首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After a complete optic nerve section (ONS), retinal neurons may display retrograde transneuronal modifications in synaptic structure and function related to the retinal disconnection from the brain. The molecular and physiological basis of these changes is not yet fully understood. Immunoreactivity for calbindin was used to specifically immunolabel the horizontal cells (HC) in order to study any morphologic changes in the outer plexiform layer (OPL) after axotomy-induced degeneration of retinal ganglion cells (RGC) in the rabbit retina. Glutamate-gated conductance expressed by HC enzymatically dissociated from the rabbit retina were studied at 12 and 21 days after ONS by using the whole-cell voltage-clamp technique. The amplitudes of glutamate-induced currents on HC were significantly reduced 3 weeks after axotomy. However, no morphologic changes within the OPL were detected coincident with the progressive loss of glutamatergic responses; similarly, HC dissociated from the axotomized retinal tissue did not differ in morphology or appearance from control retinas. The main finding in this study is that the HC experiment a retrograde transneuronal down-regulation of their ionotropic glutamate-induced conductance following axotomy-induced degeneration of RGC.  相似文献   

2.
目的:为视网膜神经节细胞(retina ganglion cell,RGC)的准确定量研究提供形态学的指标依据.方法:联合应用Nissl染色法和神经元逆行标记技术,并通过计算机图像处理技术测定RGC的形态分布特征.结果:两种标记方法在视网膜组织中标记的细胞形态、大小和密度分布呈现明显的差异.Nissl染色可以使所有细胞着色,神经元逆行标记技术仅使RGC着色.通过两者的综合分析,在RGC等密度曲线图中可以观察到在视神经乳头下方形成一个沿鼻颞侧轴方向伸展的高密度区,即视条纹,由视条纹至周边部细胞密度递减.结论:联合应用视网膜铺片法和神经元逆行标记技术两者的优点,能够较准确地测定RGC的密度、大小及其分布等形态特征.  相似文献   

3.
Retinal ischemia/reperfusion (I/R) injury causes profound tissue damage, especially retinal ganglion cell (RGC) death. The aims of the study were to investigate whether catalase (CAT) has a neuroprotective effect on RGC after I/R injury in rats, and to determine the possible antioxidant mechanism. Wistar female rats were randonmized into four groups: normal control group (Control group), retinal I/R with vehicle group (I/R with vehicle group), retinal I/R with AAV-CAT group (I/R with AAV-CAT group), and normal retina with AAV-CAT group (normal with AAV-CAT group). One eye of each rat was pretreated with recombinant adeno-associated virus containing catalase gene (I/R with AAV-CAT group or normal with AAV-CAT group) and recombinant adeno-associated virus containing GFP gene (I/R with vehicle group) by intravitreal injection 21 days before initiation of I/R injury. Retinal I/R injury was induced by elevating intraocular pressure to 100 mmHg for 1 h. The number of RGC and inner plexiform layer (IPL) thickness were measured by fluorogold retrograde labeling and hematoxylin and eosin staining at 6 h, 24 h, 72 h and 5d after injury. Hydrogen peroxide (H2O2), the number of RGC, IPL thickness, malondialdehyde(MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), CAT activity and nitrotyrosine were measured by fluorescence staining, immunohistochemistry and enzyme-linked immunosorbent assay analysis at 5 days after injury. Electroretinographic (ERG) evaluation was also used. Pretreatment of AAV-CAT significantly decreased the levels of H2O2, MDA, 8-OHdG and nitrotyrosine, increased the catalase activity, and prevented the reduction of a- and b- waves in the I/R with AAV-CAT group compare with the I/R with vehicle group (p < 0.01). Catalase attenuated the I/R-induced damage of RGC and IPL and retinal function. Therefore, catalase can protect the rat retina from I/R-induced injury by enhancing the antioxidative ability and reducing oxidative stress, which suggests that catalase may be relevant for the neuroprotection of inner retina from I/R-related diseases.  相似文献   

