首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Among opioids, meperidine (pethidine) also shows local anesthetic activity when applied locally to peripheral nerve fibers and has been used for this effect in the clinical setting for regional anesthesia. This study investigated the blocking effects of meperidine on different ion channels in peripheral nerves.

Methods: Experiments were conducted using the outside-out configuration of the patch-clamp method applied to enzymatically prepared peripheral nerve fibers of Xenopus laevis. Half-maximal inhibiting concentrations were determined for Na+ channels and different K+ channels by nonlinear least-squares fitting of concentration-inhibition curves, assuming a one-to-one reaction.

Results: Externally applied meperidine reversibly blocked all investigated channels in a concentration-dependent manner, i.e., voltage-activated Na+ channel (half-maximal inhibiting concentration, 164 [mu]M), delayed rectifier K+ channels (half-maximal inhibiting concentration, 194 [mu]M), the calcium-activated K+ channel (half-maximal inhibiting concentration, 161 [mu]M), and the voltage-independent flicker K+ channel (half-maximal inhibiting concentration, 139 [mu]M). Maximal block in high concentrations of meperidine reached 83% for delayed rectifier K+ channels and 100% for all other channels. Meperidine blocks the Na+ channel in the same concentration range as the local anesthetic agent lidocaine (half-maximal inhibiting concentration, 172 [mu]M) but did not compete for the same binding site as evaluated by competition experiments. Low concentrations of meperidine (1 nM to 1 [mu]M) showed no effects on Na+ channels. The blockade of Na+ and delayed rectifier K+ channels could not be antagonized by the addition of naloxone.  相似文献   


2.
Background: Voltage-gated Na+ channels modulate membrane excitability in excitable tissues. Inhibition of Na+ channels has been implicated in the effects of volatile anesthetics on both nervous and peripheral excitable tissues. The authors investigated isoform-selective effects of isoflurane on the major Na+ channel isoforms expressed in excitable tissues.

Methods: Rat Nav1.2, Nav1.4, or Nav1.5 [alpha] subunits heterologously expressed in Chinese hamster ovary cells were analyzed by whole cell voltage clamp recording. The effects of isoflurane on Na+ current activation, inactivation, and recovery from inactivation were analyzed.

Results: The cardiac isoform Nav1.5 activated at more negative potentials (peak INa at -30 mV) than the neuronal Nav1.2 (0 mV) or skeletal muscle Nav1.4 (-10 mV) isoforms. Isoflurane reversibly inhibited all three isoforms in a concentration- and voltage-dependent manner at clinical concentrations (IC50 = 0.70, 0.61, and 0.45 mm, respectively, for Nav1.2, Nav1.4, and Nav1.5 from a physiologic holding potential of -70 mV). Inhibition was greater from a holding potential of -70 mV than from -100 mV, especially for Nav1.4 and Nav1.5. Isoflurane enhanced inactivation of all three isoforms due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation. Inhibition of Nav1.4 and Nav1.5 by isoflurane was attributed primarily to enhanced inactivation, whereas inhibition of Nav1.2, which had a more positive V1/2 of inactivation, was due primarily to tonic block.  相似文献   


3.
Background: Anesthetic preconditioning (APC) is well known to protect against myocardial ischemia-reperfusion injury. Studies also show the benefit of Na+-Ca2+ exchange inhibition on ischemia-reperfusion injury. The authors tested whether APC plus Na+-Ca2+ exchange inhibitors given just on reperfusion affords additive protection in intact hearts.

