首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragmentation of the Golgi apparatus (GA) of motor neurons was first described in sporadic amyotrophic lateral sclerosis (ALS) and later confirmed in transgenic mice expressing the G93A mutation of the gene encoding the enzyme Cu,Zn superoxide dismutase (SOD1(G93A)) found in some cases of familial ALS. In these transgenic mice, however, the fragmentation of the neuronal GA was associated with cytoplasmic and mitochondrial vacuoles not seen in ALS. The present new series of transgenic mice expressing 14-17 trans gene copies of SOD1(G93A), compared to 25 copies in the mice we studied previously, showed consistent fragmentation of the GA of spinal cord motor neurons, axonal swellings, Lewy-like body inclusions in neurons and glia, but none of the cytoplasmic or mitochondrial vacuoles originally reported. Thus, this animal model recapitulates the clinical and most neuropathological findings of sporadic ALS. Neurofilaments (NF) accumulate in axons and, less often, in neuronal perikarya in most cases of sporadic ALS and they have been implicated in its pathogenesis. In order to investigate whether fragmentation of the neuronal GA also occurs in association with accumulation of perikaryal NFs, we studied the organelle in transgenic mice expressing the heavy subunit of human neurofilaments (NF-H) which developed a motor neuronopathy resembling ALS. The neuronal GA of mice expressing NF-H, however, was intact despite massive accumulation of NFs in both perikarya and axons of motor neurons. In contrast, in transgenic mice expressing SOD1(G93A), the GA was fragmented despite the absence of accumulation of perikaryal NFs. These findings suggest that, in transgenic mice with neuronopathies caused by the expression of mutant SOD1(G93A) or the human NF-H, the GA and the perikaryal NFs are independently involved in the pathogenesis. The evidence suggests that the GA plays a central role in the pathogenesis of the vast majority of sporadic ALS and in FALS with SOD1 mutations.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The cause of motor neuron degeneration remains largely unknown, and there is no potent treatment. Overexpression of various human mutant superoxide dismutase-1 (SOD1) genes in mice and rats recapitulates some of the clinical and pathological characteristics of sporadic and familial ALS. Glatiramer acetate (GA) is an approved drug for the treatment of multiple sclerosis and neuroprotective properties in some neurodegenerative conditions. A recent report suggested that GA immunization could delay disease progression in some, but not all, G93A SOD1 transgenic mouse models of amyotrophic lateral sclerosis (ALS). Moreover, it has been theorized that derivatives of GA could enhance immunogenicity and positively affect disease outcomes. The purpose of our study was to assess the neuroprotective efficacy of TV-5010, a high molecular weight GA, in three different SOD1 mutant mouse models. We used large numbers of two SOD1 transgenic mouse strains overexpressing the G93A mutation, B6SJL-TgN[SOD1-G93A]1Gur and B6.Cg-Tg(SOD1-G93A)1Gur/J, and the SOD1 mutant mouse overexpressing G37R (line 29). Regardless of the frequency of injections and the dose, treatment with TV-5010 was ineffective at altering either disease onset or survival in both SOD1 G93A mutants used and in the SOD1 G37R transgenic mice; in multiple studies, disease was accelerated. These studies suggest that, at a range of dosing regimens and carrier used, TV-5010 immunization was ineffective in delaying disease in multiple preclinical therapeutic models for ALS. The biological response in animals, and ultimate clinical translation, will ultimately be dependent on careful and appropriate dose, route and carrier paradigms.  相似文献   

3.
Insulin-like growth factor (IGF)-1 has been shown to have a protective effect on motor neurons both in vitro and in vivo, but has limited efficacy in patients with amyotrophic lateral sclerosis (ALS) when given subcutaneously. To examine the possible effectiveness of IGF-1 in a mouse model of familial ALS, transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) with a G93A mutation were treated by continuous IGF-1 delivery into the intrathecal space of the lumbar spinal cord. We found that the intrathecal administration of IGF-1 improved motor performance, delayed the onset of clinical disease, and extended survival in the G93A transgenic mice. Furthermore, it increased the expression of phosphorylated Akt and ERK in spinal motor neurons, and partially prevented motor neuron loss in these mice. Taken together, the results suggest that direct administration of IGF-1 into the intrathecal space may have a therapeutic benefit for ALS.  相似文献   