4.
Wang YH  Wang Y  Wang DW  Wu N  Liu DN  Yin ZQ 《Ophthalmic research》2007,39(3):174-178
BACKGROUND: RhoA is a small guanosine triphosphatase which participates in signaling pathways of axonal repellents or inhibitors. However, the distribution and expression of RhoA in the rat retina after optic nerve injury has not been elucidated yet. OBJECTIVES: To study the distribution and expression of RhoA in the rat retina after optic nerve injury. METHODS: Immunohistochemistry was used to determine the distribution of RhoA in rat retina after optic nerve injury. The expression of RhoA was analyzed by Western blot. RESULTS: In normal retina and the retina 1 day after optic nerve injury, RhoA was distributed in the retinal ganglion cell (RGC) layer. Three days after optic nerve injury, it existed in RGCs and the inner plexiform layer. However, 7 days after surgery its immunoreactivity was abundant not only in the RGC and inner plexiform layers but also in the inner nuclear and outer plexiform layers. Western blot analysis showed that the expression of RhoA increased significantly in the retina after optic nerve injury in comparison with normal retina. CONCLUSION: These results indicate that the distribution and expression of RhoA were extended and enhanced after optic nerve injury, and that RhoA plays an important role in optic nerve regeneration.  相似文献   

5.
Purpose. We investigated quantitatively the distribution of blood vessels in different neural layers of the human retina. Methods. A total of 16 human donor eyes was perfusion-fixed and labeled for endothelial f-actin. Retinal eccentricity located 3 mm superior to the optic disk was studied using confocal scanning laser microscopy. Immunohistochemical methods applied to whole-mount and transverse sections were used to colocalize capillary networks with neuronal elements. Capillary morphometry, diameter, and density measurements were compared among networks. Results. Four different capillary networks were identified and quantified in the following regions: Nerve fiber layer (NFL), retinal ganglion cell (RGC) layer, border of the inner plexiform layer (IPL) and superficial boundary of the inner nuclear layer (INL), and boundary of the deep INL and outer plexiform layer. The innermost and outermost capillary networks demonstrated a laminar configuration, while IPL and deep INL networks displayed a complex three-dimensional configuration. Capillary diameter in RGC and IPL networks were significantly less than in other networks. Capillary density was greatest in the RGC network (26.74%), and was significantly greater than in the NFL (13.69%), IPL (11.28%), and deep INL (16.12%) networks. Conclusions. The unique metabolic demands of neuronal sub-compartments may influence the morphometric features of regional capillary networks. Differences in capillary diameter and density between networks may have important correlations with neuronal function in the human retina. These findings may be important for understanding pathogenic mechanisms in retinal vascular disease.  相似文献   

6.
Background Ocular ischemic syndrome is a devastating eye disease caused by severe carotid artery stenosis. The reduction of blood flow produced by bilateral common carotid artery occlusion (BCCAO) of rats for 7 days induces events related to gliosis with no evident histological damage. However, retinal degeneration and cellular death occur after 90 days of BCCAO. Our purpose has been to investigate the effects of BCCAO for 30 days in the retina of adult rats. Methods Adult Wistar rats were submitted to BCCAO or sham surgery. Both direct and consensual pupillary light reflexes were investigated before and after surgery, everyday for the first week and weekly for 30 days. After 1 month, eyes were enucleated and embedded in paraffin. The retinal ganglion cell (RGC) density and thickness of the internal plexiform (IPL), internal nuclear, outer plexiform, and outer nuclear layers were estimated. Results Four rats of the BCCAO group (50%) lost the direct pupillary reflex in both eyes, three rats (37%) lost this reflex in one eye, and only one (13%) maintained it in both eyes. RGC density (cells/mm) was diminished in the BCCAO group, and a significant decrease was found in the total retina and IPL thickness; however, no changes were evident in the other layers. BCCAO pupillary-reflex-negative rats presented with a significant decrease in total retinal thickness and retinal ganglion cell density compared with the sham group. Both BCCAO pupillary-reflex-positive) and -negative rats showed a decrease in IPL compared with the sham group. Conclusion This study demonstrates that BCCAO for 30 days induces functional and morphological damage to the retina with loss of the pupillary reflex and a decrease in IPL thickness and RGC number. We suggest that this protocol might be used as a model for ocular ischemic syndrome in the rat.  相似文献   