Methods: Cytosolic [Ca2+] was measured by fluorescence at the left ventricular wall of guinea pig isolated hearts using indo-1 dye. Sarcoplasmic reticular Ca2+-cycling proteins, i.e., Ca2+ release channel (ryanodine receptor [RyR2]), sarcoplasmic reticular Ca2+-pump adenosine triphosphatase (SERCA2a), and phospholamban were measured by Western blots. Hearts were assigned to seven groups (n = 8 each): (1) time control; (2) ischemia; (3, 4) 10 [mu]m Na+-Ca2+ exchange inhibitor KB-R7943 (KBR) or 1 [mu]m SEA0400 (SEA), given during the first 10 min of reperfusion; (5) APC initiated by sevoflurane (2.2%, 0.41 +/- 0.03 mm) given for 15 min and washed out for 15 min before ischemia-reperfusion; (6, 7) APC plus KBR or SEA.

Results: The authors found that APC reduced the increase in systolic [Ca2+], whereas KBR and SEA both reduced the increase in diastolic [Ca2+] on reperfusion. Each intervention improved recovery of left ventricular function. Moreover, APC plus KBR or SEA afforded better functional recovery than APC, KBR, or SEA alone (P < 0.05). Ischemia-reperfusion-induced degradation of major sarcoplasmic reticular Ca2+-cycling proteins was attenuated by APC, but not by KBR or SEA.  相似文献   


4.
Background: The Na+,K+-adenosine triphosphatase is a ubiquitous enzyme system that maintains the ion gradient across the plasma membrane of a variety of cell types, including cells in the central nervous system. We investigated the antinociceptive effect of intrathecally administered ouabain and examined its potential interaction with spinal morphine and lidocaine.

Methods: Using rats chronically implanted with lumbar intrathecal catheters, the ability of intrathecally administered ouabain, morphine, and lidocaine and of mixtures of ouabain-morphine and ouabain-lidocaine to alter tail-flick latency was examined. To characterize any interactions, isobolographic analysis was performed. The effects of pretreatment with intrathecally administered atropine or naloxone also were tested.

Results: Intrathecally administered ouabain (0.1-5.0 [micro sign]g), morphine (0.2-10.0 [micro sign]g), and lidocaine (25-300 [micro sign]g) given alone produced significant dose- and time-dependent antinociception, but systemic administration of ouabain did not produce such an effect. The median effective dose (ED50) values for intrathecally administered ouabain, morphine, and lidocaine were 2.3, 5.0, and 227.0 [micro sign]g, respectively. Isobolographic analysis exhibited a synergistic interaction after the coadministration of ouabain and morphine. With ouabain and lidocaine, there was no such evidence of synergism. Intrathecally administered atropine, but not naloxone, completely blocked the antinociceptive effect of ouabain and attenuated its interaction with spinally administered morphine.  相似文献   


5.
Background: The objectives were to determine the extent and mechanism of action by which propofol increases myofilament Ca2+ sensitivity and intracellular pH (pHi) in ventricular myocytes.

Methods: Freshly isolated adult rat ventricular myocytes were used for the study. Cardiac myofibrils were extracted for assessment of myofibrillar actomyosin adenosine triphosphatase (ATPase) activity. Myocyte shortening (video edge detection) and pHi (2',7'-bis-(2-carboxyethyl)-5(6')-carboxyfluorescein, 500/440 ratio) were monitored simultaneously in individual cells field-stimulated (0.3 Hz) and superfused with HEPES-buffered solution (pH 7.4, 30[degrees]C).

Results: Propofol (100 [mu]m) reduced the Ca2+ concentration required for activation of myofibrillar actomyosin ATPase from pCa 5.7 +/- 0.01 to 6.6 +/- 0.01. Increasing pHi (7.05 +/- 0.03 to 7.39 +/- 0.04) with NH4Cl increased myocyte shortening by 35 +/- 12%. Washout of NH4Cl decreased pHi to 6.82 +/- 0.03 and decreased myocyte shortening to 52 +/- 10% of control. Propofol caused a dose-dependent increase in pHi but reduced myocyte shortening. The propofol-induced increase in pHi was attenuated, whereas the decrease in myocyte shortening was enhanced after pretreatment with ethylisopropyl amiloride, a Na+-H+ exchange inhibitor, or bisindolylmaleimide I, a protein kinase C inhibitor. Propofol also attenuated the NH4Cl-induced intracellular acidosis, increased the rate of recovery from acidosis, and attenuated the associated decrease in myocyte shortening. Propofol caused a leftward shift in the extracellular Ca2+-shortening relation, and this effect was attenuated by ethylisopropyl amiloride.  相似文献   


