首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S E Dryer 《Brain research》1988,443(1-2):173-182
The characteristics of excitatory amino acid-evoked currents and of excitatory synaptic events have been examined in lamprey Müller neurons using voltage clamp and current clamp recording techniques. Application of glutamate evoked depolarizations associated with a decrease in input resistance. The reversal potential of the responses was -35 mV. Under voltage clamp conditions, a series of excitatory amino acid agonists evoked inward currents associated with little or no increase in baseline current noise. The order of potency of the excitatory amino acid agonists was quisqualate greater than kainate greater than glutamate greater than aspartate, while N-methyl-D-aspartic acid (NMDA) was inactive. Inward currents evoked by glutamate, as well as by kainate and quisqualate were attenuated reversibly by 1 mM kynurenic acid (KYN). In contrast, glutamate-evoked currents were not affected by 100 microM D(-)-2-amino-5-phosphonovaleric acid (APV), a selective NMDA antagonist. Spontaneously occurring and stimulus-evoked excitatory postsynaptic events were antagonized reversibly by 1 mM KYN. At this concentration, KYN had no effect on membrane potential, input resistance, or excitability of the cells. In contrast, excitatory postsynaptic currents were unaffected by APV. It is concluded that both glutamate responses and excitatory synaptic transmission in lamprey Müller neurons are mediated by non-NMDA-type receptors and that these receptors are associated with ionic channels with a low elementary conductance. The combined pharmacological and biophysical characteristics of these responses are therefore different from those previously reported in other preparations. Spontaneous (but not stimulus-evoked) inhibitory synaptic events in Müller neurons were blocked reversibly by 1 mM KYN but not by 100 microM APV, suggesting that excitation of interneurons inhibitory to Müller cells was also mediated by non-NMDA receptors.  相似文献   

2.
Z G Jiang  E Shen  N J Dun 《Brain research》1990,535(1):110-118
Intracellular recordings were made from antidromically identified motoneurons in neonate (12-22 days) rat transverse spinal cord slices and the transmitters and receptors probably involved in initiating the excitatory (EPSP) and inhibitory (IPSP) postsynaptic potentials were investigated. Stimulation of dorsal roots elicited in motoneurons an EPSP, an IPSP, or an EPSP followed by an IPSP. EPSPs in 70% of motoneurons had a short latency (less than or equal to 1 ms) and in the remaining cells a latency longer than 1 ms. The IPSPs had a long latency (greater than or equal to 1 ms). Short- and long-latency EPSPs were enhanced by the acidic amino acid uptake inhibitor L-aspartic acid-beta-hydroxamate (AAH) and depressed by the non-selective glutamate receptor antagonists gamma-D-glutamylglycine (DGG) and kynurenic acid. Short-latency EPSPs were suppressed by the quisqualate/kainate (QA/KA) receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) but not by the N-methyl-D-aspartate (NMDA) receptor antagonists D-(-)-2-amino-5-phosphonovaleric acid (APV) and ketamine. Long-latency EPSPs were reduced by DNQX as well as by APV and ketamine. Superfusion of the slices with a Mg-free solution increased the EPSPs and unmasked a late, APV-sensitive component. The IPSP was reduced by the glycine antagonist strychnine as well as by APV and ketamine but resistant to DNQX. The results indicate that stimulation of dorsal roots elicited in motoneurons a monosynaptic EPSP mediated by glutamate/aspartate acting predominantly on the QA/KA subtype of glutamate receptors; an NMDA component can be unveiled in Mg-free solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
L. Brodin  S. Grillner  C.M. Rovainen   《Brain research》1985,325(1-2):302-306
The motor pattern underlying swimming can be elicited in an in vitro preparation of the lamprey spinal cord by applying excitatory amino acids in the bath activating N-methyl-D-aspartate (NMDA) receptors and kainate receptors, but not quisqualate receptors. L-DOPA exerts a weak rythmogenic effect due to an action on kainate receptors. The kainate-induced rhythm is unchanged when a NMDA receptor antagonist is applied (2APV) and the N-methyl-aspartate-induced fictive locomotion can occur when kainate receptors are blocked (PDA). The burst frequency of the NMA-induced activity (dose range 30-5000 microM) is wide and ranges from 0.05-0.1 Hz up to 2.5-4 Hz, while the kainate-induced activity (dose range 7-30 microM) ranges from 0.5-1 Hz up to 4-8 Hz. This frequency range overlaps largely with that of the intact swimming animal. The findings further consolidate that NMDA receptors are efficient and demonstrates that kainate can also be effective in inducing fictive locomotion, and also that activation of either receptor type is sufficient. It has previously been shown that fictive locomotion elicited via sensory stimuli is depressed by NMDA and kainate receptor antagonists. It is suggested that these effects, presumably via aspartate and/or glutamate actions, are exerted on the input stage of interneuronal network.  相似文献   

