首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the fukutin–related protein (FKRP) have recently been demonstrated to cause limb girdle muscular dystrophy type 2I (LGMD2I), one of the most common forms of the autosomal recessive LGMDs in Europe. We performed a systematic clinical and muscle MRI assessment in 6 LGMD2I patients and compared these findings with those of 14 patients with genetically confirmed diagnosis of other forms of autosomal recessive LGMDs or dystrophinopathies. All LGMD2I patients had a characteristic clinical phenotype with predominant weakness of hip flexion and adduction, knee flexion and ankle dorsiflexion. These findings were also mirrored on MRI of the lower extremities which demonstrated marked signal changes in the adductor muscles, the posterior thigh and posterior calf muscles. This characteristic clinical and MRI phenotype was also seen in LGMD2A. However, in LGMD2A there was a selective involvement of the medial gastrocnemius and soleus muscle in the lower legs which was not seen in LGMD2I. The pattern in LGMD2A and LGMD2I were clearly different from the one seen in alpha–sarcoglycanopathy and dystrophinopathy type Becker which showed marked signal abnormalities in the anterior thigh muscles. Our results indicate that muscular MRI is a powerful tool for differentiating LGMD2I from other forms of autosomal recessive LGMDs and dystrophinopathies.  相似文献   

2.
Limb-girdle muscular dystrophy (LGMD) has been linked to 15 chromosomal loci, 7 autosomal-dominant (LGMD1A to E) and 10 autosomal-recessive (LGMD2A to J). To determine the distribution of subtypes among patients in the United States, 6 medical centers evaluated patients with a referral diagnosis of LGMD. Muscle biopsies provided histopathology and immunodiagnostic testing, and their protein abnormalities along with clinical parameters directed mutation screening. The diagnosis in 23 patients was a disorder other than LGMD. Of the remaining 289 unrelated patients, 266 had muscle biopsies sufficient for complete microscopic evaluation; 121 also underwent Western blotting. From this combined evaluation, the distribution of immunophenotypes is 12% calpainopathy, 18% dysferlinopathy, 15% sarcoglycanopathy, 15% dystroglycanopathy, and 1.5% caveolinopathy. Genotypes distributed among 2 dominant and 7 recessive subtypes have been determined for 83 patients. This study of a large racially and ethnically diverse population of patients with LGMD indicates that establishing a putative subtype is possible more than half the time using available diagnostic testing. An efficient approach to genotypic diagnosis is muscle biopsy immunophenotyping followed by directed mutational analysis. The most common LGMDs in the United States are calpainopathies, dysferlinopathies, sarcoglycanopathies, and dystroglycanopathies.  相似文献   

3.
Objectives and methods – Mutations in the gene encoding dysferlin cause limb girdle muscular dystrophy type 2B (LGMD2B), distal Miyoshi myopathy (MM), and a rare form of distal anterior compartment myopathy. To study the correlations between clinical manifestations and muscle imaging changes we conducted a 3.0‐T magnetic resonance imaging (MRI) study in six German patients with primary dysferlinopathies defined by absence of dysferlin expression in muscle (MM, n = 3; LGMD2B, n = 2; hyperCKemia without clinical symptoms, n = 1). Results – Patients with manifest myopathy had widespread muscular pathology. In analogy to previous imaging studies, we confirmed an involvement of the anterior and posterior thigh compartments and a predominant involvement of posterior lower legs. However, our whole‐body MRI study further provided evidence of signal alterations in the glutei, erector spinae and shoulder girdle muscles. Correlation of clinical findings with imaging demonstrated the potential of MRI to detect subclinical muscle pathology. Conclusions – Whole‐body 3.0‐T MRI is a non‐invasive method to demonstrate various degrees of skeletal muscle alterations and disease progression in muscular dystrophies. Furthermore, whole‐body high‐field MRI may serve as a helpful diagnostic tool in differentiating primary dysferlinopathies from other forms of LGMD and distal myopathies.  相似文献   

