amyloidosis. This modification has been attributed to the age-related iron deposition that occurs within the amyloid plaques of old animals. In the present study, young APP/PS1 transgenic mice without histochemically detectable iron in the brain were specifically studied. In vivo measurements of T(2) in the hippocampus, at the level of the subiculum, were shown to reflect the density of amyloid plaques. This suggests that T(2) variations can be induced solely by aggregated amyloid deposits in the absence of associated histologically-detectable iron. Thus T(2) from regions with high amyloid load, such as the subiculum, is particularly well suited for following plaque deposition in young animals, i.e., at the earliest stages of the pathological process.  相似文献   

4.
We performed three-dimensional, high-resolution magnetic resonance imaging (MRI) of fixed mouse brains to determine whether MRI can detect amyloid plaques in transgenic mouse models of Alzheimer's disease. Plaque-like structures in the cortex and hippocampus could be clearly identified in T2-weighted images with an image resolution of 46 microm x 72 microm x 72 microm. The locations of plaques were confirmed in coregistration studies comparing MR images with Congo red-stained histological results. This technique is quantitative, less labor-intensive compared to histology, and is free from artifacts related to sectioning process (deformation and missing tissues). It enabled us to study the distribution of plaques in the entire brain in 3D. The results of this study suggest that this method may be useful for assessing treatment efficacy in mouse models of Alzheimer's disease (AD).  相似文献   

5.
INTRODUCTION: Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. DISCUSSION AND CONCLUSION: Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas.  相似文献   

6.
The visualization of beta-amyloid plaque deposition in brain, a key feature of Alzheimer's disease (AD), is important for the evaluation of disease progression and the efficacy of therapeutic interventions. In this study, beta-amyloid plaques in the PS/APP transgenic mouse brain, a model of human AD pathology, were detected using MR microscopy without contrast reagents. beta-Amyloid plaques were clearly visible in the cortex, thalamus, and hippocampus of fixed brains of PS/APP mice. The distribution of plaques identified by MRI was in excellent agreement with those found in the immunohistological analysis of the same brain sections. It was also demonstrated that image contrast for beta-amyloid plaques was present in freshly excised nonfixed brains. Furthermore, the detection of beta-amyloid plaques was achieved with a scan time as short as 2 hr, approaching the scan time considered reasonable for in vivo imaging.  相似文献   

7.
PURPOSE: To assess the development of beta-amyloid (Abeta) plaques in the brain with age in the transgenic mouse model of Alzheimer's disease (AD) pathology by in vivo magnetic resonance microimaging (microMRI). MATERIALS AND METHODS: Live transgenic mice (Tg2576) and nontransgenic littermates (control) were studied at regular intervals between the ages of 12 and 18 months. Plaques were visualized using a T(2)-weighted rapid acquisition with relaxation enhancement (RARE) sequence. Changes in T(2) relaxation times were followed using a multislice multiecho (MSME) sequence. Plaque load and numerical density in MR images were calculated using SCIL image software. RESULTS: Abeta plaques were clearly detected with the T(2)-weighted RARE sequence in the hippocampal and cortical regions of the brain of Tg2576 mice but not in control mice. Following the plaque development in the same animals with age showed that plaque area, number, and size increased markedly, while T(2) relaxation time showed a decreasing trend with age. CONCLUSION: These results demonstrate that microMRI is a viable method for following the development of Abeta plaques in vivo, and suggest that this method may be feasible for assessing the effect of therapeutic interventions over time in the same animals.  相似文献   

8.
There is currently no method for noninvasive imaging of amyloid beta (Abeta) deposition in Alzheimer's disease (AD). Because Abeta plaques are characteristic of AD and Abeta deposits contain abundant heparan sulfate proteoglycans that can bind basic fibroblast growth factor (bFGF) and serum amyloid P component (SAP), we investigated a novel route of ligand delivery to the brain to assess Abeta deposition in a transgenic (Tg) mouse model overexpressing Abeta-protein precursor. METHODS: The biodistribution of bFGF injected intranasally was studied using (125)I-bFGF in Tg and wild-type control mice and by unlabeled bFGF and SAP immunocytochemistry with light and electron microscopy. RESULTS: Three- to 5-fold higher amounts of (125)I-bFGF were found in the brain of Tg mice than that of wild-type mice (P < 0.05). bFGF or SAP given intranasally labeled cerebral Abeta plaques in the cortex and microvessels of Tg mice but not in wild-type mice. Weak bFGF staining and no SAP staining were detected in Tg mice without intranasal injection of the ligands. bFGF and SAP stained neurons around the rim of Abeta deposits and throughout the cortex in Tg mice. There was only weak staining of neurons in Tg mice without intranasal injection of bFGF and no staining of SAP in Tg mice without intranasal injection of SAP. No bFGF or SAP staining was evident in wild-type control mice. CONCLUSION: We report a novel noninvasive method for labeling Abeta plaques. This method may be modified for human studies using intranasal injection of radiolabeled ligands and imaging with SPECT or PET.  相似文献   