4.
The trunk and tail skin of Xenopus laevis embryos near the time of hatching is innervated by the mechanoreceptive free nerve endings of Rohon-Beard neurons, a homogeneous class of cutaneous primary afferent fibers. Rohon-Beard neurons have cell bodies and axons in the dorsal spinal cord, where they monosynaptically excite a population of dorsolaterally situated interneurons (Clarke and Roberts, 1984). EPSPs can be recorded in these dorsolateral interneurons following electrical stimulation of the unmyelinated neurites of Rohon-Beard neurons in the skin. The EPSPs are dual component, consisting of separate fast and slow potentials that are usually evoked synchronously and that closely resemble those described previously in Xenopus and lamprey motoneurons (Dale and Roberts, 1985; Dale and Grillner, 1986). The excitation of dorsolateral interneurons by Rohon-Beard neurons is reduced by the bath application of excitatory amino acid antagonists. Kynurenic acid suppresses both the fast and slow components of the EPSPs, while both (+/-)-2-amino-5-phosphonovaleric acid (APV) and 1 mM magnesium reduce the slow component but have little or no effect on the peak amplitude of the EPSPs. These data suggest that Rohon-Beard neurons release an excitatory amino acid neurotransmitter, which acts simultaneously at both N-methyl-D-aspartate (NMDA) and non-NMDA receptor types. This is the first direct demonstration of dual-component excitatory amino acid-mediated synaptic transmission from cutaneous primary afferent neurons in the vertebrate spinal cord. The bath application of the agonists NMDA, kainate, or quisqualate in salines containing 1 microM TTX depolarized the interneurons and reduced their input resistance, which suggests that the interneurons possess all 3 types of excitatory amino acid receptor. Kynurenic acid strongly inhibits responses to NMDA and kainate, but is relatively less effective against the larger responses of quisqualate in this system.  相似文献   

5.
We determined the contribution of glutamate receptor subtypes to developing excitatory synaptic transmission in isolated spinal cord of rat embryos. Using electrophysiological and morphological techniques, we studied the pattern of development of synapses between dorsal root afferents and motoneurons in lumbar spinal cords of 15- to 21-d-old rat embryos. Motoneuron dendritic fields and afferent projections onto motoneurons were identified by labeling with HRP. Afferents first entered the gray matter at Day 15 of gestation, and by Day 16 they terminated close to motoneuron dendritic trees. Afferent axons projected onto motoneuron dendritic fields at Day 17, when boutons were detected on motoneuron dendrites that were crossed by afferent axons. To determine the time course of formation of functional sensorimotor synapses and their pharmacological properties, a dorsal root was stimulated while recording intracellularly from segmental motoneurons. At Day 16, excitatory postsynaptic potentials (EPSPs) with long latencies, slow rates of rise, and long durations were recorded. The amplitudes of these EPSPs increased with membrane depolarization and in the absence of extracellular Mg2+. These EPSPs were blocked by D-2-amino-5-phosphonovalerate (APV) and ketamine, which are selective antagonists of N-methyl-D-aspartate (NMDA) receptors. These findings suggest that initial synaptic transmission in embryonic motoneurons is mediated solely by NMDA receptors. Short-latency EPSPs with fast rates of rise were first recorded in most motoneurons by Day 17. These EPSPs were composed of fast- and slow-rising potentials. The slow component was blocked by APV, while the fast component was eliminated by 6-cyano-7-nitroquinoxaline-2,3-dione and kynurenate. This indicates that the short-latency EPSPs are mediated by both NMDA and non-NMDA receptors. Dose-response curves of motoneurons to L-glutamate, NMDA, and kainate demonstrated that motoneurons are sensitive to these agonists prior to the formation of synapses between afferents and motoneurons. Motoneuron responses to NMDA and kainate increased immediately after the onset of short-latency EPSPs. This increased sensitivity could be due to extracellular factors influenced by growing sensory axons or intrinsic properties of differentiating motoneurons.  相似文献   