6.
7.
8.
Background: The authors' objective was to identify the role of the Na+-Ca2+ exchanger (NCX) in mediating the contractile dysfunction observed in diabetic cardiomyocytes before and after exposure to propofol.

Methods: Freshly isolated ventricular myocytes were obtained from normal and diabetic rat hearts. Intracellular concentration of Ca2+ and cell shortening were simultaneously measured in electrically stimulated, ventricular myocytes using fura-2 and video-edge detection, respectively. Postrest potentiation (PRP) and sarcoplasmic reticulum Ca2+ load were used to assess propofol-induced changes in the activity of the NCX.

Results: Propofol (10 [mu]m) increased PRP in diabetic cardiomyocytes but had no effect on PRP in normal cardiomyocytes. Removal of sodium enhanced and KB-R7943 (reverse mode NCX inhibitor) blocked PRP in both normal and diabetic cardiomyocytes. In the absence of sodium, propofol enhanced PRP in diabetic cardiomyocytes but had no additional effect in normal cardiomyocytes. KB-R7943 completely blocked propofol-induced potentiation of peak intracellular concentration of Ca2+ and shortening in both cell types. Propofol increased sarcoplasmic reticulum Ca2+ load and prolonged removal of cytosolic Ca2+ in diabetic cardiomyocytes, but not in normal cardiomyocytes. Removal of sodium enhanced propofol-induced increases in sarcoplasmic reticulum Ca2+ load and further prolonged removal of cytosolic Ca2+, whereas KB-R7943 completely blocked propofol-induced increase in sarcoplasmic reticulum Ca2+ load. Protein kinase C inhibition with bisindolylmaleimide I prevented the propofol-induced increase in PRP and prolongation in Ca2+ removal.  相似文献   


9.
Background: Benzodiazepines have a direct bronchodilator action in airway smooth muscle, but the mechanisms by which these agents produce muscle relaxation are not fully understood. The current study was performed to identify the effects of the benzodiazepines diazepam and midazolam on Ca2+ and K+ channels in canine tracheal smooth muscle cells.

Methods: Whole-cell patch-clamp recording techniques were used to evaluate the effects of the benzodiazepines diazepam (10-8 to 10-3 M) and midazolam (10-8 to 10-3 M) on inward Ca2+ and outward K (+) channel currents in dispersed canine tracheal smooth muscle cells. The effects of the antagonists flumazenil (10-5 M) and PK11195 (10-5 M) on these channels were also studied.

Results: Each benzodiazepine tested significantly inhibited Ca2+ currents in a dose-dependent manner, with 10-6 M diazepam and 10-5 M midazolam each causing approximately 50% depression of peak voltage-dependent Ca2+ currents. Both benzodiazepines promoted the inactivated state of the channel at more-negative potentials. The Ca2+ -activated and voltage-dependent K+ currents were inhibited by diazepam and midazolam (> 10-5 M and > 10-4 M, respectively). Flumazenil and PK11195 had no effect on these channel currents or on the inhibitory effects of the benzodiazepines.  相似文献   


10.
Background: Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels ([alpha]1C[beta]2a and [alpha]1C[beta]2a[alpha]2/[delta]1), which differ by the [alpha]2/[delta]1 subunit and consequently voltage-dependent inactivation.

Methods: HEK-293 cells were transiently cotransfected with complementary DNAs encoding [alpha]1C tagged with green fluorescent protein and [beta]2a, with and without [alpha]2/[delta]1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing [alpha]1C[beta]2a and [alpha]1C[beta]2a[alpha]2/[delta]1 as identified by fluorescence microscopy.