7.
In the retina of teleost fish, new ganglion cells are generated from a circumferential peripheral growth zone at the edge of the eye throughout life. Addressing the question how new cells are fitted into the existing retina, we investigated newly formed ganglion cells in the zebrafish retina morphologically, by tracing them from the cut optic nerve with rhodamine dextran. We identified proliferating cells by antibody detection against proliferating cell nuclear antigen. In addition, newly formed bipolar cell and amacrine cell dendrites were investigated by antibodies against protein kinase C (PKC) and choline-acetyl-transferase (ChaT), respectively, and analyzed in sections or wholemount preparations using confocal microscopy. In retinal sections we observed that ganglion cell dendritic branches in the inner plexiform layer were in close apposition to dividing cells. In the periphery of retinal wholemounts, we detected rhodamine traced ganglion cells adjacent to the growth zone, extending dendrites in proximity to the growth zone, typically branching off in opposite directions running parallel to the retinal rim over more then 100 μm. Ganglion cells with similar dendritic branching patterns were not found in more central retinal areas. Similarly, the dendrites of ChaT-positive amacrine cells showed a preference for running parallel to the circumference in the periphery. Dendritic branches of PKC-positive bipolar cells did not show similar preferred orientation. The change in shape of the dendritic tree with distance from the periphery was studied for the Ma type ganglion cell. The data are consistent with the idea that existing ganglion cells might control differentiation of new ganglion cells. Moreover, ganglion cells with specific branching patterns towards the retinal periphery undergo a restructuring of their dendritic trees.  相似文献   

8.
A large population of amacrine cells in the retina are thought to use GABA as an inhibitory neurotransmitter in their synaptic interactions within the inner plexiform layer. However, little is known about their synaptic targets; the neurons that express the receptors for GABA have not been clearly identified. Recently, the GABAA receptor has been isolated and antibodies have been raised against it. These antibodies have proven useful for the immunocytochemical localization of the receptor, and two brief reports describing the distribution of GABAA receptor immunoreactivity in the retina have appeared (Richards et al., 1987; Mariani et al., 1987). We used a monoclonal antibody (62-3G1) against the GABAA receptor to study the retina of the New World primate Saimiri sciureus. Labeled somata were found in the inner nuclear layer (INL) and ganglion cell layer (GCL). The staining was confined to what appeared to be the cell's plasmalemma and small cytoplasmic granules. Most of the labeled neurons in the INL had small somata (5-7 microns in diameter) located at the vitreal edge of the layer. They arborized in two laminae (approximately 2 and 4) of inner plexiform layer (IPL). Ventral to the optic disc (2.5 mm) they comprised 29% of the cells present. A few of the labeled neurons appeared to be interplexiform cells or flat bipolar cells, with labeled processes that extended into both the IPL and the inner half of the outer plexiform layer. In the GCL, the labeled somata were among the largest present (13-20 microns in diameter), and 2.5 mm ventral to the optic disc they made up 15% of the cells present. Experiments in which immunoreactive somata were retrogradely labeled following the injection of fluorescent tracers into the optic tract provided a conclusive demonstration that some of the immunoreactive somata were ganglion cells. The antibody often labeled their axons in the optic fiber layer. This suggests that the GABAA receptors are transported anterogradely to the retinal terminal fields. The dendrites of the immunoreactive ganglion cells extended into the 2 laminae of labeled processes in the IPL, and their primary dendritic arbors were, at any given eccentricity, quite similar in appearance. This homogeneity suggests that they comprise a particular subset of the ganglion cells. Sections simultaneously labeled with the monoclonal antibody against the GABAA receptor and antisera against either L-glutamic acid decarboxylase (GAD) or GABA revealed that the GAD/GABA was distributed much more widely in the IPL than the GABAA receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Monoclonal antibodies directed against nicotinic acetylcholine receptors (nAChRs) were used to identify and characterize cholinoceptive neurons in the chick retina. Two monoclonal antibodies (mAbs), mAb 210 and mAb 270, stained many neurons in both the inner nuclear layer (INL) and ganglion cell layer (GCL). A class of large labeled cells in the inner INL were positioned at the INL/IPL (inner plexiform layer) border and resembled displaced ganglion cells (DGCs). Their identity was confirmed with injections of rhodamine-labeled microspheres into the ventral tectum and nucleus of the basal optic root (nBOR). Four days after the injection, large nAChR-positive neurons in the inner INL were labeled with beads. The distribution of these cells matched that reported for DGCs in the chicken and pigeon (Reiner et al., 1979; Fite et al., 1981). Many smaller cells in the INL also exhibited nAChR immunoreactivity. These cells were not retrogradely labeled after bead injections into retinal recipient areas. Their processes entered IPL where they arborized in a band comprised of the inner leaflet of lamina 1 and all of lamina 2. In some instances, a process continued inward to lamina 4. These neurons were tentatively identified as amacrine cells because of their position and branching pattern. Approximately 12-18% of the cells in the GCL exhibited nAChR immunoreactivity. Many of these cells could be classified as ganglion cells as their axons were also labeled following exposure to nAChR antibodies. Their distribution mirrored that of all ganglion cells with a higher density of cells in the central retina than in the periphery (Ehrlich, 1981). A "double label" technique was used to compare the distribution of nAChR-positive neurons with that of the choline acetyltransferase-positive (ChAT), cholinergic neurons in the chick retina. The two antigens were visualized with two different fluorophores: FITC and RITC. We were unable to find any cells in either the INL or GCL that exhibited both ChAT- and nAChR-like immunoreactivity. The nAChR-positive cells and the ChAT-positive cells both arborized in two bands within the IPL. The patterns were in perfect register in the inner IPL (lamina 4). But, in the outer IPL, the nAChR-positive dendrites were observed in the inner leaflet of lamina 1 and in all of lamina 2 while the ChAT-positive dendrites did not extend into the innermost portion of lamina 2.  相似文献   

