首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: IgE antibodies specific for the major birch-pollen allergen, Bet v 1, cross-react with homologous allergens in particular foods, e.g. apples, carrots and hazelnuts. In a high number of tree pollen-allergic individuals, this cross-reactivity causes clinical symptoms, commonly known as the 'birch-fruit-syndrome'. OBJECTIVE: To characterize the T cell response to the Bet v 1-related major allergen in hazelnuts, Cor a 1.04, and its cellular cross-reactivity with Bet v 1 and the homologous hazel pollen allergen, Cor a 1. METHODS: Using recombinant Cor a 1.04, T cell lines (TCL) and T cell clones (TCC) were established from peripheral blood mononuclear cells of tree pollen-allergic patients with associated food allergy. T cell epitopes were determined using overlapping synthetic peptides in Cor a 1.04-reactive TCL and TCC. In parallel, reactivity to Bet v 1 and Cor a 1 was tested. RESULTS: In total, 20 distinct T cell epitopes on the hazelnut allergen were identified. Several Cor a 1.04-specific TCL and TCC reacted with pollen allergens albeit less pronounced than with the hazelnut allergen. Several Cor a 1.04-specific TCC did not react with pollen allergens. Interestingly, these clones were found to react with the Bet v 1-related major allergen in carrots, Dau c 1. The cellular cross-reactivity between both food allergens could be associated with the most frequently recognized T cell epitope of Cor a 1.04, Cor a 1.04(142-153). CONCLUSIONS: The major hazelnut allergen cross-reacts with the major allergens of birch and hazel pollen but apparently contains a relevant T cell epitope not shared with pollen allergens. Our finding may have important implications for the specific immunotherapy of tree pollen-allergic patients suffering from concomitant hazelnut allergy.  相似文献   

2.
Bohle B 《Allergy》2007,62(1):3-10
Patients with birch pollen allergy frequently develop hypersensitivity reactions to certain foods, e.g. apples, celery, carrots and hazelnuts. These reactions are mainly caused by IgE-antibodies specific for the major birch pollen allergen, Bet v 1, which cross-react with homologous proteins in these foods. Analyzing the T-cell response to Bet v 1-related food allergens revealed that these dietary proteins contain several distinct T-cell epitopes and activate Bet v 1-specific T cells to proliferate and produce cytokines. Several of these cross-reactive T-cell epitopes were not destroyed by simulated gastrointestinal digestion of food allergens and stimulated Bet v 1-specific T cells despite nonreactivity with IgE antibodies. Similarly, cooked food allergens did not elicit IgE-mediated symptoms (oral allergy syndromes) but caused T-cell-mediated late-phase reactions (deterioration of atopic eczema) in birch pollen-allergic patients with atopic dermatitis because thermal processing affected their conformational structure and not the primary amino acid sequence. Thus, T-cell cross-reactivity between Bet v 1 and related food allergens occurs independently of IgE-cross-reactivity in vitro and in vivo. We speculate that symptom-free consumption of pollen-related food allergens may have implications for the pollen-specific immune response of allergic individuals.  相似文献   

3.
BACKGROUND: The major birch pollen allergen Bet v 1 cross-reacts with homologous food allergens, resulting in IgE-mediated oral allergy syndromes (OASs). To avoid this food, allergy allergologists and guidebooks advise patients to consume birch pollen-related foods after heating. OBJECTIVE: We sought to evaluate whether cooked Bet v 1-related food allergens induce IgE- and T cell-mediated reactions in vitro and in vivo. METHODS: Recombinant Bet v 1, Mal d 1 (apple), Api g 1 (celery), and Dau c 1 (carrot) were incubated at increasing temperatures. Protein structures were determined by means of circular dichroism. Mediator release was tested in basophil activation assays. PBMCs and Bet v 1-specific T-cell lines with known epitope specificity were stimulated with native and cooked food allergens. Patients with birch pollen allergy who experienced OAS and the exacerbation of atopic dermatitis (AD) on ingestion of fresh apple, celery, or carrot were retested in double-blind, placebo-controlled food challenges with the respective foods in cooked form. RESULTS: In vitro, cooked food allergens lost the capacity to bind IgE and to induce mediator release but had the same potency to activate Bet v 1-specific T cells as native proteins. In vivo, ingestion of cooked birch pollen-related foods did not induce OAS but caused atopic eczema to worsen. CONCLUSION: T-cell cross-reactivity between Bet v 1 and related food allergens occurs independently of IgE cross-reactivity in vitro and in vivo. In patients with AD, the resulting immune reaction can even manifest as late eczematous skin reactions. Therefore the view that cooked pollen-related foods can be consumed without allergologic consequences should be reconsidered. CLINICAL IMPLICATIONS: Symptom-free consumed pollen-related food allergens might cause T cell-mediated late-phase skin reactions in patients with pollen allergy and AD.  相似文献   

