首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
摘要 背景:小范围研究显示,低剂量、间歇性应用甲状旁腺激素相关肽能有效治疗绝经后妇女骨质疏松症。但其存在着易变性、半衰期短、价格昂贵等缺陷,因此研制应用缓释系统控制甲状旁腺激素相关肽的释放速度,提高其生物利用效率极为必要。 目的:制备一种新型纳米载药颗粒,探讨其对甲状旁腺激素相关肽的包封及体外释放特性。 方法:采用离子交联法制备壳聚糖季铵盐纳米载药颗粒,用傅里叶红外光谱、透射电镜等进行表征,检测纳米颗粒的包封及体外释放特性。 结果与结论:在常温磁力搅拌条件下,当壳聚糖季铵盐与三聚磷酸钠投药量为5︰1~2︰1时可形成纳米颗粒,粒径100~ 180 nm,为规则球形,甲状旁腺激素相关肽投药质量浓度越高时包封率增大但载药量有所减少,体外PBS溶液中纳米载药颗粒表现出缓慢释放特性。 关键词:壳聚糖;壳聚糖季铵盐;纳米粒子;甲状旁腺激素相关肽;体外释放 doi:10.3969/j.issn.1673-8225.2011.03.019  相似文献   

2.
吴雁 《中国神经再生研究》2009,13(34):6685-6688
背景:两性霉素B为治疗深部真菌感染的首选药物,但该药无法通过血脑屏障而对隐球菌性脑膜炎的治疗效果甚微。利用纳米粒子作为药物载体的优势,通过相分离透析技术制备负载两性霉素B的壳聚糖-聚乳酸纳米粒子,有望克服两性霉素B的不足。 目的:对负载两性霉素B的壳聚糖-聚乳酸纳米粒进行表征,分析其体外药物释放能力。 设计、时间及地点:重复测量设计,于 2008-11/2009-04 在国家纳米科学中心纳米医学与生物实验室完成。 材料:壳聚糖,平均相对分子质量为3.4×105,脱乙酰度为93%,为上海卡伯工贸有限公司产品。两性霉素B为Sigma公司产品。 方法:在二甲基亚砜溶液中,在三乙胺存在下,通过壳聚糖和D,L-丙交酯的开环聚合反应能够生成壳聚糖-聚乳酸共聚物。该共聚物由亲水壳聚糖段和疏水聚乳酸段组成,在水中能够组装形成纳米粒子。两性霉素B通过相分离透析技术包载于纳米粒子中。 主要观察指标:激光粒度分析仪测定纳米颗粒的粒径大小、粒径分布,环境扫描电镜观察纳米颗粒的外观形态,紫外光谱分析负载两性霉素B的壳聚糖-聚乳酸纳米粒的包封率、载药量和释药性能。 结果:壳聚糖-聚乳酸纳米粒和负载两性霉素B的壳聚糖-聚乳酸纳米粒,其粒径分别为114 nm和153 nm(当丙交酯与壳聚糖摩尔比为11∶1时)。纳米粒子粒径分布较窄,呈球形。共聚物中丙交酯与壳聚糖摩尔比影响药物的包封率和载药量,随着丙交酯与壳聚糖摩尔比从11∶1到20∶1,包封率从(62.3±3.5)%增加到(90.7±2.8)%,载药量从(7.8±1.2)%增加到(12.3±1.4)%。随着聚乳酸段质量比增加,纳米粒子尺寸、包封率和载药量增加,而药物释放降低。 结论:开环聚合制备壳聚糖-聚乳酸共聚物及用相分离透析方法制备负载两性霉素B纳米粒简便可靠,负载两性霉素B后纳米粒径明显变大,且纳米粒对两性霉素B有很高的包封率,体外释药具有明显的缓释作用。 关键词:两性霉素B;壳聚糖;聚乳酸;纳米粒子;包封率;体外释放  相似文献   