6.
This study evaluated the role of excitatory amino acid (EAA) receptor activation in spreading depression (SD), using the in vitro turtle cerebellum as a model system. SD was triggered by electrical stimulation or by elevated K+ after the cerebellum had been conditioned for at least 30 min with physiological saline in which most of the chloride had been replaced by propionate. SD was recognized as a transient (1-3 min) negative shift of extracellular potential accompanied by depression of evoked potentials (15-30 min) and an increase of extracellular K+ up to 60 mM, which spread across the cerebellum at rates of 1-7 mm/min. SD usually commenced in the granular layer, which apparently contains the 3 major EAA receptor subtypes, quisqualate, kainate and N-methyl-D-aspartate (NMDA), then subsequently spread to the molecular layer, which is largely free of NMDA receptors. Glutamate, aspartate, NMDA, kainate and quisqualate all triggered SD. Kynurenic acid and 2-aminophosphonovaleric acid (APV) inhibited SD under certain conditions further suggesting involvement of EAA receptors. The initiation of SD was blocked by high Mg2+ and facilitated in low extracellular Mg2+, which also eliminated the delay in molecular layer SD onset. Our data suggest that no one EAA receptor subtype is singly responsible for SD.  相似文献   

7.
A new series of potent antagonists of excitatory neurotransmission in the rat hippocampus has been identified. These derivatives of piperazine-2,3-dicarboxylate (PzDA) include the most potent acidic amino acid antagonists yet described for Schaffer collateral-commissural EPSPs. These antagonists also effectively block excitatory synaptic responses recorded in the lateral and medial perforant pathways and in the mossy fiber pathway. The PzDA derivatives also block focal depolarizations produced by kainate, quisqualate, and N-methyl-D-aspartate. N-methyl-D-aspartate responses are more susceptible to inhibition by PzDA derivatives, although the spectrum of antagonism of N-methyl-D-aspartate and synaptic responses by PzDA derivatives is not parallel. However, the antagonism of kainate and quisqualate responses by PzDA derivatives shows the same rank order of potency as synaptic responses. These data indicate that synaptic receptors in the hippocampus have a pharmacologic profile similar to that of kainate or quisqualate receptors.  相似文献   

8.
Several lines of evidence indicate a possible interaction between the major inhibitory and excitatory cortical neurotransmitters, GABA and glutamate. To assess the neurochemical basis for such an interaction, we examined the effects of glutamate and several analogs on GABA-dependent chloride uptake in a mouse cortical synaptoneurosome preparation. L-Glutamate and the specific receptor subtype ligands kainate and quisqualate led to a small but significant enhancement in chloride uptake in the presence, but not the absence, of the GABA analog muscimol (5 microM). Enhancement was seen at excitatory amino acid (EAA) concentrations of 2-10 microM, but not at higher concentrations. D-Glutamate, NMDA, the NMDA-related antagonists APV and MK801, and the kainate/quisqualate antagonist CNQX, had no effect on chloride uptake. However, CNQX (50 microM) but not APV (50 microM) blocked the increase in chloride uptake due to kainate or quisqualate (10 microM). In addition, depolarization of synaptoneurosomes using high potassium (40 mM KC1) or ouabain pretreatment (5 microM) blocked the effects of kainate and quisqualate. Glutamate, kainate, and quisqualate had no effect on binding at the benzodiazepine, TBPS, or GABA sites on the GABAA receptor complex.  相似文献   

9.
S Alford  S Grillner 《Brain research》1990,506(2):297-302
The motor pattern underlying locomotion in the lamprey is activated and maintained by excitatory amino acid neurotransmission. The quinoxalinediones 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are potent and selective antagonists of non-N-methyl-D-aspartate (NMDA) receptors in the mammalian central nervous system. In the lamprey, these compounds are now shown to block fast excitatory synaptic potentials elicited in neurones of the spinal ventral horn. They selectively antagonise responses to the application of selective kainate and quisqualate receptor agonists (kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxalone (AMPA)) but do not influence NMDA receptor-mediated responses. Additionally, it is shown that the activation of NMDA receptors is sufficient to elicit and maintain fictive locomotion after blockade of non-NMDA receptors with either DNQX or CNQX. Conversely, activation of quisqualate receptors with AMPA, but not quisqualate leads to fictive locomotion with properties much like that activated by kainate.  相似文献   