4.
Muscular dystrophy is defined as "a group of hereditary disorders with the major symptom of progressive muscle weakness due to muscle fiber degeneration and necrosis". After the discovery of the dystrophin gene and the gene product for Duchenne muscular dystrophy in 1986, there has been remarkable progress in the differential diagnosis and in understanding the pathogenetic mechanism of muscle fiber necrosis. With discoveries of genes responsible for many other disorders, the classification of muscular dystrophy has become more complicated; for instance, there are at least 15 diseases in the limb-girdle muscular dystrophy (LGMD) group, including the autosomal dominant forms, LGMD1A-1E and the recessive forms, LGMD2A-2I. Among them, gene defects in the sarcoglycan complex (sarcoglycanopathy) have been added to LGMD2C-2F. Sarcoglycanopathy seems to be rare in Japan since only 6-7% of LGMD patients had this defect. There are two major possible strategies in treating these patients. One is gene therapy, which is recently being investigated in the mdx mouse by using adenovirus-associated virus (AAV) vector inserted with a microdystrophin gene. Dr Takeda has reported favorable results in mdx mouse muscle with this method. Another is regeneration therapy using stem cells. There are many barriers to overcome to treat patients with stem cells isolated from bone marrow. The most difficult problem to solve is how to culture the stem cells to increase their numbers for application and how to introduce the normal dystrophin gene into these cells.  相似文献   

5.
Klinik und Genetik der Gliedergürteldystrophien   总被引:1,自引:0,他引:1  
Finsterer J 《Der Nervenarzt》2004,75(12):1153-1166
Limb girdle muscular dystrophies (LGMDs) are a genetically heterogeneous group of primary myopathies involving progressive weakness and wasting of the muscles in the hip and shoulder girdles, with distal spread to the bulbar or respiratory musculature in rare cases. Depending on the mode of genetic transmission, six autosomal dominant forms (LGMD1A-F, 10-25%) and ten autosomal recessive forms (LGMD2A-J, 75-90%) are currently known. The prevalence of LGMDs is 0.8/100,000. These conditions are caused by mutations in genes encoding for myotilin (5q31, LGMD1A), lamin A/C (1q11-q21.2, LGMD1B), caveolin-3 (3p25, LGMD1C), unknown proteins (7q, LGMD1D, 6q23, LGMD1E, 7q32.1-32.2., LGMD1F), calpain-3 (15q15.1-21.1, LGMD2A), dysferlin (2p13.3-13.1, LGMD2B), gamma-sarcoglycan (13q12, LGMD2C), alpha-sarcoglycan, also known as adhalin (17q12-q21.3, LGMD2D), beta-sarcoglycan (4q12, LGMD2E), delta-sarcoglycan (5q33-q34, LGMD2F), telethonin (17q11-q12, LGMD2G), E3-ubiquitin ligase (9q31-q34.1, LGMD2H), fukutin-related protein (19q13.3, LGMD2I), and titin (2q31, LGMD2J). Cardiac involvement has been described for LGMD1B-E, LGMD2C-G, and LGMD2I. The time of onset varies between early childhood and middle age. There is no male or female preponderance. Disease progression and life expectancy vary widely, even among different members of the same family. The diagnosis is based primarily on DNA analysis. The history, clinical neurological examinations, blood chemistry investigations, electromyography, and muscle biopsy also provide information that is helpful for the diagnosis. No causal therapy is currently available.  相似文献   

6.
In our laboratory, limb-girdle muscular dystrophy (LGMD) accounted for 20% of all patients with muscular dystrophy. To determine the incidence of various forms of LGMD phenotypes, we looked for mutations in the calpain 3 gene and, for deficiencies in dysferlin and sarcoglycan by immunohistochemical studies with specific antibodies on muscle biopsies from patients with probable autosomal recessive inheritance (LGMD2), which were mostly sporadic cases of LGMD. Fourteen of 276 (5%) patients examined had sarcoglycan complex deficiency (sarcoglycanopathy) and 21 of 80 (26%) had mutations in the calpain 3 gene. Although we have not performed gene analysis in all patients, 10 of 64 (15%) patients examined had no apparent immunoreactivity against the dysferlin antibody. Thus, approximately 46% of LGMD2 patients had the above 3 distinct disorders, but in 54% the causative defects remain unknown.  相似文献   

7.
Limb girdle muscular dystrophy (LGMD) type 2B and distal Miyoshi myopathy (MM) are caused by mutations in a recently discovered mammalian gene coding for a skeletal muscle protein called dysferlin. The protein is normally expressed at the skeletal muscle level and absent or reduced in affected patients. We selected a clinically heterogeneous population of Italian myopathic patients with clinical evidence of myopathy and/or hyperCKemia, EMG myopathic pattern, and no alterations of the dystrophin-sarcoglycan complex. Calpain, merosin, emerin and caveolin were also tested and found normal in all patients. Dysferlin immunohistochemical and Western blot analyses allowed us to identify six patients with dysferlin deficiency: one with distal myopathy, four with limb girdle myopathy and one with hyperCKemia. No apoptosis was found in any of the six muscle specimens, although expression of the pro-apoptotic Fas antigen was mildly increased in two cases. Inflammatory reactions were present in two of the six cases, but we found no evidence of immune-mediated processes.  相似文献   