3.
背景:羟基磷灰石与高分子复合材料作为组织工程材料的报道很多,但多为粉体材料或块状材料,用于修复治疗时均存在一定的局限性。 目的:制备纳米羟基磷灰石/壳聚糖-明胶复合缓释微球,观察其体外释药特性。 设计、时间及地点:重复测量设计,于2008-01/10 在北京工业大学材料科学与工程学院生物功能高分子实验室完成。 材料:纳米羟基磷灰石、壳聚糖、明胶、庆大霉素。 方法:利用微波辅助法,在pH=7的条件下,制备了针状羟基磷灰石。采用W/O型复乳化-交联技术制备纳米羟基磷灰石/壳聚糖-明胶载药复合微球。 主要观察指标:①纳米羟基磷灰石/壳聚糖-明胶复合微球的表面形貌、粒径分布。②载药复合微球的载药量、包封率及药物累积释放率。 结果:①纳米羟基磷灰石/壳聚糖-明胶载药复合微球形态均匀,其粒径主要集中在10~30μm,壳聚糖-明胶对羟基磷灰石形成了很好的包覆。②复合微球平均载药量32.97%,平均包封率49.20%,在3 d内对庆大霉素的释放达到88%左右。 结论:所制备的纳米羟基磷灰石/壳聚糖-明胶载药复合微球形态均匀,粒径分布窄,再分散性好,3 d内能维持有效的药物浓度。  相似文献   

4.
背景:醋酸曲安奈德是一种长效肾上腺糖皮质激素,具有较强的抗炎作用。近年来在眼内疾病的治疗中取得了较好的效果,但同时带来一些不良反应,且需多次注射,以防止疾病复发。壳聚糖经接枝改性,生成的共聚物可在水溶液中生成纳米粒,用于药物的缓释载体,延长药物作用时间,降低不良反应,提高生物利用度。 目的:合成含脱氧胆酸基团的两亲性壳聚糖衍生物作为醋酸曲安奈德的载体材料,制备具有缓释功能的载药纳米胶束,研究其负载和缓释醋酸曲安奈德的性能。 方法:通过酰胺化反应在壳聚糖上偶联脱氧胆酸基团,合成两亲性壳聚糖衍生物。透射电镜观察纳米粒的外观形态和粒径,Zeta电位分析仪测定纳米粒的Zeta电位,体外释放实验检测负载醋酸曲安奈德的壳聚糖-脱氧胆酸纳米粒的包封率、载药量和体外释药性能。 结果与结论:合成出含脱氧胆酸基团的两亲性壳聚糖衍生物,它能与醋酸曲安奈德形成载药纳米胶束,载药量可高达82%。随着载药量的增加,载药纳米胶束的粒径逐渐增大,而Zeta电位则呈下降的趋势。体外释放的结果表明载药纳米胶束能起到72 h缓释醋酸曲安奈德的作用。提示以两亲性壳聚糖衍生物为载体的载药纳米胶束显示出较好的缓释醋酸曲安奈德性能,将有希望提高醋酸曲安奈德的治疗效果。 关键词:醋酸曲安奈德;两亲性壳聚糖衍生物;脱氧胆酸;纳米胶束;体外药物释放 doi:10.3969/j.issn.1673-8225.2010.29.013  相似文献   