10.
The purpose of this study is to investigate the cytochrome oxidase (COX) activity in the retina and optic nerve following an optic nerve injury. The optic nerve crush of one eye was carried out in Balb/c mice. A semi-quantitative RT-PCR method was then adopted to evaluate the mRNA expression of cytochrome oxidase subunit 1 (COX1) in the retina after surgery. Up-regulation of COX1 mRNA in the retina was detected by RT-PCR at 24 hr following the optic nerve injury. Total retinal mitochondrial mass measured by fluorescent intensity of MitoTracker green was not altered following the injury. COX histochemistry performed on cryostat sections showed an elevated enzyme activity of COX in the retina and in the optic nerve. In the retina, elevation of the COX activity was observed in the retinal ganglion cell layer and the overlying nerve fibre layer. The increase of COX activity began from 24 hr after injury, peaked around day 3, and maintained up to 1 week after the operation. In the optic nerve, increase of COX activity was observed in regions distal to the crush line and distributed either randomly or in a cone shape. In conclusion, both the expression of COX1 mRNA in retina and the activity of COX in inner plexiform layer and retinal ganglion cell layer were elevated following optic nerve injury without affecting total retinal mitochondrial mass. These findings suggested that one of early responses in the retina and in the optic nerve after the optic nerve injury is to scale up the energy production.  相似文献   

11.
The study investigates the cellular expression of kynurenine aminotransferases (KAT I and II) in the rat retina during development. At P1 (the day of birth) and P7 (the 7th day after birth), KAT I expression was observed in the inner plexiform layer (IPL), the fiber layer (FL), and in vertically running processes in the ganglion cell layer (GCL) (but not in the cell bodies). At P14 (the 14th day after birth) a strong KAT I immunoreactivity was observed in Müller cell endfeet. KAT II was expressed in the IPL, the FL, and in cells in the GCL at P1 and P7. From P14 on, KAT II expression in the IPL decreased. Double labeling revealed that KAT I was expressed in Müller cell endfeet, whilst KAT II both on retinal ganglion cells (RGC) and Müller cell endfeet. In conclusion, KAT I and II are present in the rat retina during development. The heterogeneity of the KAT developmental profiles possibly reflects a neuromodulatory role in the retinal differentiation.  相似文献   