8.
Abstract. Mutations in the human dysferlin gene (DYSF) cause autosomal recessive muscular dystrophies characterized by degeneration and weakness of proximal and/or distal muscles: limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). Recently, an interaction between caveolin-3 and dysferlin in normal and dystrophic muscle (primary caveolin-3 deficiency; LGMD1C) was shown. In this study, clinical,morphological and genetic analysis was carried out in four independent LGMD2B/MM patients. All patients presented with an adult-onset, slowly progressive muscular dystrophy with variable involvement of proximal and distal muscles. We found complete lack of dysferlin in the four LGMD2B/MM patients. Secondary reduction of caveolin-3 was detected in three out of the four patients. Regular caveolae were detected along the basal lamina in two patients by electron microscopy. We provide further evidence that dysferlin and caveolin-3 interact in human skeletal muscle. It remains to be elucidated whether the loss of this interaction contributes to pathogenic events in muscular dystrophy.M. C. Walter and C. Braun contributed equally.  相似文献   

9.
Dysferlin has recently been identified as a novel gene involved in limb-girdle muscular dystrophy type 2B (LGMD2B) and its allelic disease, Miyoshi myopathy. The predicted structure of dysferlin suggests that it is a transmembrane protein possibly involved in membrane fusion. Thus, unlike previously identified structural proteins in muscular dystrophy, dysferlin is likely involved in a novel pathogenic mechanism for this disease. In this study, we have analyzed the expression of dysferlin in skeletal muscle of patients with disruptions in the dystrophin-glycoprotein complex and patients with a clinical diagnosis of LGMD2B or Miyoshi myopathy. We show expression of dysferlin at the sarcolemma in normal muscle and reduced sarcolemmal expression along with accumulation of intracellular staining in dystrophic muscle. Electron microscopy in Miyoshi myopathy biopsies suggests that the cytoplasmic staining could be a result of the abundance of intracellular vesicles. Our results indicate that dysferlin expression is perturbed in LGMD and that both mutations in the dysferlin gene and disruption of the dystrophin-glycoprotein complex can lead to the accumulation of dysferlin within the cytoplasm.  相似文献   

10.
The limb-girdle muscular dystrophies (LGMDs) are a group of muscular dystrophies that share a similar clinical phenotype. Despite this clinical homogeneity, at least 15 different genetic forms of LGMD are now known. Some of these share pathogenetic mechanisms with other forms of muscular dystrophy, such as the sarcoglycanopathies (LGMD 2C-F) and the dystrophinopathies (Duchenne and Becker muscular dystrophy). Some are allelic with other forms of muscular dystrophy; LGMD 1B is allelic with autosomal dominant Emery-Dreifuss muscular dystrophy. Still others introduce totally unique pathogenetic mechanisms to the study of muscular dystrophy. For example, LGMD 2H appears to be due to mutations affecting the ubiquitin-proteasome pathway. A diagnostic approach is outlined based on clinical features, genetics, and commercially available testing.  相似文献   

11.
Dysferlin encoding gene (DYS) is mutated in the autosomal recessive disorders Miyoshi myopathy, Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and distal anterior compartment myopathy, causing dysferlin deficiency in muscle biopsy. Three ethnic clusters have previously been described in Dysferlinopathy: the Libyan Jewish population originating in the area of Tripoli, Italian and Spanish populations. We report another cluster of this muscular dystrophy in Israel among Jews of the Caucasus region. A genomic analysis of the dysferlin coding sequence performed in patients from this ethnic group, who demonstrated an absence of dysferlin expression in muscle biopsy, revealed a homozygous frameshift mutation of G deletion at codon 927 (2779delG) predicting a truncated protein and a complete loss of functional protein. The possible existence of a founder effect is strengthened by our finding of a 4% carrier frequency in this community. These findings are important for genetic counseling and also enable a molecular diagnosis of LGMD2B in Jews of the Caucasus region.  相似文献   