4.
Although pronounced changes in astrocytes and microglia accompany the neuronal degeneration observed in a murine model of familial amyotrophic lateral sclerosis, the significance of non-neuronal cell contribution to the disease process remains unclear. Activated astrocytes and microglia are capable of secreting numerous cytokines, some of which may have potentially harmful effects on neuron survival. For this reason we wished to determine the expression pattern of various cytokines in the spinal cords of transgenic mice expressing a Cu-Zn superoxide dismutase mutation (Tgn G93A SOD1) by using semi-quantitative RT-PCR. Three different patterns of cytokine expression were observed in G93A SOD1 transgenic mice. For most cytokines, we were unable to detect mRNA expression in Tgn G93A SOD1 mouse spinal cords at any age, yet message was readily detected in spleen or activated splenocytes. A second pattern, typified by TNF-alpha, was characterized by mRNA expression prior to the onset of motor deficits and increasing until the terminal stages of the disease. For other cytokines, including TGF-beta1 and M-CSF, mRNA expression was detected in young presymptomatic Tgn G93A SOD1 mice (as well as wild-type and transgenic mice expressing wild-type SOD1 (Tgn SOD1)), with upregulation later occurring only in G93A SOD1 transgenic mice. These results indicate a temporal correlation between the expression of certain cytokines and the onset of motor dysfunction in Tgn G93A SOD1 mice and suggest a potential role for these molecules in the disease.  相似文献   

5.
The vulnerability of motor neurons in transgenic SOD1G93A mice, a model of familial amyotrophic lateral sclerosis (ALS), may depend on the failure of these cells to activate survival mechanisms in response to the toxic mutant SOD1. To test this we investigated whether defects in the PI3K/Akt pathway, a survival signal, and of its neuron-specific activator, Rai, were important for motor neuron degeneration in these mice. No substantial changes were found in the levels of Rai, PI3K(p85) or phosphorylated Akt (P-Akt) in the ventral horn of spinal cord of SOD1G93A mice during disease progression. P-Akt immunoreactivity was the same in degenerating and healthy motor neurons. Rai ablation in SOD1G93A mice slightly accelerated the motor dysfunction without affecting their life span. Thus, motor neurons in SOD1G93A mice do not lose the pro-survival PI3K/Akt signal nor increase it in order to suppress the cell death mechanisms.  相似文献   

6.
目的观察小胶质细胞在SOD1-G93A转基因小鼠不同时期腰髓中的变化,探讨小胶质细胞活化与肌萎缩侧索硬化(ALS)疾病进展的关系。方法以国际公认的SOD1-G93A转基因小鼠,应用免疫组化、激光共聚焦显微镜及Westernblot方法 ,分别观察SOD1-G93A转基因小鼠症状前期、症状期、终末期及其同窝对照腰髓小胶质细胞形态数量及特异性标记物表达的变化情况。结果 SOD1-G93A转基因小鼠腰髓在症状前期(60天)已出现小胶质细胞数量增多及特异性标记物CD11b表达升高,随病程进展,症状期小胶质细胞增多、活化显著,终末期达高峰。结论随SOD1-G93A转基因小鼠病程进展小胶质细胞增生明显,小胶质细胞的活化可能参与ALS运动神经元损伤。  相似文献   