5.
背景:新型可生物降解多聚物纳米控释载药制剂能显著改善药物穿透组织能力、再分布时程和滞留时间,可能克服载药基质对血管修复的负性影响,有望避免药物洗脱支架晚期支架内血栓。 目的:制备雷帕霉素-聚乳酸-聚乙醇酸纳米粒子(rapamycin poly(lactic-co-glycolic) acid nanoparticles, RPM-PLGA-NPs)并观察其表征及体外控释性能。 设计、时间及地点:单一样本实验于2003-03/09在中国医学科学院,中国协和医科大学,生物医学工程研究所生物医学材料重点实验室完成。 材料:聚乳酸-聚乙烯醇酸共聚物50∶50由美国Birmingham Polymers 公司提供。 方法:以可生物降解高分子材料聚乳酸-聚乙醇酸共聚物作载药基质,超声乳化-溶剂挥发法制备RPM-PLGA-NPs,采用双室扩散池行体外药物释放试验。 主要观察指标:测定平均载药量、平均包封率;激光光散射实验测定纳米粒子的粒径及分布;扫描电镜观察纳米粒子的表面形态;高效液相色谱法计算体外药物释放量、绘制累积释放曲线。 结果:成功制备了平均粒径为246.8 nm的RPM-PLGA-NPs,平均粒径246.8 nm,粒径分布集中在208~294 nm,呈窄分布;包封率大于77%,平均载药量为19.42%。体外释放近似于零级过程,至2周释放75%的药物。 结论:超声乳化-溶剂挥发法制备RPM-PLGA-NPs稳定可靠,包封效率高,载药量控制稳定,粒径小、范围窄,体外释放药物恒定、具有良好的控释效能。  相似文献   

6.
摘要 背景:壳聚糖具有良好的生物相容性和生物可降解性,可作为优良的药物控缓释及靶向载体、黏膜吸附剂、吸收促进剂。目前市场上尚未见有关谷维素的缓释制剂,也未见相关的文献报道。 目的:考察谷维素-壳聚糖缓释微囊的制备工艺。 方法:采用凝聚法以自制离心筛制粒机制备了谷维素-壳聚糖缓释微囊,并考察了产品的载药量和包封率。 结果与结论:实验制备的谷维素-壳聚糖缓释微囊载药量为47.68%,包封率为76.45%,微囊大小均匀、光洁度与成形度好。凝聚法制备工艺简单易行,稳定,重现性好,结果说明,利用天然高分子多糖类物质壳聚糖来包封谷维素是切实可行的,谷维素-壳聚糖缓释微囊具有进一步开发和应用价值。 关键词:谷维素;壳聚糖;海藻酸钠;载药量;包封率 doi:10.3969/j.issn.1673-8225.2011.08.017  相似文献   

7.
负载紫杉醇壳聚糖纳米粒的制备、表征与释药性能   总被引:1,自引:0,他引:1  
背景:紫杉醇是一种天然抗肿瘤药物,但其水溶性极低。壳聚糖经接枝改性,生成的共聚物可在液相中生成纳米粒,可用于药物的缓释和控释。 目的:对制备的负载紫杉醇的壳聚糖纳米粒进行表征,分析其体外药物释放能力。 设计、时间及地点:重复测量设计,于2008-01/07在华北煤炭医学院医学系实验室完成。 材料:壳聚糖,平均相对分子质量为2.0×105,脱乙酰度为92%,为浙江省玉环海洋生物化学有限公司产品。紫杉醇,批号082329802,为中国药品生物制品检定所产品。 方法:采用引发接枝效率高、引发反应条件温和的二羟基二过碘酸合镍钾为引发剂,在壳聚糖上接枝醋酸乙烯酯,该聚合物在水溶液中直接生成具有疏水核心、亲水表面的纳米粒,即壳聚糖纳米粒,再利用超声振荡技术将0.5~5.0 mg紫杉醇与上述纳米粒混合制成负载紫杉醇的壳聚糖纳米粒。 主要观察指标:激光粒度分析仪测定纳米颗粒的粒径大小、粒径分布及Zeta电位,透射电镜观察纳米颗粒的外观形态,高效液相色谱法分析负载紫杉醇的壳聚糖纳米粒的包封率、载药量和释药性能。 结果:壳聚糖纳米粒和负载紫杉醇的壳聚糖纳米粒,其粒径分别为196.2 nm和320.8 nm,粒径分布较窄,纳米粒表面均带正电荷,Zeta电位比较差异无显著性意义(F=0.818,F=3.38,P均>0.05)。稳定的纳米粒呈球形,粒径均匀。紫杉醇的加入量可影响纳米粒的包封率,紫杉醇的加入量为纳米粒的量2%时,达到最大包封率93.6%。体外模拟释药结果表明药物释放曲线分为两个阶段,突释阶段微球释药量在24 h内达48.3%,缓释阶段微球释药持续时间长,在175 h时释药量达75.9%,载药纳米粒的药物释放速率持续稳定。 结论:接枝共聚法制备壳聚糖纳米粒简便可靠,负载紫杉醇后纳米粒径明显变大,表面带有正电荷,且纳米粒对紫杉醇有很高的包封率,体外释药具有明显的缓释作用。  相似文献   