4.
PURPOSE OF REVIEW: The purpose of this paper is to review and discuss studies on soy allergy. RECENT FINDINGS: In Central Europe soy is a clinically relevant birch pollen-related allergenic food. Crossreaction is mediated by a Bet v 1 homologous protein, Gly m 4. Additionally, birch pollen allergic patients might acquire through Bet v 1 sensitization allergies to mungbean or peanut, in which Vig r 1 and Ara h 8 are the main cross-reactive allergens. Threshold doses in soy allergic individuals range from 10 mg to 50 g of soy and are more than one order of magnitude higher than in peanut allergy. No evidence was found for increased allergenicity of genetically modified soybeans. SUMMARY: In Europe, both primary and pollen-related food allergy exist. The diagnosis of legume allergy in birch pollen-sensitized patients should not be excluded on a negative IgE testing to legume extracts. Bet v 1 related allergens are often underrepresented in extracts. Gly m 4 from soy and Ara h 8 from peanut are nowadays commercially available and are recommended in birch pollen allergic patients with suspicion of soy or peanut allergy, but negative extract-based diagnostic tests to screen for IgE specific to these recombinant allergens.  相似文献   

5.
BACKGROUND: More than 95% of birch pollen-allergic subjects react with the major birch pollen allergen, Bet v 1, and almost 60% of them are sensitized exclusively to this allergen. OBJECTIVE: The aim of this study was to compare the in vivo biologic activity of genetically engineered hypoallergenic derivatives of Bet v 1 (an equimolar mixture of 2 recombinant [r] Bet v 1 fragments and of rBet v 1 trimer) with that of rBet v 1 wild-type by skin prick and intradermal testing. METHODS: Birch pollen-allergic patients who had not received immunotherapy (n = 23), a group of allergic patients without birch pollen allergy (n = 12), and nonatopic persons (n = 8) from northern Europe (Sweden) underwent skin prick and intradermal testing with different concentrations of the recombinant allergens and commercial birch pollen extract before the birch pollen season. Immediate and late-phase reactions were recorded and allergen-specific IgE and IgG subclass responses were determined by CAP radioallergosorbent test and ELISA, respectively. RESULTS: Atopic persons without birch pollen allergy and nonatopic individuals did not have skin reactions to rBet v 1 wild-type and genetically engineered hypoallergenic derivatives. By intradermal testing, 8 of 23 and 13 of 23 birch pollen-allergic patients did not react with the highest concentration (1 microg/mL) of the rBet v 1 fragment mix and rBet v 1 trimer, respectively, compared with 1 with rBet v 1 wild type. Likewise, the highest concentration (100 microg/mL) of fragment mix or trimer failed to elicit a positive skin prick test in 18 of 23 and 15 of 23 patients in comparison with 0/23 with the monomer. No late reactions were observed. CONCLUSION: The recombinant hypoallergenic birch pollen allergens can probably be used for patient-tailored immunotherapy with a reduced risk to induce anaphylactic reactions.  相似文献   