7.
The Golgi apparatus of motor neurons (GA) is fragmented in sporadic amyotrophic lateral sclerosis (ALS), in familial ALS with SOD1 mutations, and in mice that express SOD1G93A of familial ALS, in which it was detected months before paralysis. In paralyzed transgenic mice expressing SOD1G93A or SOD1G85R, mutant proteins aggregated not only in the cytoplasm of motor neurons, but also in astrocytes and oligodendrocytes. Furthermore, aggregation of the G85R protein damaged astrocytes and was associated with rapidly progressing disease. In order to gain insight into the functional state of the fragmented GA, we examined the effects of S0D1 mutants G93A and G85R in Chinese Hamster Ovary Cells (CHO). In contrast to cells expressing the wt and G93A, the G85R expressers had no SOD1 activity. However, cells expressing both mutants, and to a lesser degree the wt, showed decreased survival, fragmentation of the GA, and dysfunction of the secretory pathway, which was assessed by measuring the amount of cell surface co-expressed CD4, a glycoprotein processed through the GA. The G93A and wt proteins were partially recovered in detergent insoluble fractions; while the recovery of G85R was minimal. Both mutants showed equal reductions of cell survival and function of the secretory pathway, in comparison to the wt and cells expressing mutant alsin, a protein found in rare cases of fALS. These results are consistent with the conclusion that the two SOD1 mutants, by an unknown mechanism, promote the dispersion of the GA and the dysfunction of the secretory pathway. This and other in vitro models of mutant SOD1 toxicity may prove useful in the elucidation of pathogenetic mechanisms.  相似文献   

8.
The p38 mitogen-activated protein kinase (p38MAPK) is activated via phosphorylation in neurones and glial cells by a variety of stimuli including oxidative stress, excitotoxicity, and inflammatory cytokines. Activated p38MAPK can in turn induce phosphorylation of cytoskeletal proteins and activation of cytokines and nitric oxide, thus contributing to neurodegeneration. We investigated the expression and distribution of p38MAPK in the spinal cord of transgenic mice expressing a superoxide dismutase 1 mutation (SOD1G93A), a model of familial amyotrophic lateral sclerosis (ALS). Accumulation of p38MAPK was found by immunoblotting in the spinal cord of G93A mice during the progression of disease, but no changes were detected in its mRNA levels. Immunostaining for phosphorylated p38MAPK in lumbar spinal cord sections of SOD1G93A mice at the presymptomatic and early stages of disease showed an increased labeling in motor neurones that colocalized with phosphorylated neurofilaments in vacuolized perikarya and neurites, as detected by confocal microscopy. As the disease progressed, activated p38MAPK also accumulated in hypertrophic astrocytes and reactive microglia, as demonstrated by colocalization with GFAP and CD11b immunostaining, respectively. These data suggest that activation of p38MAPK in motor neurons and then in reactive glial cells may contribute, respectively, to the development and progression of motor neuron pathology in SOD1G93A mice.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is caused by motor neuron loss in the spinal cord, but the mechanisms responsible are not known. Ubiquitous transgenic overexpression of copper/zinc superoxide dismutase (SOD1) mutations causing familial ALS (SOD1mut) leads to an ALS phenotype in mice; however, restricted expression of SOD1mut in neurons alone is not sufficient to cause this phenotype, suggesting that non-neuronal SOD1mut expression is also required for disease manifestation. Recently, several investigators have suggested that SOD1mut -mediated oxidative stress in skeletal muscle may contribute to ALS pathogenesis. The purpose of this study was to examine oxidative stress and antioxidant enzyme adaptation in 95-day-old SOD1-G93A skeletal muscle. We observed significant elevations in both malondialdehyde (22% and 31% in red and white gastrocnemius, respectively) and protein carbonyls (53% in red gastrocnemius) in SOD1-G93A mice. Copper/zinc SOD activity was higher in red and white SOD1-G93A gastrocnemius (7- and 10-fold, respectively), as was manganese SOD (4- and 5-fold, respectively) and catalase (2- and 2.5-fold, respectively). Taken together, our data demonstrate oxidative stress and compensatory antioxidant enzyme upregulation in SOD1-G93A skeletal muscle.  相似文献   