10.
Shinji Homma   《Brain research》1985,344(1):96-102
Depolarizations, conductance increases and time courses of the responses to bath application of glutamate, aspartate, DL-homocysteate, N-methyl-DL-aspartate (NMDLA), quisqualate and kainate were determined in interneurons of the isolated spinal cord of the lamprey, one of the most primitive vertebrates. Conductance increases produced by these excitants in perfusate containing tetrodotoxin (0.5 microgram/ml), 4-aminopyridine (1 mM) and without Ca2+ were very small in comparison with those produced by glycine or GABA. NMDLA-induced depolarizations were associated with conductance decreases and rhythmic oscillations in membrane potentials in this perfusate. Quisqualate was strongest among these amino acids in producing depolarizations and conductance increases. Responses induced by analogs were slower than those produced by glutamate and aspartate. Phylogenetic distribution of N-methyl-D-aspartate receptors on neurons and muscles is discussed.  相似文献   

11.
The actions of the putative quisqualate-selective agonist DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) were examined in identified embryonic chick motoneurons using gigaseal recording techniques and compared with properties of the selective non-NMDA excitatory amino acid agonists kainate and quisqualate. Pressure application of AMPA induces an inward going current when neurons are voltage-clamped at negative membrane potentials. The current-voltage relationship for this response is linear with reversal near 0 mV. Over the range of 1 microM-10 mM, the AMPA-induced current is dose-dependent with an ED50 of 40 microM. AMPA currents are insensitive to the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate, and the putative quisqualate selective blocker, glutamate diethyl ester, but are partially inhibited by kynurenic acid. In competition experiments, applications of saturating concentrations of AMPA and either kainate or quisqualate produce responses intermediate between the response to either agonist alone, indicating commonality in the mechanism of these agents. Applications of AMPA with the NMDA-selective agonist aspartate give an additive response. Analysis of current fluctuations indicates that AMPA, quisqualate, and kainate gate a channel with a primary conductance near 20 pS. Differences in maximal macroscopic current evoked by saturating concentrations of AMPA, kainate, and quisqualate cannot be explained by differences in mean channel open time as the most efficacious agonist, kainate, has the shortest channel open time (AMPA = 5.9 +/- 0.4 msec, kainate = 2.7 +/- 0.1 msec, quisqualate = 5.0 +/- 0.5 msec). Rather, kainate induces a greater frequency of channel opening. This finding contrasts with results obtained at the nicotinic ACh receptor, where the most efficacious agonists have the longest mean channel open time. Our results suggest that AMPA acts at the same receptor-channel complex as kainate and quisqualate on chick motoneurons and support the hypothesis that only 2 classes of excitatory amino acid receptor complexes exist in this preparation.  相似文献   

12.
Effects of a spider toxin (JSTX) on hippocampal CA1 neurons in vitro   总被引:3,自引:0,他引:3  
The effect of a toxin (JSTX) obtained from Nephila clavata (Joro spider) on the CA1 pyramidal neurons of the hippocampus was studied using slice preparations. JSTX blocked the excitatory postsynaptic potentials (EPSPs) in the pyramidal neuron evoked by Schaffer collateral stimulation but was without effect on the antidromic action potentials or on the resting conductance. Depolarization induced by ionophoretic application of glutamate was readily suppressed by JSTX but aspartate-induced depolarization was much less sensitive to the toxin. Among preferential agonists activating 3 receptor subtypes for excitatory amino acids, quisqualate responses were most effectively suppressed by JSTX. Kainate responses were similarly suppressed but in some cells higher concentration of the toxin was needed to block the responses. N-methyl-D-aspartate (NMDA) responses were the least sensitive to JSTX but they were suppressed by +/- 2-amino-5-phosphonovaleric acid (APV). Long term potentiation (LTP) once it had taken place was not completely inhibited by APV. In the presence of JSTX, however, LTP was blocked and tetanic stimuli produced only a short-lived potentiation. In Mg2+ free solution, an orthodromic stimulation evoked repetitive spike responses which were superimposed on the depolarization following the initial spike. APV suppressed the depolarization and associated spikes leaving an orthodromic response which was sensitive to JSTX. The results suggest that JSTX blocks EPSPs in CA1 pyramidal neurons which are mediated by non-NMDA type receptors.  相似文献   