6.
BACKGROUND: Peach allergy has two different patterns: central Europe with oral allergy syndrome (OAS) related to a primary sensitization to birch pollen Bet v 1 and profilins and southern Europe with mostly systemic symptoms, in many cases due to sensitization to lipid-transfer proteins. METHODS: Thirty peach-allergic patients with positive skin and food challenge tests and 29 control subjects were included. Skin prick tests (SPT) with inhalant allergens, commercial peach and apple extracts and native Pru p 3 were performed. In vitro specific immunoglobulin (Ig) E to grass pollen, birch pollen, peach, apple, rBet v 1, rBet v 2 and rPhl p 12 was determined by CAP, and rBet v 1, rMal d 1, rMal d 4, rMal d 3 and rPru p 3 using the ADVIA-Centaur platform. Basophil activation test (BAT) with commercial peach extract, commercial apple extract, nPru p 3, rMal d 3, rMal d 1 and rMal d 4 was also performed. RESULTS: Pru p 3 was the major allergen in the patient group from northern Spain. Sensitization to this allergen was found in 100% of the patients with systemic symptoms or contact urticaria. Only 60% of OAS patients were sensitized to Pru p 3, being all of them sensitized to profilins and 60% of them to allergens of the Bet v 1 family. Specific IgE determination and BAT using recombinant allergens (rPru p 3) show specificity and sensitivity values close to 100%. CONCLUSIONS: Most peach-allergic patients coming from the north of Spain present systemic symptoms after ingestion of peach, Pru p 3 being the main allergen. Patients with OAS present profilin-Bet v 1-related sensitization. Thus, in the north of Spain our patients show a mixed central-south Europe pattern with LTP-profilin-Bet v 1 sensitization depending on the symptoms presented. The use of natural and recombinant plant allergens, allows establishing the sensitization patterns to the different allergens studied.  相似文献   

7.
BACKGROUND: Cross-reactivity between the major birch pollen allergen, Bet v 1, and the apple protein, Mal d 1, frequently causes food allergy. OBJECTIVE: To investigate the effects of successful sublingual immunotherapy (SLIT) with birch pollen extract on apple allergy and the immune response to Bet v 1 and Mal d 1. METHODS: Before and after 1 year of SLIT, Bet v 1-sensitized patients with oral allergy syndrome to apple underwent nasal challenges with birch pollen and double-blind placebo-controlled food challenges with apple. Bet v 1-specific and Mal d 1-specific serum antibody levels and proliferation in PBMCs and allergen-specific T-cell lines (TCLs) were determined. Bet v 1-specific TCLs were mapped for T-cell epitopes. RESULTS: In 9 patients with improved nasal provocation scores to birch pollen, apple-induced oral allergy syndrome was not significantly reduced. Bet v 1-specific IgE and IgG(4) levels significantly increased. Bet v 1-specific T-cell responses to all epitopes and those cross-reactive with Mal d 1 significantly decreased. However, neither Mal d 1-specific IgE and IgG(4) levels nor Mal d 1-induced T-cell proliferation changed significantly. In contrast, Mal d 1-specific TCLs showed increased responses to Mal d 1 after 1 year of SLIT. CONCLUSION: This longitudinal study indicates that pollen SLIT does not efficiently alter the immune response to pollen-related food allergens, which may explain why pollen-associated food allergy is frequently not ameliorated by pollen immunotherapy even if respiratory symptoms significantly improve. CLINICAL IMPLICATIONS: SLIT with birch pollen may have no clinical effect on associated apple allergy.  相似文献   

8.
BACKGROUND: Almost no information is available regarding the prevalence of IgE-mediated allergies and the disease-eliciting allergens in tropical Africa. OBJECTIVE: To study IgE-mediated allergies and the allergen profile in allergic patients from Zimbabwe. METHODS: The frequency of sensitization to common environmental allergen sources was determined by skin prick testing in 650 allergic patients from Zimbabwe. Fifty representative sera were analysed for IgE reactivity to 20 respiratory and 20 food allergen extracts by multiallergen extract testing. The IgE reactivity profiles to recombinant pollen and mite allergens were compared between grass pollen- and mite-sensitized patients from Zimbabwe and central Europe. Sera from grass pollen-allergic patients were also analysed for IgE reactivity to nitrocellulose-blotted natural timothy grass and Bermuda grass pollen allergens. RESULTS: IgE-mediated allergies were found to be common in Zimbabwe. Similar to the situation in central Europe, mites and grass pollens represented the most prevalent allergen sources. However, the IgE reactivity profiles determined with single recombinant pollen and mite allergens revealed interesting differences between the European and African patients, which most likely reflect the local allergen exposure. CONCLUSIONS: The striking differences regarding sensitization to grass pollen and mite allergens between African and European patients revealed by recombinant allergen-based testing emphasize the need for component-resolved allergy testing to optimize allergy prevention and therapy in different populations.  相似文献   