12.
The number, dendritic morphology, and retinal distribution of displaced ganglion cells were studied in two anuran species, Xenopus laevis and Bufo marinus. Horseradish peroxidase or cobaltic lysine complex was applied to the cut end of the optic nerve, and the size, shape, and retinal position of retrogradely filled ganglion cells displaced into the inner nuclear layer were determined in retinal wholemount and sectioned material. Approximately 1% of ganglion cells in Xenopus and 0.1% in Bufo were found to be displaced. In both species, many of the previously described orthotopic ganglion cell types (Straznicky & Straznicky, 1988; Straznicky et al., 1990) were present among displaced ganglion cells. In Xenopus more displaced ganglion cells were found in the retinal periphery than in the retinal center, and they formed 3 or 4 distinct bands around the optic nerve head. In Bufo the incidence of displaced ganglion cells was higher along the visual streak than in the dorsal and ventral peripheral retina. These results indicate that the distribution of displaced ganglion cells approximates the retinal distribution of orthotopic ganglion cells. One of the likely mechanisms to account for this developmental paradox may be that the formation of the inner plexiform layer, adjacent to the ciliary margin, acts as a mechanical barrier by preventing the entry of some of the late developing ganglion cells into the ganglion cell layer.  相似文献   

13.
The neuroprotective effect of MCI-9042 (Mitsubishi Pharma Corporation) was investigated on glutamate-induced retinal ganglion cell (RGC) death in vitro and on rat retinal ischemia in vivo. RGCs were purified from retinal cells isolated from 6-day-old Wistar rats and cultured in serum-free media. After application of 25 microM glutamate, the viability of RGCs treated with or without several serotonin 2 (5-HT(2)) receptor antagonists: MCI-9042, M-1 (a major metabolite of MCI-9042), ketanserin, and LY-53857; was evaluated by calcein-acetoxymethyl ester staining. Retinal ischemia was induced by intraocular pressure (IOP) elevation (130 mmHg, 50 min). Rats were intraperitoneally injected with MCI-9042 at a dose of 3, 30 mg/kg or base at 30 min before and just after ischemia-reperfusion. Retinal damages were evaluated by histology, morphometric analysis and electroretinograms (ERGs) recordings at 7 days after ischemia-reperfusion. 25 microM glutamate decreased the number of viable RGCs to about 60 to 65% of untreated RGCs. MCI-9042, M-1, ketanserin, and LY-53857 significantly reduced glutamate-induced RGC death at concentrations of more than 100 nM, 1 nM, 1 microM and 100 nM, respectively. Ischemia-reperfusion caused thinning of the thickness between the inner plexiform layer and the outer plexiform layer and attenuation of a-and b-waves in ERG recordings. The intraperitoneal injection of MCI-9042 significantly reduced morphological and functional damages in retinal ischemia. Our data demonstrate that 5-HT(2) receptor antagonists including MCI-9042 and M-1 have the neuroprotective effects in cultured RGCs and that MCI-9042 protects against ischemic retinal diseases.  相似文献   

14.
视神经挫伤后视网膜形态学和Bcl-2/Bax表达   总被引:2,自引:0,他引:2  
目的 研究大鼠视神经夹挫伤后视网膜神经节细胞(RGC)形态学改变及Bcl-2/Bax蛋白表达的变化,为了解视神经损伤的病理机制提供一定的依据。方法 建立大鼠视神经夹挫伤动物模型,伤后1d、3d、5d、7d、9d、2周、4周处死,HE染色观察RGC的动态变化,免疫组化方法检测RGC表达Bcl-2及Bax的水平。结果 视神经伤后RGC数目严重下降,2周内RGC快速减少,2周以后缓慢减少;伤后Bcl-2及Bax表达随时间而有不同程度的增加,Bax对损伤的反应较Bcl-2稍晚,两者表达均呈现先升后降的趋势,并维持一定的时间。Bcl-2和Bax蛋白表达比与RGC存活数目有一定的相关性。结论 视神经损伤后RGC数目减少是其视功能下降的病理基础之一,Bcl-2和Bax在RGC死亡机制中起重要作用,Bcl-2/Bax比率与RGC的减少呈一定的相关性。  相似文献   

15.
青光眼是一组由病理性眼压升高导致进行性视网膜神经节细胞凋亡和视野缺损的眼病,通过延缓视网膜神经节细胞(retinal ganglion cells,RGC)凋亡进度对受损视神经进行保护是青光眼研究领域的重要方向。近几年在对视神经保护的药物研究中,促红细胞生成素(erythropoietin, EPO)受到广泛关注。EPO 通过与红细胞膜表面的促红细胞生成素受体(erythropoietin receptor, EPOR)结合,抑制不同的细胞信号转导通路(如 HIF-1/iNOS 通路、RhoA /ROCK 通路等),从而抑制细胞内诱导凋亡发生的 Bax/Bcl-2等复合物的形成,发挥视神经保护作用。(国际眼科纵览,2016,40:155-160)  相似文献   