Results: Halothane inhibited peak current (Ipeak) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. [alpha]2/[delta]1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of Ipeak and I300/Ipeak for [alpha]1C[beta]2a (1.8 and 14.5 mm, respectively) and [alpha]1C[beta]2a[alpha]2/[delta]1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through Ipeak depression and not by enhancement of macroscopic inactivation for both channels.  相似文献   


11.
Background: Neuronal excitability is in part determined by Ca2+ availability that is controlled by regulatory mechanisms of cytosolic Ca2+ ([Ca2+]cyt). Alteration of any of those mechanisms by volatile anesthetics (VAs) may lead to a change in presynaptic transmission and postsynaptic excitability. Using a human neuroblastoma cell line, the effects of halothane and isoflurane on cytosolic Ca2+ concentration ([Ca2+]cyt) in response to K+ and carbachol stimulation were investigated.

Methods: Volatile anesthetic (0.05-1 mm) action on stimulated [Ca2+]cyt transients were monitored in suspensions of SH-SY5Y cells loaded with fura-2. Potassium chloride (KCl; 100 mm) was used to depolarize and activate Ca2+ entry through voltage-dependent calcium channels; 1 mm carbachol was used to activate muscarinic receptor-mediated inositol triphosphate (IP3)-dependent intracellular Ca2+ release. Sequential stimulations, KCl followed by carbachol and vice versa, were used to investigate interactions between intracellular Ca2+ stores.

Results: Halothane and isoflurane in clinically relevant concentrations enhanced the K+-evoked [Ca2+]cyt transient whether intracellular Ca2+ stores were full or partially depleted. In contrast, halothane and isoflurane reduced the carbachol-evoked [Ca2+]cyt transient when the intracellular Ca2+ stores were full but had no effect when the Ca2+ stores were partially depleted by KCl stimulation.  相似文献   


12.
Background: Droperidol has recently been associated with cardiac arrhythmias and sudden cardiac death. Changes in action potential duration seem to be the cause of the arrhythmic behavior, which can lead to alterations in intracellular free Ca2+ concentration ([Ca2+]i). Because [Ca2+]i and myofilament Ca2+ sensitivity are key regulators of myocardial contractility, the authors' objective was to identify whether droperidol alters [Ca2+]i or myofilament Ca2+ sensitivity in rat ventricular myocytes and to identify the cellular mechanisms responsible for these effects.

Methods: Freshly isolated rat ventricular myocytes were obtained from adult rat hearts. Myocyte shortening, [Ca2+]i, nitric oxide production, intracellular pH, and action potentials were monitored in cardiomyocytes exposed to droperidol. Langendorff perfused hearts were used to assess overall cardiac function.

Results: Droperidol (0.03-1 [mu]m) caused concentration-dependent decreases in peak [Ca2+]i and shortening. Droperidol inhibited 35 mm KCl-induced increase in [Ca2+]i, with little direct effect on sarcoplasmic reticulum Ca2+ stores. Droperidol had no effect on action potential duration but caused a rightward shift in the concentration-response curve to extracellular Ca2+ for shortening, with no concomitant effect on peak [Ca2+]i. Droperidol decreased pHi and increased nitric oxide production. Droperidol exerted a negative inotropic effect in Langendorff perfused hearts.  相似文献   


13.
Background: Tetrodotoxin-resistant Na+ channels play an important role in generation and conduction of nociceptive discharges in peripheral endings of small-diameter axons of the peripheral nervous system. Pathophysiologically, these channels may produce ectopic discharges in damaged nociceptive fibers, leading to neuropathic pain syndromes. Systemically applied Na+ channel-blocking drugs can alleviate pain, the mechanism of which is rather unresolved. The authors investigated the effects of some commonly used drugs, i.e., lidocaine, mexiletine, carbamazepine, amitriptyline, memantine, and gabapentin, on tetrodotoxin-resistant Na+ channels in rat dorsal root ganglia.