12.
Recessive mutations in the anoctamin 5 (ANO5) gene have been recently identified in families with limb girdle muscular dystrophy (LGMD2L) and distal non-dysferlin Miyoshi myopathy. Anoctamin 5 is supposed to be a putative calcium-activated chloride channel. We report five German patients (four index patients) with muscle dystrophy due to mutations in the ANO5 gene. Sequencing of the ANO5 exons 5, 13 and 20 was performed to screen for a common c.191dupA mutation and two other reported mutations (c.1295C>G and p.R758C). The whole coding region of the ANO5 gene was sequenced to identify new mutations. Phenotypically, three patients showed LGMD and one patient Miyoshi type distal myopathy. One sibling had asymptomatic hyperCKemia. The age at onset was 64, 38 and 40 years in patients with LGMD and 23 years in the patient with distal myopathy. The four symptomatic patients showed remarkable asymmetric muscle involvement. There was marked CK elevation (11 to 30 times). Electron microscopy showed multifocal gaps in the sarcolemmal membrane. All patients harboured the common c.191dupA mutation in at least one allele. Two patients with LGMD were homozygous and the third patient and his asymptomatic sister were compound heterozygous for the c.191dupA mutation and a novel p.T548I mutation. The patient with distal myopathy harboured the p.R758C mutation in the second allele. Mutations in the ANO5 gene seem to be a relatively common cause of muscular dystrophy in Germany. Cases with late onset or asymptomatic hyperCKemia can occur. Clinically, asymmetric manifestation is typical.  相似文献   

13.
Background and purposeAt present, more than 20 different forms of limb-girdle muscular dystrophies (LGMDs) are known (at least 7 autosomal dominant and 14 autosomal recessive). Although these different forms show some typical phenotypic characteristics, the existing clinical overlap makes their differential diagnosis difficult. Limb-girdle muscular dystrophy type 2 (LGMD2A) is the most prevalent LGMD in many European as well as Brazilian communities and is caused by mutations in the gene CAPN3. Laboratory testing, such as calpain immunohistochemistry and Western-blot analysis, is not totally reliable, since up to 20% of molecularly confirmed LGMD2A show normal content of calpain 3 and a third of LGMD2A biopsies have normal calpain 3 proteolytic activity in the muscle. Thus, genetic testing is considered as the only reliable diagnostic criterion in LGMD2A.Material and methodsIn an attempt to find a correlation between genotype and muscle pathology in limb-girdle muscular dystrophy 2A we performed histopathological investigation of a group of 31 patients subdivided according to the type of pathologic CAPN3 gene mutation.ResultsIn all biopsies typical features of muscular dystrophy such as fiber necrosis and regeneration, variation in fiber size and fibrosis were noted. Lobulated fibers were often encountered in the muscle biopsies of LGMD2A patients. Such fibers were more frequent in patients with 550delA mutation.ConclusionsThese findings may be helpful in establishing diagnostic strategies in LGMD.  相似文献   

14.
Dysferlin protein analysis in limb-girdle muscular dystrophies   总被引:4,自引:0,他引:4  
Dysferlin is the protein product of the DYSF gene mapped at 2p31, which mutations cause limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. To date, nine autosomal recessive forms (AR-LGMD) have been identified: four genes, which code for the sarcoglycan glycoproteins, are associated with both mild and severe forms, the sarcoglycanopathies (LGMD2C, 2D, 2E and 2F). The other five forms, usually causing a milder phenotype are LGMD2A (calpain 3), LGMD2B (dysferlin), LGMD2G (telethonin), LGMD2H (9q31-11), and LGMD21 (19q13.3). We studied dysferlin expression in a total of 176 patients, from 166 LGMD families: 12 LGMD2B patients, 70 with other known forms of muscular dystrophies (LGMD2A, sarcoglycanopathies, LGMD2G), in an attempt to assess the effect of the primary gene-product deficiency on dysferlin. In addition, 94 still unclassified LGMD families were screened for dysferlin deficiency. In eight LGMD2B patients from five families, no dysferlin was observed in muscle biopsies, both through immunofluorescence (IF) and Western blot methodologies, while in two families, a very faint band was detected. Both patterns, negative or very faint bands, were concordant in patients belonging to the same families, suggesting that dysferlin deficiency is specific to LGMD2B. Myoferlin, the newly identified homologue of dysferlin was studied for the first time in LGMD2B patients. Since no difference was observed between patients mildly and severely affected, this protein do not seem to modify the phenotype in the present dysferlin-deficient patients. Dystrophin, sarcoglycans, and telethonin were normal in all LGMD2B patients, while patients with sarcoglycanopathies (2C, 2D, and 2E), LGMD2A, LGMD2G, and DMD showed the presence of a normal dysferlin band by Western blot and a positive pattern on IF. These data suggest that there is no interaction between dysferlin and these proteins. However, calpain analysis showed a weaker band in four patients from two families with intra-familial concordance. Therefore, this secondary deficiency of calpain in LGMD2B families, may indicate an interaction between dysferlin and calpain in muscle. Dysferlin was also present in cultured myotubes, in chorionic villus, and in the skin. Dysferlin deficiency was found in 24 out of a total of 166 Brazilian AR-LGMD families screened for muscle proteins (approximately 14%), thus representing the second most frequent known LGMD form, after calpainopathy, in our population.  相似文献   