16.
Activation of Microglia/macrophages has been observed in ischemia-reperfusion injury of the brain. This study was undertaken to investigate the different subpopulations of microglia/macrophages in the normal rat retina and their activation after retinal ischemia. Retinal ischemia was induced by elevation of intraocular pressure to 120 mmHg for 60 min. Microglia/macrophages were identified on frozen retinal sections by four antibodies, namely OX42, 5D4, OX6 and ED1. In the normal retina, there were heterogeneous populations of resident microglia/macrophages as characterized by their differences in morphology, antigen expression and distribution. OX42+ cells had delicate processes and were located in the inner layers of the retina, while 5D4+ cells were highly ramified and mostly scattered in the inner plexiform layer (IPL) and the outer plexiform layer. Few amoeboid ED1+ cells were also seen in the ganglion cell layer and IPL. OX6+ (MHC-II antigen presenting) cells were not detected in the normal retinas. Double labeling with OX42 and 5D4 antibodies on normal retinal sections showed few microglia exhibited positive labeling with both OX42 and 5D4, while the majority of the microglia were labeled with either OX42 or 5D4 antibodies. After retinal ischemia single labeling with these antibodies showed increased number of these antigen-expressing cells, disappearance of normal cellular processes, and rounding or amoeboid like appearance of the cell bodies. At 1 day after ischemia, there was a significant infiltration of round OX42+, ED1+ and OX6+ cells with loss of the cellular processes in the inner retina. From 3 to 14 days, all subpopulations of microglia/macrophages differentiated cellular processes and became dendritic again. Double labeling on retinas after 1 day of recovery showed OX42+ cells were co-labeled with ED1+ or OX6+ cells, but not with 5D4+ cells. Scattered amoeboid OX42+, 5D4+, and ED1+ cells were noted in the subretinal space 3-14 days after ischemia. In summary, there were heterogeneous populations of resident microglia/macrophages in the normal inner retina and they were activated early after ischemia-reperfusion injury and exhibited different antigenic expression which were further altered in the recovery phase.  相似文献   

17.
Neuropeptide Y-like immunoreactivity in neurons of the human retina   总被引:1,自引:0,他引:1  
The distribution of neuropeptide Y-like immunoreactivity (NPY-LI) was investigated in wholemounts and in transverse sections of the human retina. NPY-LI was localized to the soma and axonal processes of large ganglion cells (GCs) and to the soma and dendritic arborization of amacrine cells (ACs). NPY-LI GCs were unevenly distributed across the retina, the highest density of 875 cells/mm2 was found in the fovea centralis and the lowest density of 15 cells/mm2 in the peripheral retina. The total number of NPY-LI GCs in the retina was estimated to be about 85,000. The soma sizes of NPY-LI GCs increased from 116 microns 2 +/- 23 (s.d.) in the retinal centre to 251 microns 2 +/- 57 in the retinal periphery. The soma size of NPY-LI ACs was in the range of 40 and 50 microns 2. In transverse sections NPY-LI was seen to be localized to the optic fibre layer, to the somata of GCs, to the scleral sublamina of the inner plexiform layer (AC dendrites) and to the innermost part of the inner nuclear layer (somata of ACs). The gradients of soma sizes and retinal distribution of NPY-LI GCs were taken as an indication that they correspond to the class of large to very large GCs, previously identified in the human retina by Golgi impregnation.  相似文献   