10.
By unknown mechanisms, the symptoms of amyotrophic lateral sclerosis (ALS) seem to spread along neuroanatomical pathways to engulf the motor nervous system. The rate at which symptoms spread is one of the primary drivers of disease progression. One mechanism by which ALS symptoms could spread is by a prion-like propagation of a toxic misfolded protein from cell to cell along neuroanatomic pathways. Proteins that can transmit toxic conformations between cells often can also experimentally transmit disease between individual organisms. To survey the ease with which motor neuron disease (MND) can be transmitted, we injected spinal cord homogenates prepared from paralyzed mice expressing mutant superoxide dismutase 1 (SOD1-G93A and G37R) into the spinal cords of genetically vulnerable SOD1 transgenic mice. From the various models we tested, one emerged as showing high vulnerability. Tissue homogenates from paralyzed G93A mice induced MND in 6 of 10 mice expressing low levels of G85R-SOD1 fused to yellow fluorescent protein (G85R–YFP mice) by 3–11 months, and produced widespread spinal inclusion pathology. Importantly, second passage of homogenates from G93A → G85R–YFP mice back into newborn G85R–YFP mice induced disease in 4 of 4 mice by 3 months of age. Homogenates from paralyzed mice expressing the G37R variant were among those that transmitted poorly regardless of the strain of recipient transgenic animal injected, a finding suggestive of strain-like properties that manifest as differing abilities to transmit MND. Together, our data provide a working model for MND transmission to study the pathogenesis of ALS.  相似文献   

11.
Transgenic mice that express the G93A mutation of human Cu,Zn superoxide dismutase (SOD1(G93A)), found in familial amyotrophic lateral sclerosis (FALS), showed clinical symptoms and histopathological changes of sporadic ALS, including fragmentation of the neuronal Golgi apparatus (GA). The finding of fragmented neuronal GA in asymptomatic mice, months before the onset of paralysis, suggests that the GA is an early target of the pathological processes causing neuronal degeneration. Transgenic mice expressing human SOD1(G93A) have aggregates of mutant protein and ubiquitin in neuronal and glial cytoplasm; they appeared first in the neuropil and later in the perikarya of motor neurons, where they were adjacent to fragmented GA. The aggregates of SOD1(G93A) appeared in neuronal perikarya of asymptomatic mice containing fragmented GA. The numbers of neurons with deposits of SOD1(G93A) and fragmented GA progressively increased with age. Immuno-electron microscopy using colloidal gold showed labeling of ubiquitin and SOD1 over 13 nm thick cytoplasmic filaments. Spinal cord extracts showed a 20-fold increase of SOD1(G93A) in transgenic mice compared to the wild-type protein in controls. The results suggest a causal relationship between the aggregation of mutant SOD1 and ubiquitin, fragmentation of the Golgi apparatus of motor neurons and neurodegeneration.  相似文献   

12.
A variety of gene mutations can cause familial forms of Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS). Mutations in the synaptic protein alpha-synuclein (alpha-Syn) cause PD. Mutations in the antioxidant enzyme superoxide dismutase-1 (SOD1) cause ALS. The mechanisms of human mutant a-Syn and SOD1 toxicity to neurons are not known. Transgenic (tg) mice expressing human mutant alpha-Syn or SOD1 develop profound fatal neurologic disease characterized by progressive motor deficits, paralysis, and neurodegeneration. Ala-53-->Thr (A53T)-mutant alpha-Syn and Gly-93-->Ala (G93A)-mutant SOD1 tg mice develop prominent mitochondrial abnormalities. Interestingly, although nigral neurons in A53T mice are relatively preserved, spinal motor neurons (MNs) undergo profound degeneration. In A53T mice, mitochondria degenerate in neurons, and complex IV activity is reduced. Furthermore, mitochondria in neurons develop DNA breaks and have p53 targeted to the outer membrane. Nitrated a-Syn accumulates in degenerating MNs in A53T mice. mSOD1 mouse MNs accumulate mitochondria from the axon terminals and generate higher levels of reactive oxygen/nitrogen species than MNs in control mice. mSOD1 mouse MNs accumulate DNA single-strand breaks prior to double-strand breaks occurring in nuclear and mitochondrial DNA. Nitrated and aggregated cytochrome c oxidase subunit-I and nitrated SOD2 accumulate in mSOD1 mouse spinal cord. Mitochondria in mSOD1 mouse MNs accumulate NADPH diaphorase and inducible NOS (iNOS)-like immunoreactivity, and iNOS gene deletion significantly extends the lifespan of G93A-mSOD1 mice. Mitochondrial changes develop long before symptoms emerge. These experiments reveal that mitochondrial nitrative stress and perturbations in mitochondrial trafficking may be antecedents of neuronal cell death in animal models of PD and ALS.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease that causes degeneration of motor neurons and paralysis. Approximately 20% of familial ALS cases have been linked to mutations in the copper/zinc superoxide dismutase (SOD1) gene, but it is unclear how mutations in the protein result in motor neuron degeneration. Transgenic (tg) mice expressing mutated forms of human SOD1 (hSOD1) develop clinical and pathological features similar to those of ALS. We used tg mice expressing hSOD1-G93A, hSOD1-G37R, and hSOD1-wild-type to investigate a new subcellular pathology involving mutant hSOD1 protein prominently localizing to the nuclear compartment and disruption of the architecture of nuclear gems. We developed methods for extracting relatively pure cell nucleus fractions from mouse CNS tissues and demonstrate a low nuclear presence of endogenous SOD1 in mouse brain and spinal cord, but prominent nuclear accumulation of hSOD1-G93A, -G37R, and -wild-type in tg mice. The hSOD1 concentrated in the nuclei of spinal cord cells, particularly motor neurons, at a young age. The survival motor neuron protein (SMN) complex is disrupted in motor neuron nuclei before disease onset in hSOD1-G93A and -G37R mice; age-matched hSOD1-wild-type mice did not show SMN disruption despite a nuclear presence. Our data suggest new mechanisms involving hSOD1 accumulation in the cell nucleus and mutant hSOD1-specific perturbations in SMN localization with disruption of the nuclear SMN complex in ALS mice and suggest an overlap of pathogenic mechanisms with spinal muscular atrophy.  相似文献   