13.
H Nakanishi  K Yamamoto  H Kita 《Brain research》1992,583(1-2):287-291
Postsynaptic potentials evoked in the zona incerta (ZI) neurons were studied in in vitro slice preparations. Lateral hypothalamus (LH) and local stimulation evoked fast IPSPs, fast EPSPs, and slow EPSPs. The amplitude of the slow EPSPs increased when the neuron was hyperpolarized by a low intensity current injection but was blocked when it was hyperpolarized with a strong current. The slow EPSPs were reversibly suppressed by an application of 50 microM DL-2-amino-5-phosphonovaleric acid (APV) and 20 microM 3-[(+/-)-2-carboxypiperazine-4-yl-]-propyl-1-phosphonic acid (CPP). The slow EPSPs were augmented in Mg-free medium and by train pulse stimulation. Pressure application of NMDA induced a depolarization similar to the slow EPSP. On the other hand, the fast EPSPs showed a conventional voltage dependency and were antagonized by kynurenic acid but not by APV or CPP. The fast IPSPs were completely blocked by 10 microM bicuculline methiodide. The results indicate that LH and local stimulation evoked monosynaptic fast EPSPs and slow EPSPs mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors, respectively. The IPSPs appear to be mediated by GABAA receptors and regulate the expression of NMDA receptor-mediated slow EPSPs.  相似文献   

14.
Dose-response curves for activation of excitatory amino acid receptors on mouse embryonic hippocampal neurons in culture were recorded for 15 excitatory amino acids, including the L-isomers of glutamate, aspartate, and a family of endogenous sulfur amino acids. In the presence of 3 microM glycine, with no extracellular Mg, micromolar concentrations of 11 of these amino acids produced selective activation of N-methyl-D-aspartate (NMDA) receptors. L-Glutamate was the most potent NMDA agonist (EC50 2.3 microM) and quinolinic acid the least potent (EC50 2.3 mM). Dose-response curves were well fit by the logistic equation, or by a model with 2 independent agonist binding sites. The mean limiting slope of log-log plots of NMDA receptor current versus agonist concentration (1.93) suggests that a 2-site model is appropriate. There was excellent correlation between agonist EC50S determined in voltage clamp experiments and KdS determined for NMDA receptor binding (Olverman et al., 1988). With no added glycine, and 1 mM extracellular Mg, responses to NMDA were completely blocked; responses to kainate and quisqualate were unchanged. Under these conditions, glutamate and the sulfur amino acids activated a rapidly desensitizing response, similar to that evoked by micromolar concentrations of quisqualate and AMPA, but mM concentrations of L-aspartate, homoquinolinic acid, and quinolinic acid failed to elicit a non-NMDA receptor-mediated response. Except for L-glutamate (EC50 480 microM), the low potency of the sulfur amino acids prevented the study of complete dose-response curves for the rapidly desensitizing response at quisqualate receptors. Small-amplitude nondesensitizing quisqualate receptor responses were activated by much lower concentrations of all quisqualate receptor agonists. Full dose-response curves for the nondesensitizing response were obtained for 9 amino acids; L-glutamate was the most potent endogenous agonist (EC50 19 microM). Domoate (EC50 13 microM) and kainate (EC50 143 microM) activated large-amplitude, nondesensitizing responses.  相似文献   