9.
BACKGROUND: Food allergy to apples, hazelnuts, and celery is frequent in individuals with birch pollen allergy because IgE antibodies specific for the major birch pollen allergen, Bet v 1, cross-react with structurally related allergens in these foods. In addition, T lymphocytes specific for Bet v 1 also cross-react with these dietary proteins. OBJECTIVE: We sought to evaluate the effects of simulated gastrointestinal degradation of Bet v 1-related food allergens on their mediator-releasing and T cell-activating capacity. METHODS: Recombinant Mal d 1, Cor a 1.04, and Api g 1 were incubated separately with pepsin and trypsin. Binding of IgE was tested in immunoblots. After successive incubation with both enzymes, allergens were tested in mast cell mediator release assays and used to stimulate PBMCs and Bet v 1-specific T-cell lines and clones. Proteolytic fragments of allergens were analyzed and sequenced by means of mass spectrometry. RESULTS: Pepsin completely destroyed IgE binding of all allergens within 1 second, and trypsin completely destroyed IgE binding of all allergens within 15 minutes, except for the major hazelnut allergen, which remained intact for 2 hours of trypsinolysis. Allergens after gastrointestinal digestion did not induce basophil activation but induced proliferation in PBMCs from allergic and nonallergic individuals. Digested Mal d 1 and Cor a 1.04 still activated Bet v 1-specific T cells, whereas digested Api g 1 did not. Different proteolytic fragments of Mal d 1 and Cor a 1.04 matching relevant Bet v 1 T-cell epitopes were found. CONCLUSION: Gastrointestinal degradation of Bet v 1-related food allergens destroys their histamine-releasing, but not T cell-activating, property. Our data emphasize that birch pollen-related foods are relevant activators of pollen-specific T cells.  相似文献   

10.
BACKGROUND: Sensitivity to birch pollen allergens is a common feature among European patients with seasonal pollen allergy. In this in vitro study, we examined the specific serum IgE binding profiles to individual birch pollen allergens in birch-sensitive patients from six European populations. METHODS: The study included 242 patients from Finland, Sweden, Austria, France, Switzerland and Italy. All suffered from seasonal rhinoconjunctivitis and/or asthma. Their sera were analyzed for specific IgE reactivity to individual birch pollen allergens (recombinant Bet v 1, Bet v 2 and Bet v 4) and natural birch pollen extract using Pharmacia CAP System and immunoblotting. RESULTS: Almost all Finnish, Swedish and Austrian sera contained IgE specific for Bet v 1 (>or=98%). Bet v 1-specific IgE antibodies were found in 90% of the French sera, and in 65 and 62% of the sera from Switzerland and Italy, respectively. Few Finnish (2%) and Swedish (12%) patients had IgE to Bet v 2, while Bet v 2 reactivity was more common in the other populations (20-43%). Reactivity to Bet v 4 was rare in all populations (5-11%) except for the Italian patients, in whom 3 of 11 sera were positive (27%). The immunoblot results supported the specific IgE profiles obtained with Pharmacia CAP System showing a broader IgE reactivity profile in patients from central and southern Europe as compared to northern Europe. CONCLUSION: Component-resolved allergy diagnosis with recombinant allergens reveals that the IgE reactivity profiles to individual birch pollen allergens vary between European populations. This observation may be explained by sensitization to different allergen sources and will have an impact on allergen-specific prevention and therapy strategies.  相似文献   