Methods: Tetrodotoxin-resistant Na+ currents were recorded in the whole-cell configuration of the patch-clamp method in enzymatically dissociated dorsal root ganglion neurons of adult rats. Half-maximal blocking concentrations were derived from concentration-inhibition curves at different holding potentials (-90, -70, and -60 mV).

Results: Lidocaine, mexiletine, and amitriptyline reversibly blocked tetrodotoxin-resistant Na+ currents in a concentration- and use-dependent manner. Block by carbamazepine and memantine was not use-dependent at 2 Hz. Gabapentin had no effect at concentrations of up to 3 mm. Depolarizing the membrane potential from -90 mV to -60 mV reduced the available Na+ current only by 23% but increased the sensitivity of the channels to the use-dependent blockers approximately fivefold. The availability curve of the current was shifted by 5.3 mV to the left in 300 [mu]m lidocaine.  相似文献   


14.
Background: The previous study by the authors showed that the class Ib antiarrhythmic drug lidocaine impairs but mexiletine augments vasorelaxation mediated by adenosine triphosphate-sensitive K+ channels. Lidocaine and mexiletine have different values of the negative logarithm of the drug-proton dissociation constant, indicating that the ion channel-blocking effects of these drugs under different pH levels may vary. However, the role of pH in the effects of lidocaine and mexiletine on vasodilation mediated by K+ channels has not been studied. Therefore, the current study was designed to examine whether the inhibition and augmentation of vasorelaxation in response to an adenosine triphosphate-sensitive K+ channel opener, levcromakalim, by the clinically relevant concentrations of lidocaine or mexiletine are modified by mild alkalinization or acidification in the isolated rat aorta.

Methods: Rings of the rat aorta without endothelium were suspended for isometric force recording. Three types of modified Krebs-Ringer solutions (pH 7.2, 7.4, and 7.6) were prepared by changing the composition of NaCl and NaHCO3. During contractions in response to phenylephrine (3 x 10-7 m), relaxations in response to levcromakalim (10-8 to 10-5 m) were obtained. Lidocaine (10-5 to 10-4 m), mexiletine (10-5 to 10-4 m), or glibenclamide (10-5 m) was applied 15 min before addition of phenylephrine.

Results: Relaxations in response to levcromakalim, which are abolished by the selective adenosine triphosphate-sensitive K+ channel antagonist glibenclamide (10-5 m), were not different among the three pH groups. In the normal Krebs-Ringer solution of pH 7.4, lidocaine significantly reduced these relaxations in a concentration-dependent fashion. Alkalinization of pH 7.6 augmented the inhibitory effect of lidocaine on these relaxations, whereas acidification of pH 7.2 substantially abolished this effect. In contrast, mexiletine pH independently augmented relaxations in response to levcromakalim. Glibenclamide (10-5 m) abolished these relaxations in arteries treated with mexiletine (10-4 m) in any pH group.  相似文献   


15.
Background: Most in vitro neuroprotection studies with isoflurane have involved cells obtained during the embryonic or early postnatal period. However, in mature rodents, isoflurane neuroprotection does not persist. The authors determined whether neuroprotection of hippocampal slices with isoflurane decreases with aging and is due to decreased intracellular Ca2+ regulation and survival protein phosphorylation.

Methods: Hippocampal slices from 5-day-old, 1-month-old, and 19- to 23-month-old rats were deprived of oxygen and glucose for 5-30 min in media bubbled with 1% isoflurane. Cell death was assessed in the CA1, CA3, and dentate regions, and intracellular Ca2+ concentration was measured in CA1 neurons. N-methyl-d-aspartate receptor (NMDAR)-dependent Ca2+ influx was measured and the phosphorylation of NMDARs, and the survival proteins Akt and mitogen-activated protein kinase p42/44 were quantified.