15.
To evaluate actions of glutamate on excitatory synaptic transmission in the central nervous system, we examined glutamate-induced changes in the paired pulse facilitation of monosynaptic excitatory post-synaptic potentials evoked by stimulation of the lateral column fibers (LC-EPSPs) on lumbar motoneurons in the frog spinal cord. Glutamate (1 mM) depolarized motoneurons both in the presence and absence of Mg2+. In most cells perfused with Mg(2+)-free or high Ca(2+)-Mg2+ solutions, the glutamate potential was accompanied by a reduction in peak amplitude of EPSPs, although the degree of change varied with the cells. Glutamate enhanced the EPSP amplitude in a few cells with Mg(2+)-free and high Ca(2+)-Mg2+ solutions, and in most cells with high Mg2+ medium. In 3/5 cells tested, the paired pulse facilitation of EPSPs was reduced by glutamate when the EPSP amplitude either increased or decreased. NMDA (50 microM), kainate (50-100 microM), quisqualate (5-50 microM) and L-2-amino-4-phosphonobutyrate (L-AP4, 1 mM) also decreased the facilitation in about half of the cells tested. The glutamate-induced decrease in the facilitation was observed in both the presence and absence of Mg2+ and was not affected by the concomitant application of glutamate and antagonists for non-NMDA or NMDA receptors, such as 6-cyano-7-nitro-quinoxalinediones (CNQX, 60 microM) or 2-amino-5-phosphonovalerate (APV, 250 microM). Glutamate reduced the facilitation of excitatory post-synaptic currents (EPSCs) recorded at a constant membrane potential under voltage clamp, when the EPSC amplitude either increased or decreased and when the input conductance either increased or decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Lennart Brodin  Sten Grillner   《Brain research》1985,360(1-2):139-148
The activation of N-methyl-D-aspartate (NMDA) and kainate receptors will evoke fictive locomotion in the appropriate motor pattern for locomotion in the isolated lamprey spinal cord, but not a selective activation of quisqualate receptors. The present experiments test whether the initiation of locomotion in response to sensory stimulation depends on these types of receptors. An in vitro preparation of the lamprey spinal cord with part of its tailfin left innervated has been used. In this preparation a sequence of fictive locomotion (i.e. alternating bursts in the segmental ventral roots with a rostrocaudal phase lag) can be elicited by continual sensory stimulation of the tailfin. The effects of excitatory amino acid antagonists were studied by recordings from ventral roots (extracellularly) and motoneurones (intracellularly). It was found that the strong initial bursts of each swimming sequence induced by sensory stimulation were depressed by combined NMDA/kainate antagonists (cis-2,3-piperidine dicarboxylate (PDA) and gamma-D-glutamylglycine (gamma-DGG] whereas the less intense burst activity, occurring particularly towards the end of each swimming sequence, was depressed by a selective NMDA antagonist, 2-amino-5-phosphonovalerate (2-APV). This condition could be mimicked in an isolated spinal cord preparation by an application of L-glutamate; the low-level fictive locomotion induced by low doses of L-Glu (less than 100 microM) was depressed by a NMDA antagonist (2-APV), and, if higher doses were applied, the activity was only depressed by PDA/gamma-DGG. The mode and time course of the depression (by excitatory amino acid antagonists) of fictive locomotion, induced by sensory stimulation, shows that the putative excitatory amino acid neurotransmitter directly or indirectly acts at the pattern generating circuitry within the spinal cord.  相似文献   

17.
A series of ω-phosphono-α-car?ylic acids were tested as antagonists of excitatory amino acid depolarizations and long-term potentiation (LTP) in region CA1 of rat hippocampal slices. The 5- and 7-phosphono compounds (±AP5and±AP7) blocked N-methyl-D-aspartate (NMDA) depolarizations and prevented the induction of LTP of the synaptic field potential and population spike components of the Schaffer collateral response.±AP5and±AP7 did not reduce kainate or quisqualate depolarizations and did not affect unpoten synaptic response amplitude.±AP5, ±AP6and±AP8 did not block amino acid excitant responses or LTP.These results demonstrate that NMDA receptors present in hippocampal region CA1 are not necessary for normal synaptic transmission, but are involved in the initiation of long-term synaptic plasticity.  相似文献   

18.
We investigated the acute effects of bath applied BDNF on synaptic input to motoneurons in the hemisected spinal cord of the neonatal rat. Motoneurons were recorded intracellularly, and BDNF-induced modulation of the synaptic response to stimulation of the homologous dorsal root (DR) and the ventrolateral funiculus (VLF) was examined. All motoneurons exhibited long-lasting (up to several hours) depression of the DR-activated monosynaptic AMPA/kainate-receptor mediated EPSP in response to BDNF but in about half of the motoneurons this was preceded by facilitation. VLF-evoked AMPA/kainate EPSPs in the same motoneurons were unaffected. BDNF effects were blocked by K252a and were not observed in neonates older than 1 week. Bath applied NMDA antagonists APV and MK-801 abolished both facilitatory and inhibitory actions of BDNF on the AMPA/kainate responses indicating the requirement for functional NMDA receptors. The pharmacologically isolated, DR-evoked, NMDA receptor-mediated response exhibited the same pattern of changes after BDNF superfusion. When introduced into the motoneuron through the recording microelectrode, MK-801 selectively blocked the facilitatory action of BDNF. Furthermore, BDNF enhanced NMDA-induced depolarization of the motoneuron in the presence of tetrodotoxin (TTX), thus, confirming its facilitatory effect on motoneuron NMDA receptors. Bath application of either BDNF or NMDA depressed the monosynaptic EPSP after selective blockade of postsynaptic NMDA receptors indicating a role for presynaptic NMDA receptors in BDNF-induced inhibitory action. Thus, BDNF-induced facilitation of monosynaptic EPSPs in neonatal rats is mediated by direct effects on postsynaptic NMDA receptors, while its inhibitory action occurs presynaptically.  相似文献   