14.
Multiple cell death pathways are implicated in the etiology of amyotrophic lateral sclerosis (ALS), but the cause of the characteristic motor neuron degeneration remains unknown. To determine whether CNS metabolic defects are critical for ALS pathogenesis, we examined the temporal evolution of energetic defects in the G93A SOD1 mouse model of familial ALS. [14C]-2-deoxyglucose in vivo autoradiography in G93A mice showed that glucose utilization is impaired in components of the corticospinal and bulbospinal motor tracts prior to either pathologic or bioenergetic changes in the spinal cord. This was accompanied by significant depletions in cortical ATP content in presymptomatic mice, which was partially ameliorated by creatine administration. Findings suggest that bioenergetic defects are involved in the initial stages of mSOD1-induced toxicity in G93A mice and imply that the selective dysfunction and degeneration of spinal cord motor neurons in this model may be secondary to dysfunction within cerebral motor pathways.  相似文献   

15.
Chung YH  Joo KM  Lee YJ  Shin DH  Cha CI 《Brain research》2004,1003(1-2):199-204
In the present study, we used the transgenic mice expressing a human Cu/Zn SOD mutation (SOD1(G93A)) as an in vivo model of amyotrophic lateral sclerosis (ALS) and performed immunohistochemical studies to investigate the changes of poly(ADP-ribose) polymerase (PARP) in the central nervous system. In the spinal cord of symptomatic transgenic mice, immunohistochemistry showed intensely stained PARP-immunoreactive glial cells with the appearance of astrocytes, which were confirmed as astrocytes by double-immunofluorescences. In the brainstem and cerebellum, PARP-immunoreactive astrocytes were observed in the medullary and pontine reticular formation, hypoglossal nucleus, vestibular nucleus, cochlear nucleus and cerebellar nuclei. On the contrary, no PARP-immunoreactive glial cells were observed in control mice although PARP-immunoreactive motor neurons were found. In presymptomatic transgenic mice, a few moderately stained neurons were observed, whereas PARP-immunoreactive astrocytes were not detected. The present study provides the first evidence that PARP-immunoreactive astrocytes were found in the central nervous system of symptomatic SOD1(G93A) transgenic mice, suggesting that reactive astrocytes may play an important role in the pathogenesis and progress of ALS.  相似文献   