Results: Twenty minutes of oxygen and glucose deprivation killed approximately 40-60% of neurons in CA3 and dentate in all age groups. Isoflurane, 1%, reduced death of CA1, CA3, and dentate neurons in slices from 5-day-old rats but not those from 23-month-old rats. In 5-day slices, isoflurane attenuated NMDAR-mediated Ca2+ influx, whereas in aging slices, Ca2+ influx was increased protein kinase C. In aging slices, isoflurane did not increase the phosphorylation of Akt and p42/44.  相似文献   


16.
Background: The effect of ketamine on vasodilation mediated by adenosine triphosphate (ATP)-sensitive K+ channels has not been studied. The present study was designed to determine whether ketamine might stereoselectively affect vasorelaxation induced by an ATP-sensitive K+ channel opener in the isolated rat aorta.

Methods: Rings of the rat aorta with or without endothelium were suspended for isometric force recording. During contraction to phenylephrine (3 x 10-7 m), vasorelaxation in response to an ATP-sensitive K+ channel opener levcromakalim (10-8 to 10-5 m) or a nitric oxide donor sodium nitroprusside (10-10 to 10-5 m) was obtained. Glibenclamide (10-5 m), S(+) ketamine (10-4 m), or ketamine racemate (10-5 to 10-4 m) was applied 15 min before addition of phenylephrine.

Results: Vasorelaxation induced by levcromakalim was completely abolished by an ATP-sensitive K+ channel antagonist glibenclamide (10-5 m) in the aorta with or without endothelium. Ketamine racemate (3 x 10-5 to 10-4 m) significantly inhibited this vasorelaxation in a concentration-dependent fashion, whereas S(+) ketamine did not affect the relaxation. However, the highest concentration of ketamine racemate and S(+) ketamine used in the present study did not alter vasorelaxation in response to sodium nitroprusside in the aorta without endothelium.  相似文献   


17.
Background: The aim of this study was to describe and compare the effects of isoflurane, sevoflurane, and halothane at selected concentrations (i.e., concentrations that led to equivalent depression of the electrically evoked Ca2+ transient) on myofilament Ca2+ sensitivity, sarcoplasmic reticulum (SR) Ca2+ content, and the fraction of SR Ca2+ released during electrical stimulation (fractional release) in rat ventricular myocytes.

Methods: Single rat ventricular myocytes loaded with fura-2 were electrically stimulated at 1 Hz, and the Ca2+ transients and contractions were recorded optically. Cells were exposed to each anesthetic for 1 min. Changes in myofilament Ca2+ sensitivity were assessed by comparing the changes in the Ca2+ transient and contraction during exposure to anesthetic and low Ca2+. SR Ca2+ content was assessed by exposure to 20 mm caffeine.

Results: Isoflurane and halothane caused a depression of myofilament Ca2+ sensitivity, unlike sevoflurane, which had no effect on myofilament Ca2+ sensitivity. All three anesthetics decreased the electrically stimulated Ca2+ transient. SR Ca2+ content was reduced by both isoflurane and halothane but was unchanged by sevoflurane. Fractional release was reduced by both isoflurane and sevoflurane, but was unchanged by halothane.  相似文献   


18.
Background: Recent work suggests that impaired Mg2+ regulation of the ryanodine receptor is a common feature of both pig and human malignant hyperthermia. Therefore, the influence of [Mg2+] on halothane-induced Ca2+ release from the sarcoplasmic reticulum was studied in malignant hyperthermia-susceptible (MHS) or -nonsusceptible (MHN) muscle.

Methods: Vastus medialis fibers were mechanically skinned and perfused with solutions containing physiologic (1 mm) or reduced concentrations of free [Mg2+]. Sarcoplasmic reticulum Ca2+ release was detected using fura-2 or fluo-3.