11.
Background Beech and oak pollen are potential allergen sources with a world‐wide distribution. Objective We aimed to characterize the allergen profile of beech and oak pollen and to study cross‐reactivities with birch and grass pollen allergens. Methods Sera from tree pollen‐allergic patients with evidence for beech and oak pollen sensitization from Basel, Switzerland, (n=23) and sera from birch pollen‐allergic patients from Vienna, Austria, (n=26) were compared in immunoblot experiments for IgE reactivity to birch (Betula pendula syn. verrucosa), beech (Fagus sylvatica) and oak (Quercus alba) pollen allergens. Subsequently, beech and oak pollen allergens were characterized by IgE inhibition experiments with purified recombinant and natural allergens and with allergen‐specific antibody probes. Birch‐, beech‐ and oak pollen‐specific IgE levels were determined by ELISA. Results Beech and oak pollen contain allergens that cross‐react with the birch pollen allergens Bet v 1, Bet v 2 and Bet v 4 and with the berberine bridge enzyme‐like allergen Phl p 4 from timothy grass pollen. Sera from Swiss and Austrian patients exhibited similar IgE reactivity profiles to birch, beech and oak pollen extracts. IgE levels to beech and oak pollen allergens were lower than those to birch pollen allergens. Conclusion IgE reactivity to beech pollen is mainly due to cross‐reactivity with birch pollen allergens, and a Phl p 4‐like molecule represented another predominant IgE‐reactive structure in oak pollen. The characterization of beech and oak pollen allergens and their cross‐reactivity is important for the diagnosis and treatment of beech and oak pollen allergy.  相似文献   

12.
Background:  The pollen-food syndrome (PFS) is an association of food allergies to fruits, nuts, and vegetables in patients with pollen allergy. Mal d 1, the major apple allergen, is one of the most commonly associated food allergens for birch pollen-allergic patients suffering from PFS. Although the reactions are due to cross-reactive IgE antibodies originally raised against pollen Bet v 1, not every Bet v 1-allergic patient develops clinical reactions towards apple.
Aim of the study:  We speculate that distinct IgE epitopes are responsible for the clinical manifestation of PFS. To test this hypothesis we grafted five Mal d 1 stretches onto Bet v 1. The grafted regions were 7- or 8-amino acids long encompassing amino acids residues previously shown to be crucial for IgE recognition of Bet v 1.
Methods:  A Bet v 1-Mal d 1 chimeric protein designated BMC was expressed in Escherichia coli and purified to homogeneity. IgE reactivity of BMC was tested with patients' sera originating from (i) Bet v 1-allergic patients displaying no clinical symptoms upon ingestion of apples; and (ii) Bet v 1-allergic patients displaying allergic symptoms upon ingestion of apples and other Bet v 1-related foods.
Results and conclusion:  Compared to birch pollen-allergic individuals, patients suffering from PFS showed significantly higher IgE reactivity with BMC (chimeric protein). The results suggest that the Mal d 1 regions grafted onto the Bet v 1 sequence comprise important IgE epitopes recognized by Bet v 1-allergic patients suffering from allergy to apples.  相似文献   