18.
Interleukin-6 in retinal ischemia reperfusion injury in rats   总被引:9,自引:0,他引:9  
PURPOSE: To study the role of interleukin (IL)-6 after retinal ischemia-reperfusion (I/R) injury in rats. METHODS: Intraocular pressure of adult male Lewis albino rats was raised to create retinal ischemia for 1 hour. Retinal reperfusion was reestablished, and the animals were killed at various time points after the injury. Their eyes were enucleated and processed for immunohistochemistry to detect IL-6 and ED-1 (a marker of microglial/phagocytic cells), enzyme-linked immunosorbent assay (ELISA) of IL-6 protein, and semiquantitative real-time RT-PCR for IL-6 mRNA. The neuroprotective effect of IL-6 was evaluated by giving intravitreal injections of 150 or 300 ng rat recombinant IL-6 to eyes immediately after I/R injury and counting cresyl violet-stained retinal ganglion cell layer cells (RGCLCs) and fluorochrome-labeled retinal ganglion cells (RGCs) on flat preparations of retinas at 7 days. RESULTS: IL-6-positive cells appeared after I/R injury in the inner plexiform layer (IPL) and the inner nuclear layer (INL). Their numbers were significantly higher 18 hours after the injury, and most of these cells were also ED-1 positive. ELISA showed noticeable increases in endogenous retinal IL-6 protein levels 8 hours after I/R injury. Semiquantitative real-time RT-PCR showed significant increases in endogenous retinal IL-6 mRNA levels between 2 and 18 hours. Exogenously added IL-6 prevented between 50% and 70% of RGC loss after I/R injury. CONCLUSIONS: IL-6 is upregulated after retinal I/R injury, and its expression by microglia/phagocytic cells may protect RGC layer neurons from I/R injury. Exogenously added IL-6 protects the inner retina after I/R injury.  相似文献   

19.
PURPOSE: To determine the expression pattern of the predominant gamma-aminobutyric acid (GABA) plasma membrane transporter GAT-1 in Old World monkey (Macaca mulatta) and human retina. METHODS: GAT-1 was localized in retinal sections by using immunohistochemical techniques with fluorescence and confocal microscopy. Double-labeling studies were performed with the GAT-1 antibody using antibodies to GABA, vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and the bipolar cell marker Mab115A10. RESULTS: The pattern of GAT-1 immunostaining was similar in human and monkey retinas. Numerous small immunoreactive somata were in the inner nuclear layer (INL) and were present rarely in the inner plexiform layer (IPL) of all retinal regions. Medium GAT-1 somata were in the ganglion cell layer in the parafoveal and peripheral retinal regions. GAT-1 fibers were densely distributed throughout the IPL. Varicose processes, originating from both the IPL and somata in the INL, arborized in the outer plexiform layer (OPL), forming a sparse network in all retinal regions, except the fovea. Sparsely occurring GAT-1 processes were in the nerve fiber layer in parafoveal regions and near the optic nerve head but not in the optic nerve. In the INL, 99% of the GAT-1 somata contained GABA, and 66% of the GABA immunoreactive somata expressed GAT-1. GAT-1 immunoreactivity was in all VIP-containing cells, but it was absent in TH-immunoreactive amacrine cells and in Mab115A10 immunoreactive bipolar cells. CONCLUSIONS: GAT-1 in primate retinas is expressed by amacrine and displaced amacrine cells. The predominant expression of GAT-1 in the inner retina is consistent with the idea that GABA transporters influence neurotransmission and thus participate in visual information processing in the retina.  相似文献   

20.
An antiserum directed against tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of dopamine, was used to study the pigeon retina. Labeled cells were observed in both the inner nuclear layer (INL) and ganglion cell layer (GCL). Two populations of TH-immunoreactive neurons were observed in the INL. Some of these cells were 7-10 microns in diameter and gave rise to processes that arborized in three layers of the inner plexiform layer (IPL). These cells appeared similar to the dopaminergic amacrine cells described previously (Marc, 1988). Other labeled cells in the INL were 12-20 microns in diameter and were recognizable as a previously described subpopulation of TH-immunoreactive displaced ganglion cells (Britto et al., 1988). A population of labeled cells was observed in the GCL. Counts of these cells in two retinae revealed 5000 and 7000 cells, respectively. They ranged in size from 8-15 microns in diameter in the central retina and from 8-20 microns in diameter in the peripheral retina. The density of labeled cells was highest in the central retina and red field and lowest in the retinal periphery. The difference in cell size and cell density as a function of eccentricity is characteristic of the total population of ganglion cells in the avian retina (Ehrlich, 1981; Hayes, 1982). Some of the TH-positive cells in the GCL could be classified as ganglion cells for two reasons: (1) The axons of many of the TH-positive cells in the GCL were TH-immunoreactive as well and could be followed to the optic nerve head. (2) The injection of rhodamine-labeled microspheres into the nucleus geniculatus lateralis, pars ventralis (GLv), resulted in the retrograde labeling of many of the TH-positive cells in the contralateral retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号