Results: In MHN fibers, 1 mm halothane consistently did not induce sarcoplasmic reticulum Ca2+ release in the presence of 1 mm Mg2+. It was necessary to increase the halothane concentration to 20 mm or greater before Ca2+ release occurred. However, when [Mg2+] was reduced below 1 mm, halothane became an increasingly effective stimulus for Ca2+ release; e.g., at 0.4 mm Mg2+, 58% of MHN fibers responded to halothane. In MHS fibers, 1 mm halothane induced Ca2+ release in 57% of MHS fibers at 1 mm Mg2+. Reducing [Mg2+] increased the proportion of MHS fibers that responded to 1 mm halothane. Further experiments revealed differences in the characteristics of halothane-induced Ca2+ release in MHS and MHN fibers: In MHN fibers, at 1 mm Mg2+, halothane induced a diffuse increase in [Ca2+], which began at the periphery of the fiber and spread slowly inward. In MHS fibers, halothane induced a localized Ca2+ release, which then propagated along the fiber. However, propagated Ca2+ release was observed in MHN fibers when halothane was applied at an Mg2+ concentration of 0.4 mm or less.  相似文献   


19.
Background: Volatile anesthetics inhibit vascular smooth muscle contraction, but the mechanisms responsible are uncertain. In this study, the effects of halothane on Ca2+ signaling and Ca2+ activation of contractile proteins were examined in high K+-depolarized smooth muscle from rat mesenteric resistance arteries.

Methods: Vessels were cannulated and held at a constant transmural pressure (40 mmHg). Image analysis and microfluorimetry were used to simultaneously measure vessel diameter and smooth muscle intracellular [Ca2+] concentration ([Ca2+]i). Myosin light chain (MLC) phosphorylation was measured using the Western blotting technique.

Results: Step increases in extracellular [Ca2+] concentration (0-10 mm) in high K+ (40 mm)-depolarized smooth muscle produced incremental increases in [Ca2+]i, MLC phosphorylation, and contraction. Halothane (0.5-4.5%) inhibited contraction in a concentration-dependent manner, but the decrease in [Ca2+]i was small, and there was a marked shift in the [Ca2+]i-contraction relationship to the right, indicating an important Ca2+ desensitizing effect. Halothane (0.5-4.5%) did not affect MLC phosphorylation or the [Ca2+]-MLC phosphorylation relationship, but the MLC phosphorylation-contraction relationship was also shifted rightward, indicating an "MLC phosphorylation" desensitizing effect. In contrast, control relaxations produced by the Ca2+ channel blocker nifedipine were accompanied by decreases in both [Ca2+]i and MLC phosphorylation, and nifedipine had no affect on the [Ca2+]i-contraction, [Ca2+]i-MLC phosphorylation, and MLC phosphorylation-contraction relationships.  相似文献   


20.
Background: Actions of volatile anesthetics on ligand-gated ion channels, such as [gamma]-aminobutyric acid type A receptors, have been studied extensively. However, actions on other types of channels, such as K+ channels, are poorly understood. The authors previously showed that a Ca2+-activated K+ channel, IK, is sensitive to halothane, whereas SK1, another Ca2+-activated K+ channel, is insensitive. To explore how halothane acts on Ca2+-activated K+ channels, chimeras between IK and SK1 were constructed, and halothane sensitivity was analyzed.

Methods: IK, SK1, and chimera channels were expressed in Xenopus laevis oocytes. Currents of expressed channels were measured in the presence of 10 [mu]m Ca2+ by excised patch clamp analysis. Time constants of inhibition by halothane were compared between inside-out and outside-out patch configurations.

Results: Currents from chimera channels possessing the pore domain derived from IK were inhibited by halothane, whereas those possessing the SK1 pore domain were insensitive. Time constants of inhibition by halothane were significantly smaller in the outside-out patches than in the inside-out patches of both wild-type IK and a chimera with pore domain of IK.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号