13.
14.
BACKGROUND: Allergic reactions to legumes are generally thought to be acquired by means of primary sensitization through the gastrointestinal tract. Recently, Gly m 4 (starvation-associated message 22), a Bet v 1-related pathogenesis-related protein 10 from soy, was suggested to be an allergen in patients with allergic reactions to a dietary product containing a soy protein isolate. OBJECTIVE: We sought to evaluate the clinical relevance of Gly m 4 in subjects allergic to birch pollen with soy allergy and to assess the risk for subjects allergic to birch pollen to acquire soy allergy. METHODS: Twenty-two patients allergic to birch pollen with soy allergy confirmed by means of positive double-blind, placebo-controlled food challenge results (n = 16) or a convincing history (n = 6) were investigated for IgE reactivity to birch pollen and soy allergens by using the Pharmacia CAP system and immunoblot analysis. Cross-reactivity was assessed by means of enzyme allergosorbent test inhibition. Ninety-four patients with birch pollen allergy were interviewed to assess soy tolerance and screened for IgE reactivity to Gly m 4 by means of immunoblotting. The Gly m 4 content in soy foods and soybean varieties was investigated by means of quantitative evaluation of immunoblots. RESULTS: During double-blind, placebo-controlled food challenge, 10 patients experienced symptoms localized to the oral cavity, and 6 patients had a more severe reaction. CAP analysis revealed Gly m 4-specific IgE in 96% (21/22) of the patients. All patients had Bet v 1-specific IgE antibodies, and 23% (5/22) had positive Bet v 2 results. In IgE immunoblotting 25% (6/22) of the patients recognized soy profilin (Gly m 3), and 64% (14/22) recognized other soy proteins. IgE binding to soy was at least 80% inhibited by birch pollen and 60% inhibited by rGly m 4 in 9 of 11 sera tested. Seventy-one percent (67/94) of highly Bet v 1-sensitized patients with birch pollen allergy were sensitized to Gly m 4, and 9 (9.6%) of those patients reported soy allergy. The Gly m 4 content in soy products ranged between 0 and 70 ppm (milligrams per kilogram). CONCLUSIONS: Our results confirm that soybean is another birch pollen-related allergenic food. Gly m 4 is the major soy allergen for patients allergic to birch pollen with soy allergy. The content of Gly m 4 in soy food products strongly depends on the degree of food processing.  相似文献   

15.
BACKGROUND: Current diagnostic tests for Fagales tree pollen allergy are often composed of mixtures of pollen of birch, alder and hazel. Their complex composition hampers accurate standardization. OBJECTIVE: The aim of this study was to investigate whether mixtures of tree pollen extracts can be replaced by a single pollen species, and whether a single pollen species can be replaced by a limited number of purified natural or recombinant major allergens. METHODS: Sera (n = 1725) were selected on ground of a general suspicion for inhalant allergy, and tested in a RAST for birch, alder and hazel pollen. Sera with > 0.5 RU/mL for any of the three species were tested in a RAST for natural Bet v 1 and Bet v 2 as well as for recombinant versions of both allergens. RESULTS: Specific IgE antibodies (> 0.3 RU/mL) against birch, alder and hazel were found in 242, 298 and 292 sera, respectively. All sera with a positive RAST for alder and/or hazel and a negative RAST for birch were low-responder sera on alder and hazel, only five sera having a RAST value > 1.0 (all < 2.0). For all sera with a RAST > 0.5 RU/mL (n = 250), the mean of individual ratio's alder/birch and hazel/birch was 1.02 and 0.54, respectively. Of 223 of these sera, 63.2% had specific IgE against natural Bet v 1 and 63.7% against natural Bet v 2. When responses to both allergens were combined 93.7% were positive. The mean ratios Bet v 1 + 2/extract were 1.00, 1.04 and 2. 11 in case of birch, alder and hazel, respectively. For 211 sera the same analysis was performed with recombinant Bet v 1 and Bet v 2. Only six sera with Bet v 1-specific IgE (all < 0.5 RU/mL) were negative (< 0.3 RU/mL) on recombinant Bet v 1. For Bet v 2, 77/132 sera with specific IgE to the natural allergen did not react to the recombinant version. Twelve false-negatives had RAST values > 1.0 RU/mL. The mean of the individual recombinant/natural ratios was 0. 98 for Bet v 1 and 0.38 for Bet v 2 (P < 0.001). The mean ratio rBet v 1 + 2/birch was 0.75 with 17.5% false-negatives on the combination of recombinant allergens. CONCLUSION: Reliable in vitro diagnosis is possible with a single tree pollen extract (birch or alder). The same is true for purified natural Bet v 1 and Bet v 2. A combination of recombinant molecules is slightly less efficient.  相似文献   