9.
PURPOSE: To demonstrate an MRI method for directly visualizing amyloid-beta (Abeta) plaques in the APP/PS1 transgenic (tg) mouse brain in vivo, and show that T1rho relaxation rate increases progressively with Alzheimer's disease (AD)-related pathology in the tg mouse brain. MATERIALS AND METHODS: We obtained in vivo MR images of a mouse model of AD (APP/PS1) that overexpresses human amyloid precursor protein, and measured T1rho via quantitative relaxometric maps. RESULTS: A significant decrease in T1rho was observed in the cortex and hippocampus of 12- and 18-month-old animals compared to their age-matched controls. There was also a correlation between changes in T1rho and the age of the animals. CONCLUSION: T1rho relaxometry may be a sensitive method for noninvasively determining AD-related pathology in APP/PS1 mice.  相似文献   

10.
The presence of amyloid-beta (Abeta) plaques in the brain is a hallmark pathological feature of Alzheimer's disease (AD). Transgenic mice overexpressing mutant amyloid precursor protein (APP), or both mutant APP and presenilin-1 (APP/PS1), develop Abeta plaques similar to those in AD patients, and have been proposed as animal models in which to test experimental therapeutic approaches for the clearance of Abeta. However, at present there is no in vivo whole-brain imaging method to detect Abeta plaques in mice or men. A novel method is presented to detect Abeta plaques in the brains of transgenic mice by magnetic resonance microimaging (muMRI). This method uses Abeta1-40 peptide, known for its high binding affinity to Abeta, magnetically labeled with either gadolinium (Gd) or monocrystalline iron oxide nanoparticles (MION). Intraarterial injection of magnetically labeled Abeta1-40, with mannitol to transiently open the blood-brain barrier (BBB), enabled the detection of many Abeta plaques. Furthermore, the numerical density of Abeta plaques detected by muMRI and by immunohistochemistry showed excellent correlation. This approach provides an in vivo method to detect Abeta in AD transgenic mice, and suggests that diagnostic MRI methods to detect Abeta in AD patients may ultimately be feasible.  相似文献   

11.
Extensive deposition of dense amyloid fibrils is a characteristic neuropathologic hallmark in Alzheimer's disease (AD). Noninvasive detection of these molecules is potentially useful for early and precise detection of patients with AD. This study reports a novel compound, 2-(2-[2-dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole (BF-227), for in vivo detection of dense amyloid deposits using PET. METHODS: The binding affinity of BF-227 to amyloid-beta (Abeta) fibrils was calculated. The binding property of BF-227 to amyloid plaques was evaluated by neuropathologic staining of AD brain sections. Brain uptake and in vivo binding of BF-227 to Abeta deposits were also evaluated using mice. For clinical evaluation of (11)C-BF-227 as a PET probe, 11 normal (healthy) subjects and 10 patients with AD participated in this study. Dynamic PET images were obtained for 60 min after administration of (11)C-BF-227. The regional standardized uptake value (SUV) and the ratio of regional to cerebellar SUV were calculated as an index of (11)C-BF-227 retention. The regional tracer distribution in AD patients was statistically compared with that of aged normal subjects on a voxel-by-voxel basis. RESULTS: BF-227 displayed high binding affinity to synthetic Abeta1-42 fibrils (K(i) [inhibition constant], 4.3 +/- 1.5 nM). Neuropathologic staining has demonstrated preferential binding of this agent to dense amyloid deposits in AD brain. Moreover, a biodistribution study of this agent revealed excellent brain uptake and specific labeling of amyloid deposits in transgenic mice. The present clinical PET study using (11)C-BF-227 demonstrated the retention of this tracer in cerebral cortices of AD patients but not in those of normal subjects. All AD patients were clearly distinguishable from normal individuals using the temporal SUV ratio. Voxel-by-voxel analysis of PET images revealed that cortical BF-227 retention in AD patients is distributed primarily to the posterior association area of the brain and corresponded well with the preferred site for neuritic plaque depositions containing dense Abeta fibrils. CONCLUSION: These findings suggest that BF-227 is a promising PET probe for in vivo detection of dense amyloid deposits in AD patients.  相似文献   

