首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
We have previously reported that hyperthermia induces the expression of a heat shock gene in the rabbit brain (Sprang and Brown, Mol Brain Res 3:89-93, 1987). Striking regional and cell type differences in the pattern of induction of the hsp70 mRNA were noted. Tissue injury also induces the rapid induction of hsp70 mRNA in the mammalian brain (Brown et al., Neuron 2:1559-1564, 1989). In the present study, in situ hybridization with 35S-labelled riboprobes specific for constitutive and inducible hsp70 mRNA species was employed to investigate the effect of fever-like temperatures on hsp70 gene expression in the rabbit spinal cord. Expression of constitutive hsp70 mRNA was detected in large motor neurons of both control and hyperthermic animals. Within 1 hr after hyperthermia, a massive induction of inducible hsp70 mRNA was noted in fibre tracts of the spinal cord, a pattern consistent with a strong glial response to heat shock. Induction was not observed in the large motor neurons.  相似文献   

4.
The expression and localization of the insulin receptor (IR) was examined in rat dorsal root ganglia (DRG) and spinal cord using Western blotting, in situ hybridization and immunocytochemistry. Western blotting showed that the molecular weight of the IR beta subunit was higher in PNS than that found in CNS. Both IR mRNA and protein expressions were highest in small-sized sensory DRG neurons and myelinated sensory root fibers expressed higher levels of IR protein than myelinated anterior root fibers. In the spinal cord, IR immunoreactive neurons were present in lateral lamina V and in lamina X, suggesting the presence of IR in nociceptive pathways. Electronmicroscopy of DRGs revealed a polarized localization of the IR in abaxonal Schwann cell membranes, outer mesaxons in close vicinity to tight junctions of both myelinating and non-myelinating Schwann cells and to plasma membranes of sensory neurons. From these findings, we speculate that insulin may play a role in sensory fibers involved in nociceptive function often perturbed in diabetic neuropathy. The high expression of IR localizing to tight junctions of dorsal root mesaxons of DRGs may suggest a regulatory role on barrier functions compensating for the lack of a blood-nerve barrier in dorsal root ganglia. This is consistent with the colocalization of IR with tight junctions of the paranodal barrier and endoneurial endothelial cells in peripheral nerve.  相似文献   

5.
Development and maintenance of peripheral sensory and sympathetic neurons are regulated by target-derived neurotrophins, including nerve growth factor (NGF). To determine whether trophins are potentially critical prior to and during target innervation, for neuronal survival or axon guidance, in situ hybridization was performed in the rat embryo. We examined the expression of genes encoding NGF, neurotrophin-3 (NT-3), and their putative high-affinity receptors, trk A and trk C, respectively. Trks A and C were detected in dorsal root sensory ganglia (DRG) on embryonic day 12.5 (E12.5), implying early responsiveness to NGF and NT-3. NGF mRNA was expressed in the central spinal cord target and by the peripheral somite, at this early time, which thereby may function as a transient “guidepost” target for sensory fibers. Somitic expression was transient and was undetectable by E17.5. NT-3 was expressed in the DRG itself from E13.5 to 17.5, suggesting local transient actions on sensory neurons. NT-3 was also expressed in the ventral spinal cord at low levels on E13.5. We examined the trigeminal ganglion to determine whether cranial sensory neurons are similarly regulated. Trk A was detected in the trigeminal ganglion, while NGF was expressed in the central myelencephalon target, paralleling observations in the DRG and spinal cord. However, NT-3 and trk C were undetectable, in contrast to DRG, suggesting that the environment or different neural crest lineages govern expression of different trophins and trks. Apparently, multiple trophins regulate sensory neuron development through local as well as transient target mechanisms prior to innervation of definitive targets.  相似文献   

6.
The cellular distribution of GABAC receptor rho1 and rho2 subunits in the rat central nervous system remains controversial. We investigated how these subunits were distributed in cerebellum, hippocampus and spinal cord at postnatal day 1, 7 or in adult life. We found that in the adult cerebellum rho1 and rho2 mRNAs were expressed in Purkinje cells and basket-like cells only. In the hippocampus both subunits were expressed throughout the CA1 pyramidal layer, dentate gyrus and scattered interneurons with maximum staining intensity at P7. In the adult hippocampus in situ staining was predominantly found on interneurons. GABAC antibody labelling in P7 and adult hippocampus was largely overlapping with the in situ staining. Western blot analysis showed GABAC receptor in retina, ovary and testis. In the spinal cord the rho2 signal was consistently stronger than rho1 with overlapping expression patterns. At P1, the most intensely labelled cells were the motoneurons while on P7 and adult sections, interneurons and motoneurons were likewise labelled. On spinal neurons both rho1 and rho2 mRNAs showed somatodendritic localization, extending out for >100 microm with punctate appearance especially in adult cells. A similar spinal distribution pattern was provided with polyclonal antibody labelling, suggesting close correspondence between mRNA and protein compartmentalization. Electrophysiological experiments indicated that P1 spinal motoneurons did possess functional GABAC receptors even though GABAC receptors played little role in evoked synaptic transmission. Our results suggest a pattern of rho1 and rho2 subunit distribution more widespread than hitherto suspected with strong developmental regulation of subunit occurrence.  相似文献   