15.
16.
BACKGROUND: Mutations in the genes encoding for calpain-3 and dysferlin are responsible for limb-girdle muscular dystrophy (LGMD) type 2A and 2B, the most common forms of autosomal recessive LGMD. OBJECTIVE: To identify calpain-3 or dysferlin deficiency in a large cohort of patients with as yet unclassified LGMD and myopathy through candidate protein analysis. METHODS: The authors' muscle biopsy database search identified 407 candidate muscle biopsies with normal dystrophin and sarcoglycan. Calpain-3 and dysferlin were studied by Western blotting and immunohistochemistry. RESULTS: Combined calpain-3 and dysferlin Western blot analysis identified calpain-3 deficiency in 66 (16%) muscle biopsies. In 31 cases (47%), the protein was absent, and in 35 (53%), it was severely reduced in amount (3 to 50% of control). Dysferlin deficiency was found in 26 (6.5%) muscle biopsies. In 9, the protein was absent (35%), and in 17 (65%), it was severely reduced in amount (traces to 20% of control). Twenty-eight percent (53/191) of patients with LGMD phenotype had calpain-3 deficiency. Sixty percent (21/35) of patients with distal myopathy had dysferlin deficiency. Dysferlin immunohistochemistry showed, in the completely dysferlin-deficient patients, absent reaction at the sarcolemma but positive nuclear membrane labeling and, in the partially dysferlin-deficient patients, scattered granular positive cytoplasmic areas and diffuse reaction in regenerating fibers. CONCLUSION: About 25% of previously unclassified dystrophy/myopathy cases are due to calpain-3 or dysferlin protein deficiency. These results suggest that immunoblot analysis may be used to define patients for calpain-3 and dysferlin gene mutation studies.  相似文献   

17.
Dysferlinopathies encompass a large variety of neuromuscular diseases characterized by the absence of dysferlin in skeletal muscle and an autosomal recessive mode of inheritance. So far, three main phenotypes have been reported: Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD 2B), and distal myopathy with anterior tibial onset (DMAT). A growing number of clinical variants have recently been described with a much wider range of symptoms and onset. Although rare, dysferlinopathies can account for up to 30% of progressive recessive muscular dystrophies in certain geographical areas, notably in the Middle East and the Indian subcontinent. Dysferlin is a large protein involved in membrane repair and vesicle trafficking and interacts probably with important immunological pathways. New insights in its pathophysiology may result in innovative therapies in the near future.  相似文献   

18.
Mutations in the calpain 3 gene have been proven to be responsible for limb-girdle muscular dystrophy (LGMD) type 2A. To determine the incidence and genotypes of the calpain 3 (p94) gene mutations in Japanese LGMD patients, we sequenced the gene in 80 patients with clinical characteristics of autosomal recessive or sporadic LGMD. We identified 13 distinct pathogenic mutations in 21 patients (26%), including seven missense mutations, four splice-site mutations and two insertions in which six were novel mutations. Among the 21 patients, 15 (71%) had three types of the common missense (G233V, R461C, D707G) and one insertion (1795-1796insA) mutation. The patients had slowly progressive muscle weakness with age of onset of the disease varying from 6 to 52 years, averaging 20.9. The most striking pathologic findings were the presence of lobulated fibers in 14 patients, especially in the advanced stages. Differing from Duchenne and Becker muscular dystrophy, opaque (hypercontracted) fibers were very rarely seen. These findings may be helpful in establishing diagnostic screening strategies in Japanese LGMD patients.  相似文献   

19.
The limb‐girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip‐ and shoulder‐girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A–1H) and 26 autosomal recessive (LGMD2A–2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58 : 167–177, 2018  相似文献   

20.
M Aoki  K Arahata  R H Brown 《Clinical neurology》1999,39(12):1272-1275
Miyoshi myopathy (MM) is autosomal recessive distal muscular dystrophy that we have mapped to chromosome 2 p13. We constructed a 3 Mb P 1-derived artificial chromosome contig spanning the MM candidate region. Using this and new polymorphic markers within it, we recently identified a novel, full-length 6.9 kb muscle cDNA, whose corresponding protein we designated "dysferlin" (Nature Genet, 1998: 20: 31-36). We described eighteen mutations in the dysferlin gene with MM or limb-girdle muscular dystrophy type 2 B (LGMD 2 B). Most are predicted to block translation of dysferlin protein. In some cases, corresponding Western immunoblotting reveals absence of dysferlin in muscle biopsies. Identical mutations in the dysferlin gene can produce more than one myopathy phenotype (MM, limb-girdle dystrophy, distal myopathy with anterior tibial onset).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号