8.
背景:聚乳酸-羟基乙酸支架材料具有良好的生物相容性、无毒、可以良好的塑性,并具有一定的强度和韧性。但其降解产物为酸性,会影响局部pH值变化,不利组织生长。 目的:制备能够良好缓释蛋白类药物的复合支架。 方法:以牛血清蛋白为模型药物,以离子凝胶法制备壳聚糖微球。将微球与纳米羟基磷灰石和聚乳酸-羟基乙酸按一定比例混合,以冰粒子为致孔剂,采用粒子沥虑-冷冻干燥复合工艺制备CMs/nHA/PLGA复合缓释支架。利用扫描电镜、透射电镜、压泵仪和力学性能测试仪检测复合支架的形态和性能,并考察其在体外对蛋白类药物释放的规律。 结果与结论:制备的壳聚糖纳米微球形态良好,呈规则球形或类球形,粒径分布在220~770 nm,以380~650 nm为多。微球对药物的载药量为39.2%,包封率为68.3%,两者均与牛血清蛋白的初始量相关,载药量随牛血清蛋白初始量的增加而增加,包封率则反之。复合支架呈白色多孔状,孔径为125~355 mm,孔与孔之间联通良好,孔隙率达83.4%,压缩强度为1.4~ 2.1 MPa,10周降解率为28.6%。PLGA/nHA支架对牛血清蛋白的2 d累积释放量为85%,而壳聚糖和CMs/nHA/PLGA复合支架对牛血清蛋白的9 d累积释放量分别是为48.9%和35.7%。提示制作的壳聚糖纳米微球和CMs/nHA/PLGA支架材料对牛血清蛋白有良好的缓释作用,复合支架材料形态好,强度和降解速率合适。  相似文献   

9.
目的:以可生物降解高分子材料聚酸酐(Polyanhydrides,PAD) 作载体,包埋全反式维甲酸(ATRA),研制长效缓释微球ATRA-PAD肿瘤治疗剂。建立高效液相色谱法(HPLC)测定体系,以检测缓释治疗剂中ATRA含量,探讨体内外ATRA经时缓释变化规律。方法:采用乳剂一扩散溶剂挥发法制备维甲酸长效缓释微球ATRA-PAD肿瘤治疗剂,扫描电镜检测微球外观及微球粒径,HPLC检测微球载药量、包封率及体内外释药量。结果:所制治疗剂微球光滑圆整,大小均一,平均粒径:(154.42?6.76) nm,载药率:(16.52?1.45)%,包封率:(87.84?.79)%;体外释放实验证明该微球治疗剂可持续释放ATRA约50天,将其肌肉注射到大耳白兔体内,可稳定缓释ATRA近约45天。结论:ATRA-PAD治疗剂制备工艺合理,载药量及包封率均较高,体内外释药释药平稳并且具有明显的长效缓释作用。  相似文献   