16.
Fruit-pollen-latex cross-reactivity: implication of profilin (Bet v 2).   总被引:1,自引:0,他引:1  
BACKGROUND: An association between allergy to fruits and latex, and between pollen and plant-derived food has been described. The cross-reactive structures responsible for these associations have not yet been completely elucidated. METHODS: IgE reactivity to the recombinant allergens Bet v 1 and Bet v 2, different pollens, natural latex, papain, and bromelain was investigated in 29 patients with allergy to fruits or vegetables who lived in an area without birch trees. RESULTS: Exactly 79.3% of patients were allergic to grass pollen, and two of them had clinical allergy to latex. Serum IgE reactivity (CAP) to birch pollen was found in 65% of patients, to Bet v 2 in 51.7%, to Bet v 1 in 3.4%, to latex in 58.6%, to bromelain in 51.7%, and to papain in 17.2% of patients. All subjects with positive IgE to Bet v 2 had also reactivity to latex, grass, olive tree, birch, and mugwort pollens. The six patients not allergic to pollen did not show IgE reactivity to latex, Bet v 1, or Bet v 2. A significant correlation was found between CAP to latex with Bet v 2 (r=0.86, P<0.001), with birch (r=0.86, P<0.001), and with ryegrass (r=0.81, P<0.001). Immunoblotting using nine sera with positive CAP to birch pollen showed IgE-binding to a 15-kDa band that was recognized by antiprofilin monoclonal antibody. Bet v 2 CAP could be inhibited up to 52% by ryegrass and up to 23% by mugwort. CAP to latex was almost completely inhibited by ryegrass pollen with sera from five subjects without symptoms due to latex, whereas no inhibition was observed with serum from one patient with allergy to latex. CONCLUSIONS: Patients with allergy to plant-derived food and associated pollinosis showed a high frequency of IgE reactivity to Bet v 2, which may cause positive serum IgE determinations to latex and birch pollen due to the presence of cross-reactive epitopes. IgE reactivity to Bet v 2 may serve as an indicator of broad sensitization.  相似文献   

17.
Breuer K  Wulf A  Constien A  Tetau D  Kapp A  Werfel T 《Allergy》2004,59(9):988-994
BACKGROUND: Food allergy to cow's milk or hen's egg is a common problem in children with atopic eczema/dermatitis syndrome (AEDS) but the role of birch pollen-related food for the induction of allergic symptoms is still not clear. PATIENTS/METHODS: Twelve children (median age 5 years) with AEDS underwent an oral challenge with those birch pollen-related foods which were reported to induce no immediate symptoms, but were consumed on a regular basis. Total IgE and specific IgE to birch pollen, Bet v 1/2 and various birch pollen-related foods were determined. RESULTS: Seven of 12 children showed immediate and/or late eczematous reactions upon ingestion of birch pollen-related foodstuff. Four children showed a worsening of eczema 24 h upon oral challenge with a significant difference in SCORAD before and after challenge. There were no differences in terms of total IgE or birch pollen-specific IgE between children with a late eczematous response and non-reacting children. CONCLUSIONS: Birch pollen-related food may induce allergic symptoms in children with AEDS who exhibit a sensitization to birch pollen. Oral challenge tests should be performed in those children who suffer from severe AEDS and who are highly sensitized to birch pollen allergens even in the absence of a history suggestive of food allergy.  相似文献   