12.
Amyloid plaques are one of the hallmarks of Alzheimer's disease (AD). This study evaluated a novel microMRI strategy based on "passive staining" of brain samples by gadoteric acid. The protocol was tested at 4.7 T on control animals and APP/PS1 mice modeling AD lesions. T(1) was strongly decreased in passively stained brains. On high-resolution 3D gradient echo images, the contrast between the cortex and subcortical structures was highly improved due to a T2* effect. The brains of APP/PS1 mice revealed plaques as hypo-intense spots. They appeared larger in long compared to short TE images. This suggests that, after passive staining, plaques caused a susceptibility effect. This easily performed protocol is a complementary method to classic histology to detect the 3D location of plaques. It may also be used for the validation of in vivo MRI protocols for plaque detection by facilitating registration with histology via post mortem MRI.  相似文献   

13.
Impact of amyloid imaging on drug development in Alzheimer's disease   总被引:2,自引:0,他引:2  
Imaging agents capable of assessing amyloid-beta (Abeta) content in vivo in the brains of Alzheimer's disease (AD) subjects likely will be important as diagnostic agents to detect Abeta plaques in the brain as well as to help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of anti-amyloid therapeutics currently under development and in clinical trials. Positron emission tomography (PET) imaging studies of amyloid deposition in human subjects with several Abeta imaging agents are currently underway. We reported the first PET studies of the carbon 11-labeled thioflavin-T derivative Pittsburgh Compound B in 2004, and this work has subsequently been extended to include a variety of subject groups, including AD patients, mild cognitive impairment patients and healthy controls. The ability to quantify regional Abeta plaque load in the brains of living human subjects has provided a means to begin to apply this technology as a diagnostic agent to detect regional concentrations of Abeta plaques and as a surrogate marker of therapeutic efficacy in anti-amyloid drug trials.  相似文献   

14.
We measured proton magnetic longitudinal (R(1)) and transverse (R(2)) relaxation rates at 1.4T, iron concentrations, water contents, and amyloid plaque densities in postmortem brain tissue samples from three Alzheimer's disease (AD), two possible AD, and five control subjects. Iron concentrations and R(1) were significantly higher in the temporal cortex region of our AD group compared to the controls. Frequency analyses showed that the observed trends of higher iron, R(1), and R(2) in AD gray matter regions were statistically significant. Simple regression models indicated that for AD and control gray matter the iron concentrations and water contents have significant linear correlations with R(1) and R(2). Multiple regression models based on iron concentrations and water contents were highly significant for all groups and tissue types and suggested that the effects of iron become more important in determining R(1) and R(2) in the AD samples. At 1.4T R(1) and R(2) are strongly affected by water content and to a lesser extent by variations in iron concentrations. The AD plaque density did not correlate with iron concentrations, water contents, R(1), or R(2), suggesting that increases in AD brain iron are not strongly related to the accumulation of amyloid plaques.  相似文献   

15.
Transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP[V717I]) in neurons develop amyloid plaques in the brain, thus demonstrating the most prominent neuropathological hallmark of Alzheimer's disease. In vivo 3D T2*-weighted MRI on these mice (24 months of age) revealed hypointense brain inclusions that affected the thalamus almost exclusively. Upon correlating these MRI observations with a panel of different histologic staining techniques, it appeared that only plaques that were positive for both thioflavin-S and iron were visible on the MR images. Numerous thioflavin-S-positive plaques in the cortex that did not display iron staining remained invisible to MRI. The in vivo detection of amyloid plaques in this mouse model, using the intrinsic MRI contrast arising from the iron associated with the plaques, creates an unexpected opportunity for the noninvasive investigation of the longitudinal development of the plaques in the same animal. Thus, this work provides further research opportunities for analyzing younger APP[V717I] mouse models with the knowledge of the final outcome at 24 months of age.  相似文献   

16.
We evaluated the efficacy of murine monoclonal antibodies (Mabs) targeted to beta/A4 amyloid for development of procedures for the in vivo identification of amyloid angiopathy (AA) in Alzheimer's disease (AD). Mabs to beta/A4 amyloid were prepared and screened for effectiveness in visualizing AA and senile plaques in postmortem AD brain sections. They were assessed again after enzymatic cleavage to produce Fab fragments and after labeling with 99mTc using a diamide dimercaptide ligand system. Modified and radiolabeled Fab fragments retained activity and specificity towards amyloid-laden blood vessels and senile plaques. A highly specific murine Mab, 10H3, was identified and characterized that fulfills criteria necessary for the development of a diagnostic imaging agent. Expansion and adaptation of these strategies may provide the methods and materials for the noninvasive analysis of AA in living patients, and permit assessment of the contribution of AA to the clinical and pathological features of AD.  相似文献   