10.
摘要 背景:聚乳酸-羟基乙酸纳米粒或纳米微球用于制备生物降解型缓释或定向给药体系已经研究了近30年,是国内外研究的热点。该体系能够控制粒径大小、延缓药物降解、延长药物释放时间、靶向释放、降低药物毒性和刺激性等。 目的:以紫杉醇为模型药物、聚乳酸-羟基乙酸为包裹材料,探索载药纳米粒的制备条件对粒径、包封率等的影响,确定最佳制备工艺条件。 方法:采用乳化-溶剂挥发法制备聚乳酸-羟基乙酸纳米粒,以粒径、包封率和载药量等为观察指标,通过正交设计法优化纳米粒制备工艺条件。 结果与结论:通过正交实验设计,优化了制备工艺条件,其最佳条件是超声乳化时间为15 min,乳化剂浓度为1%,油水相比为1∶25,合成温度为25 ℃。在此条件下进行实验,制备出的载药纳米粒粒径为217.6 nm,载药量1.79%,包封率85%。该制备工艺简单、稳定,优化制备条件,可制备出包封率高、粒径适宜的紫杉醇-聚乳酸-羟基乙酸纳米粒。 关键词:聚乳酸-羟基乙酸;紫杉醇;纳米粒;正交实验;缓释 doi:10.3969/j.issn.1673-8225.2010.42.009  相似文献   

11.
背景:庆大霉素珠链是较早用于治疗慢性骨髓炎的局部释药系统,但是由于其不能在体内降解吸收,须二次取出,因而限制了其的应用。因此国内外学者一直致力于可吸收材料负载抗生素装置的研究。 目的:制备负载庆大霉素的壳聚糖纳米粒,评价其性能,观察其体外释药行为及体外抗金黄色葡萄球菌的作用。 方法:以壳聚糖为药用载体,硫酸庆大霉素为模型药物,三聚磷酸钠为离子交联剂,采用离子交联法制备庆大霉素-壳聚糖纳米粒,在MH平板上进行抑菌实验,观察及评价其抑制金黄色葡萄球菌的作用。 结果与结论:制备的纳米粒形态为类圆形,粒径为40~70 nm,包封率及载药量分别为31.3%和15.4%,体外释药可持续14 d左右,对金黄色葡萄球菌的体外抑菌效果可持续25 d,在第5天纳米粒的抑菌作用达到最大,随着时间的推移,抑菌圈逐渐缩小。  相似文献   

12.
摘要 背景:医用纳米粒作为药物传递的新型载体,目前已经成为医药领域研究的重点。 目的:构建以生物可降解材料乳酸-羟基乙酸共聚物为载体,负载抗肿瘤药物5-氟尿嘧啶的载药纳米粒。 方法:利用复乳-溶剂挥发法制备乳酸-羟基乙酸共聚物载药纳米粒。场发射扫描电子显微镜观察纳米粒表面形态;激光粒度分析仪测定粒径分布并计算成球率;紫外分光光度计测定5-氟尿嘧啶载药量、包封率,并对体外释药进行评估。 结果与结论:纳米粒呈球性,平均粒径为(186±14) nm,成球率、载药量和包封率分别为70.8%、6.6%、28.1%,体外释药有突释现象,24 h内5-氟尿嘧啶累积释药量达36.2%,10 d达83.6%。提示成功制备乳酸-羟基乙酸共聚物载药纳米粒,其具有缓释效应。 关键词:乳酸-羟基乙酸共聚物;5-氟尿嘧啶;纳米粒;体外释药;缓释 doi:10.3969/j.issn.1673-8225.2011.16.017  相似文献   