18.
BACKGROUND: Medicinal remedies of plant origin became very popular in recent years, and allergic reactions to these are on the rise, accordingly. Camomile has been reported as a potential trigger of severe anaphylaxis. The allergens responsible for camomile allergy have not been characterized as yet. OBJECTIVE: The present study aims at reviewing the clinical symptomatology of immediate-type reactions in a series of patients sensitized to camomile and at characterizing the responsible allergens. METHODS: Fourteen patients with a history of allergy either to camomile or to spices or weeds, and a positive skin prick test/RAST to camomile were investigated for related allergic reactions to food, pollen and others. IgE-binding patterns were determined by immunoblotting, inhibition tests and deglycosylation experiments. RESULTS: Ten of 14 patients had a clinical history of immediate-type reactions to camomile, in some cases life threatening. Eleven subjects were also sensitized to mugwort in prick or RAST, eight to birch tree pollen. Using a polyclonal rabbit anti-Bet v 1 antibody, a homologue of the major birch pollen allergen Bet v 1 was detected in two camomile blots. In four cases a group of higher molecular weight allergens (23-50 kDa) showed IgE-binding to camomile. All allergens proved heat stable. Binding was inhibited in variable degrees by extracts from celery roots, anize seeds and pollen from mugwort, birch and timothy grass. Deglycosylation experiments proved the presence of carbohydrate determinants in camomile which were not responsible for IgE-binding, though. Profilins (Bet v 2) were not detected in our camomile extracts. CONCLUSION: Incidence and risk of type I allergy to camomile may be underestimated. Concurrent sensitization to mugwort and birch pollen is not infrequent. Bet v 1 and noncarbohydrate higher molecular weight proteins were found to be eliciting allergens and are responsible for cross-reactivity with other foods and pollen.  相似文献   

19.
BACKGROUND: Ash, a wind-pollinated tree belonging to the family Oleaceae, is distributed world-wide and has been suggested as a potent allergen source in spring time. OBJECTIVE: The aim of this study was to determine the profile of allergen components in ash pollen in order to refine diagnosis and therapy for patients with sensitivity to ash pollen METHODS: The IgE reactivity profile of 40 ash pollen-allergic patients was determined by immunoblotting. Antibodies raised to purified pollen allergens from tree and grass pollens were used to identify cross-reactive structures in ash pollen extract. IgE immunoblot inhibition studies were performed with recombinant and natural pollen allergens to characterize ash pollen allergens and to determine the degree of cross-reactivity between pollen allergens from ash, olive, birch, grasses and weeds. RESULTS: The allergen profile of ash pollen comprises Fra e 1, a major allergen related to the major olive allergen, Ole e 1, and to group 11 grass pollen allergens, the panallergen profilin, a two EF-hand calcium-binding protein, a pectinesterase-like molecule and an allergen sharing epitopes with group 4 grass pollen allergens. Thus, the relevant allergens of ash are primarily allergens that share epitopes with pollen allergens from other tree, grass and weed species. CONCLUSIONS: Allergic symptoms to ash pollen can be the consequence of sensitization to cross-reactive allergens from other sources. The fact that ash pollen-allergic patients can be discriminated on the basis of their specific IgE reactivity profile to highly or moderately cross-reactive allergens has implications for the selection of appropriate forms of treatment.  相似文献   

20.
BACKGROUND: Individuals with birch pollen allergy frequently experience hypersensitivity reactions to certain foods, primarily because of IgE antibodies specific for the major birch pollen allergen Bet v 1 that cross-react with homologous food allergens. OBJECTIVE: We sought to characterize the major T-cell epitopes of Bet v 1 and to investigate their involvement in the cellular cross-reactivity with homologous food allergens. METHODS: T-cell epitope mapping of Bet v 1 was performed by testing Bet v 1-specific T-cell lines derived from 57 individuals with birch pollen allergy, with overlapping peptides representing the entire allergen. T-cell lines and T-cell clones were stimulated with Bet v 1-related major allergens from apple (Mal d 1), cherry (Pru av 1), hazelnut (Cor a 1), celery (Api g 1), carrot (Dau c 1), and soybean (Gly m 4) and with peptides deduced from the C-terminal amino acid sequences of these molecules. Results Bet v 1 142-156 , positioned in the highly conserved C-terminal region of Bet v 1, was identified as the major T-cell epitope recognized by 61% of individuals. Most T lymphocytes specific for Bet v 1 142-156 were activated by one or more homologous food proteins or the respective peptides, as indicated by proliferation and cytokine production. CONCLUSION: The major T-cell epitope of Bet v 1, Bet v 1 142-156 , plays an important role in the cellular cross-reactivity between this respiratory allergen and related food allergens. Thus T lymphocytes specific for Bet v 1 142-156 might be activated by various Bet v 1-related food allergens in vivo, even out of the pollen season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号