19.
We have studied the effects of tetanic stimulation of the corticostriatal pathway on the amplitude of striatal excitatory synaptic potentials. Recordings were obtained from a corticostriatal slice preparation by utilizing both extracellular and intracellular techniques. Under the control condition (1.2 mM external Mg2+), excitatory postsynaptic potentials (EPSPs) evoked by cortical stimulation were reversibly blocked by 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an antagonist of dl-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) ionotropic glutamate receptors, while they were not affected by 30 - 50 microM 2-amino-5-phosphonovalerate (APV), an antagonist of N-methyl-d-aspartate (NMDA) glutamate receptors. In the presence of 1.2 mM external Mg2+, tetanic activation of cortical inputs produced long-term depression (LTD) of both extracellularly and intracellularly recorded synaptic potentials. When Mg2+ was removed from the external medium, EPSP amplitude and duration increased. In Mg2+-free medium, cortically evoked EPSPs revealed an APV-sensitive component; in this condition tetanic stimulation produced long-term potentiation (LTP) of synaptic transmission. Incubation of the slices in 30 - 50 microM APV blocked striatal LTP, while it did not affect LTD. In Mg2+-free medium, incubation of the slices in 10 microM CNQX did not block the expression of striatal LTP. Intrinsic membrane properties (membrane potential, input resistance and firing pattern) of striatal neurons were altered neither by tetanic stimuli inducing LTD and LTP, nor by removal of Mg2+ from the external medium. These findings show that repetitive activation of cortical inputs can induce long-term changes of synaptic transmission in the striatum. Under control conditions NMDA receptor channels are inactivated by the voltage-dependent Mg2+ block and repetitive cortical stimulation induces LTD which does not require activation of NMDA channels. Removal of external Mg2+ deinactivates these channels and reveals a component of the EPSP which is potentiated by repetitive activation. Since the striatum has been involved in memory and in the storage of motor skills, LTD and LTP of synaptic transmission in this structure may provide the cellular substrate for motor learning and underlie the physiopathology of some movement disorders.  相似文献   

20.
We used brainstem motoneurons recorded in organotypic slice co-cultures maintained for more than 18 days in vitro, together with multibarrel ionophoretic applications of glutamate receptor agonists and bath applications of specific blocking agents, to study the responses of rat brainstem motoneurons to glutamate receptor activation, and the contribution of these receptors to synaptic transmission. Differentiated brainstem motoneurons in vitro are depolarized by glutamate, N-methyl-d-aspartate (NMDA) and dl-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) iontophoresis, and express NMDA, AMPA and also specific kainate receptors, as evidenced by (+/-)2-amino-5-phosphonovaleric acid (APV)- and (-)1-(4-aminophenyl)-3-methyl-carbamoyl-4-methyl-7, 8-methylenedioxy-3,4-dihydro-5H-2,3-benzo-diazepine [GYKI 53784 (LY303070)]-resistant depolarizations. Electrical stimulations applied to the dorsal part of the explant trigger excitatory synaptic potentials with latencies distributed in three regularly spaced groups. Excitatory postsynaptic potentials (EPSPs) in the earliest group have a similar latency and time course and correspond to monosynaptic activation. EPSPs in later groups have more scattered latencies and time courses and correspond to polysynaptic activation. Monosynaptic EPSPs are insensitive to the specific NMDA blocker APV, and are completely and reversibly suppressed by the non-competitive AMPA receptor antagonist GYKI 53784 (LY303070). Detailed analysis of the spontaneous excitatory synaptic activity shows that APV decreases the frequency of spontaneous EPSPs without modifying their shape or amplitude. We conclude that excitatory synapses on brainstem motoneurons in vitro are mainly activated through AMPA receptors (AMPA-Rs). NMDA receptors (NMDA-Rs) are present in the membrane, but are located either at extrasynaptic sites or silent synapses, and are not directly involved in synaptic transmission on motoneurons. On the contrary, NMDA receptors contribute to synaptic transmission within the premotor interneuronal network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号