16.
Chung YH  Joo KM  Kim YS  Lee KH  Lee WB  Cha CI 《Brain research》2004,1016(2):272-280
In the present study, we investigated the changes of erythropoietin (Epo) expression in the central nervous system (CNS) of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis (ALS). In wild-type SOD1 (wtSOD1) transgenic mice, little immunoreactivity was found in all cortical regions. In the cerebral cortex of symptomatic SOD1(G93A) transgenic mice, there was a significant increase in Epo immunoreactivity. In the hippocampal formation, layer-specific alterations in the staining intensity were observed in the CA1-3 areas and dentate gyrus. Epo immunoreactivity was significantly increased in the midbrain, cerebellar cortex and brainstem of SOD1(G93A) transgenic mice. On the contrary, Epo immunoreactivity was moderately stained in the spinal cord and was not different between wtSOD1 and SOD1(G93A) transgenic mice at the age of 8 weeks, 13 weeks and 18 weeks. In the staining of Epo receptor (EpoR), the changing pattern was similar with that of Epo in the spinal cord and hippocampal formation in wtSOD1 and SOD1(G93A) transgenic mice. Although further studies of functional features of Epo in ALS are needed, the first demonstration of increased immunoreactivity for Epo in the CNS of SOD1(G93A) transgenic mice may provide initial insights into the development of interventional strategies to alleviate motor neuron degeneration in human ALS.  相似文献   

17.
The pathogenesis of neuronal cell death as a consequence of mutations in copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis may involve oxidative damage and mitochondrial dysfunction. We examined whether crossing transgenic mice with the G93A SOD1 mutation with transgenic mice with a partial depletion of manganese superoxide dismutase (SOD2) would affect the disease phenotype. Compared with G93A mice alone, the mice with partial deficiency of SOD2 and the G93A SOD1 mutation showed a significant decrease in survival and an exacerbation of motor deficits detected by rotorod testing. There was a significant exacerbation of loss of motor neurons and substantia nigra dopaminergic neurons in the G93A mice with a partial deficiency of SOD2 compared with G93A mice at 110 days. Microvesiculation of large motor neurons was more prominent in the G93A mice with a partial deficiency of SOD2 compared with G93A mice at 90 days. These findings provide further evidence that both oxidative damage and mitochondrial dysfunction may play a role in the pathogenesis of motor neuron death associated with mutations in SOD1.  相似文献   

18.
19.
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) have been linked to dominantly inherited forms of amyotrophic lateral sclerosis (FALS). To test the hypothesis that the toxicity of mutant SOD1 originates in Cu(2+)-mediated formation of toxic radicals, we generated transgenic mice that express human SOD1 that encodes disease-linked mutations at two of the four histidine residues that are crucial for the coordinated binding of copper (H46R/H48Q). We demonstrate that mice expressing this mutant, which possesses little or no superoxide scavenging activity, develop motor neuron disease. Hence, mutations in SOD1 that disrupt the copper-binding site do not eliminate toxicity. We note that the pathology of the H46R/H48Q mice is dominated by fibrillar (Thioflavin-S-positive) inclusions and that similar inclusions were evident in mouse models that express the G37R, G85R, and G93A variants of human SOD1. Overall, our data are consistent with the hypothesis that the aberrant folding/aggregation of mutant SOD1 is a prominent feature in the pathogenesis of motor neuron disease.  相似文献   

20.
Chung YH  Joo KM  Nam RH  Cho MH  Kim DJ  Lee WB  Cha CI 《Brain research》2005,1035(1):105-109
In the present study, we investigated the changes of calretinin (CR) expression in the central nervous system of SOD1G93A transgenic mice as an in vivo model of amyotrophic lateral sclerosis (ALS). In wild-type SOD1 (wtSOD1) transgenic mice, many CR-immunoreactive neurons were found in all cortical regions. In the cerebral cortex of SOD1G93A transgenic mice, the number and staining intensity of CR-positive neurons were decreased. In the hippocampal formation, layer-specific alterations in the staining intensity of CR-immunoreactive neurons were observed in the CA1-3 areas and dentate gyrus. In wtSOD1 transgenic mice, CR-immunoreactive neurons with long processes were found in the stratum oriens and stratum radiatum of CA1-3 areas, and heavily stained band-like molecular layer was prominent in the dentate gyrus. CR immunoreactivity was decreased in each layer of CA1-3 areas and dentate gyrus of SOD1G93A transgenic mice. The first demonstration of decreased immunoreactivity for CR in the cerebral cortex and hippocampus of SOD1G93A transgenic mice may provide insights into the pathogenesis of motor neuron degeneration in human ALS although further quantitative studies are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号