17.
A new series of (E)-3-styrylpyridine derivatives as potential diagnostic imaging agents targeting amyloid plaques in Alzheimer's disease (AD) were synthesized and examined. When in vitro binding studies using AD brain homogenates were carried out with a series of styrylpyridine derivatives, (E)-2-Bromo-5-(4-dimethylaminostyryl)pyridine (7) with a dimethylamino group showed the highest binding affinity. Compound 7 intensely stained neuritic and diffused plaques and cerebrovascular amyloids on postmortem AD brain sections. (E)-2-Iodo-5-(4-dimethylaminostyryl)pyridine, the iodo derivative of compound 7, also stained senile plaques in human AD sections. The radioiodinated ligand [125I] was successfully prepared through an iododestannylation reaction from the corresponding tributyltin derivatives using hydrogen peroxide as the oxidant in high yields and with high radiochemical purity. A biodistribution study in normal mice after an intravenous injection of [125I] displayed high brain uptake and fast washout. Taken together, the data suggest that the new radio tracer, [125I], may be useful as a radioiodinated imaging agent for mapping A beta plaques in the brains of patients with AD.  相似文献   

18.
The purpose of this study is to develop potential I-123 labeled diagnostic imaging agents targeting amyloid plaques in Alzheimer's disease (AD). Formation and accumulation of aggregates of beta-amyloid (Abeta) peptides in the brain are critical factors in the development and progression of AD. Small molecule-based benzofuran derivatives were designed and synthesized. Both 5- and 6-iodobenzofuran derivatives displayed excellent competition for I-125 TZDM binding to Abeta40 aggregates with K(i) values in the subnanomolar range. The radioiodinated ligands, with a high specific activity, were successfully prepared through an iododestannylation reaction from the corresponding tributyltin derivatives using hydrogen peroxide as the oxidant in high yields (60-80%) and with high radiochemical purities (greater than 95%). After an iv injection, all four radioiodinated ligands displayed high brain uptakes ranging from 0.5 to 1.5% initial dose/organ in normal mice. The radioactivity washed out from the mouse brain slowly (less than 50% at 2 h post injection), suggesting high in vivo non-specific binding. In conclusion, the benzofuran ligands displayed excellent binding affinity for Abeta aggregates. The long retention of these ligands in the normal mouse brain suggests that there may be high binding for these probes in the brain not associated with Abeta plaques. Additional modifications are necessary to improve the in vivo imaging properties for plaque detection.  相似文献   

19.
Five iodinated 2-phenyl-1H-benzo[d]imidazole derivatives were synthesized and evaluated as potential probes for β-amyloid (Aβ) plaques. One of the compounds, 4-(6-iodo-1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline (12), showed excellent affinity for Aβ(1-42) aggregates (K(i) = 9.8 nM). Autoradiography with sections of postmortem Alzheimer's disease (AD) brain revealed that a radioiodinated probe [(125)I]12, labeled Aβ plaques selectively with low nonspecific binding. Biodistribution experiments with normal mice injected intravenously with [(125)I]12 showed high uptake [4.14 percent injected dose per gram (% ID/g) at 2 min] into and rapid clearance (0.15% ID/g at 60 min) from the brain, which may bring about a good signal-to-noise ratio and therefore achieve highly sensitive detection of Aβ plaques. In addition, [(125)I]12 labeled amyloid plaques in vivo in an AD transgenic model. The preliminary results strongly suggest that [(125)I]12 bears characteristics suitable for detecting amyloid plaques in vivo. When labeled with (123)I, it may be a useful SPECT imaging agent for Aβ plaques in the brain of living AD patients.  相似文献   

20.
This paper describes a novel series of 18F-labeled polyethyleneglycol (PEG)-stilbene derivatives as potential β-amyloid (Aβ) plaque-specific imaging agents for positron emission tomography (PET). In these series of compounds, 18F is linked to the stilbene through a PEG chain, of which the number of ethoxy groups ranges from 2 to 5. The purpose of adding PEG groups is to lower the lipophilicity and improve bioavailability. The syntheses of the “cold” compounds and the 18F-labeled PEG stilbene derivatives are successfully achieved. All of the fluorinated stilbenes displayed high binding affinities in an assay using postmortem AD brain homogenates (Ki=2.9–6.7 nM). Labeling was successfully performed by a substitution of the mesylate group of 10a–d by [18F]fluoride giving the target compounds [18F]12a–d (EOS, specific activity, 900–1500 Ci/mmol; radiochemical purity >99%). In vivo biodistribution of these novel 18F ligands in normal mice exhibited excellent brain penetrations and rapid washouts after an intravenous injection (6.6–8.1 and 1.2–2.6 %dose/g at 2 and 60 min, respectively). Autoradiography of postmortem AD brain sections of [18F]12a–d confirmed the specific binding related to the presence of Aβ plaques. In addition, in vivo plaque labeling can be clearly demonstrated with these 18F-labeled agents in transgenic mice (Tg2576), a useful animal model for Alzheimer's disease. In conclusion, the preliminary results strongly suggest these fluorinated PEG stilbene derivatives are suitable candidates as Aβ plaque imaging agents for studying patients with Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号