13.
背景:由聚乳酸羟基乙酸/纳米羟基磷灰石复合材料制备的微球,在体外磷酸盐缓冲液中能够持续释放药物。 目的:制备聚乳酸羟基乙酸/纳米羟基磷灰石-5-氟尿嘧啶复合微球,探讨纳米羟基磷灰石对复合微球的载药量、包封率和体外释放等性质的影响。 设计、时间及地点:材料学体外观察,于2009-02/2009-07在华南理工大学材料学院实验室完成。 材料:聚乳酸羟基乙酸为济南岱罡生物有限公司产品,纳米羟基磷灰石由华南理工大学特种功能材料教育部重点实验室自制,5-氟尿嘧啶为上海楷洋生物技术有限公司产品。 方法:以水溶性抗癌药物5-氟尿嘧啶作为模型药物,先用纳米羟基磷灰石吸附药物,外包裹生物相容性好且可生物降解的聚乳酸羟基乙酸,采用单乳化溶剂挥发法(S/O/W)制备聚乳酸羟基乙酸/纳米羟基磷灰石-5-氟尿嘧啶复合微球。对载药前后的纳米羟基磷灰石进行透射电子显微镜、扫描电子显微镜观察和FTIR分析。采用扫描电镜、激光粒度仪和紫外分光光度计对微球的理化性质及体外释药性质进行分析。 主要观察指标:纳米羟基磷灰石与5-氟尿嘧啶分子之间的相互作用,微球载药量和包封率,药物体外释放。 结果:FTIR结果表明,纳米羟基磷灰石对5-氟尿嘧啶有较强的吸附作用。聚乳酸羟基乙酸/纳米羟基磷灰石-5-氟尿嘧啶复合微球的载药量和包封率分别为3.83%,86.78%,明显高于单纯的聚乳酸羟基乙酸-5-氟尿嘧啶微球。经过体外释放药物突释后,复合微球比单纯聚乳酸羟基乙酸微球的药物释放慢。在第27天,复合微球和单纯的聚乳酸羟基乙酸微球累积药物释率放分别为84.87%,99.87%。 结论:与单纯的聚乳酸羟基乙酸-5-氟尿嘧啶微球相比,由于纳米羟基磷灰石对5-氟尿嘧啶存在较强的吸附作用,使聚乳酸羟基乙酸/纳米羟基磷灰石-5-氟尿嘧啶复合微球的载药量和包封率得到了较大提高,具有更好的药物缓释效果。 关键词:5-氟尿嘧啶;乳酸-羟基乙酸共聚物;纳米羟基磷灰石;复合微球;药物释放 doi:10.3969/j.issn.1673-8225.2009.47.017  相似文献   

14.
背景:利用各种不同聚合物为载体材料,包裹胰岛素等蛋白多肽类药物的微球缓释系统有可能克服此类药物稳定性差、体内半衰期短、易水解变性的缺陷。 目的:制备一种胰岛素缓释微胶囊,并观察其体外释放效果和体内降血糖活性。 设计、时间及地点:对比观察实验,于2007-05/2008-01在哈尔滨工业大学生物医学中心纳米药物与生物传感器实验室完成。 材料:以硫酸葡聚糖和Fe3+为壁材,采用静电吸引层层自组装技术制备胰岛素缓释微胶囊INS(DS/Fe3+)。Wistar雄性大鼠腹腔注射链脲佐菌素制备糖尿病大鼠模型。 方法:通过体外释放实验观察INS(DS/Fe3+)的缓释效果。取糖尿病模型大鼠18只,随机分成3组,其中两组分别皮下注射胰岛素注射液5 U/kg或胰岛素微胶囊100 U/kg,第3组灌胃胰岛素微胶囊100 U/kg。 主要观察指标:胰岛素微胶囊的包封率、载药量、体外释放效果及体内降血糖活性。 结果:胰岛素缓释微胶囊INS(DS/Fe3+)的包封率和载药量分别在60%和40%以上;体外释放实验显示INS(DS/Fe3+)有较好的缓慢释放特性,随着包裹层数增加,药物释放速度减慢;体内活性实验表明皮下注射胰岛素微胶囊在体内能够保持6~10 h的降血糖效果,灌胃给药未表现出降血糖效果。 结论:以硫酸葡聚糖铁为载体,静电吸引层层自组装法制备的胰岛素缓释微胶囊稳定性好,能够维持较长时间的降血糖效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号