7.
Adult skin sensory neurons exhibit characteristic projection patterns in the dorsal horn of the spinal gray matter that are tightly correlated with modality. However, little is known about how these patterns come about during the ontogeny of the distinct subclasses of skin sensory neurons. To this end, we have developed an intact ex vivo somatosensory system preparation in neonatal mice, allowing single, physiologically identified cutaneous afferents to be iontophoretically injected with Neurobiotin for subsequent histological analyses. The present report, centered on rapidly adapting mechanoreceptors, represents the first study of the central projections of identified skin sensory neurons in neonatal animals. Cutaneous afferents exhibiting rapidly adapting responses to sustained natural stimuli were encountered as early as recordings were made. Well-stained representatives of coarse (tylotrich and guard) and fine-diameter (down) hair follicle afferents, along with a putative Pacinian corpuscle afferent, were recovered from 2-7-day-old neonates. All were characterized by narrow, uninflected somal action potentials and generally low mechanical thresholds, and many could be activated via deflection of recently erupted hairs. The central collaterals of hair follicle afferents formed recurrent, flame-shaped arbors that were essentially miniaturized replicas of their adult counterparts, with identical laminar terminations. The terminal arbors of down hair afferents, previously undescribed in rodents, were distinct and consistently occupied a more superficial position than tylotrich and guard hair afferents. Nevertheless, the former extended no higher than the middle of the incipient substantia gelatinosa, leaving a clear gap more dorsally. In all major respects, therefore, hair follicle afferents display the same laminar specificity in neonates as they do in adults. The widely held misperception that their collaterals extend exuberant projections into pain-specific regions of the dorsal horn during early postnatal life is shown to have multiple, deep-rooted underpinnings.  相似文献   

8.
Cannabinoid receptor mRNA was localized in adult rat brain by 35S-tailed oligonucleotide probes and in situ hybridization histochemistry. Labelling is described as uniform or non-uniform depending on the relative intensities of individual cells expressing cannabinoid receptor mRNA within a given region or nucleus. Uniform labelling was found in the hypothalamus, thalamus, basal ganglia, cerebellum and brainstem. Non-uniform labelling that resulted from the presence of cells displaying two easily distinguishable intensities of hybridization signals was observed in several regions and nuclei in the forebrain (cerebral cortex, hippocampus, amygdala, certain olfactory structures). Olfactory-associated structures, basal ganglia, hippocampus, and cerebellar cortex displayed the heaviest amounts of labelling. Many regions that displayed cannabinoid receptor mRNA could reasonably be identified as sources for cannabinoid receptors on the basis of well documented hodologic data. Other sites that were also clearly labelled could not be assigned as logical sources of cannabinoid receptors. The localization of cannabinoid receptor mRNA indicates that sensory, motor, cognitive, limbic, and autonomic systems should all be influenced by the activation of this receptor by either exogenous cannabimimetics, including marijuana, or the yet unknown endogenous “cannabinoid” ligand. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The distribution of mRNAs for metabotropic glutamate receptors, mGluR4 and mGluR7, which are highly sensitive for L-2-amino-4-phosphonobutyrate (L-AP4), was examined in the central nervous system of the rat by in situ hybridization. In general, the hybridization signals of mGluR7 mRNA were more widely distributed than those of mGluR4 inRNA, and differential expression of mGluR4 mRNA and mGluR7 mRNA was clearly indicated in some brain regions. Intense or moderate expression of mGluR4 mRNA was detected in the granule cells of the olfactory bulb and cerebellum, whereas no significant expression of mGluR7 mRNA was found in these cells. In other neurons or regions where mGluR7 mRNA was intensely or moderately expressed, no significant expression of mGluR4 mRNA was observed. Such were the mitral and tufted cells of the olfactory bulb; anterior olfactory nucleus; neocortical regions; cingulate cortex; retrosplenial cortex; piriform cortex; perirhinal cortex; CAl; CA3; granule cells of the dentate gyrus; superficial layers of the subicular cortex; deep layers of the entorhinal, parasubicular, and presubicular cortices; ventral part of the lateral septal nucleus; septohippo campal nucleus; triangular septal nucleus; nuclei of the diagonal band; bed nucleus of the stria terminalis; ventral pallidum; claustrum; amygdaloid nuclei other than the intercalated nuclei; preoptic region; hypothalamic nuclei other than the medial mammillary nucleus; ventral lateral geniculate nucleus; locus coeruleus; Purkinje cells; many nuclei of the lower brainstem other than the superior coUiculus, periaqueductal gray, interpeduncular nucleus, pontine nuclei, and dorsal cochlear nucleus; and dorsal horn of the spinal cord. Both mGluR4 mRNA and mGluR7 mRNA were moderately or intensely expressed in the olfactory tubercie, superficial layers of the entorhinal cortex, CA4, septofimbrial nucleus, intercalated nuclei of the amygdala, medial mammillary nucleus, many thalamic nuclei, and pontine nuclei. Intense expression of both mGluR4 mRNA and mGluR7 mRNA was further detected in the trigeminal ganglion and dorsal root ganglia, whereas no significant expression of them was found in the pterygopalatine ganglion and superior cervical ganglion. The results indicate differential roles of the L-AP4-sensitive metabotropic glutamate receptors in the glutarnatergic nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
Organization of spinal inputs to the perihypoglossal complex in the cat   总被引:1,自引:0,他引:1  
First- and second-order spinal afferents to the perihypoglossal complex were sought by using axonal transport of WGA-HRP. Injections in C1, 2, and 3 dorsal root ganglia resulted in axonal labeling in the nucleus intercalatus and the external cuneate nucleus, with a number of retrogradely labeled cells seen as well in the latter. A similar pattern of axonal labeling in the nucleus intercalatus as well as several retrogradely labeled cells were found after spinal cord injections at levels C1, 2, and 3. A prominent field of labeled axons was also present in the rostral main cuneate nucleus. No labeling was seen in the perihypoglossal nuclei after injections in the spinal cord or dorsal root ganglia at levels caudal to C3. After injections of HRP into the perihypoglossal nucleus we were able to identify labeled neurons within Rexed's laminae V-VIII and the central cervical nucleus. Anterograde labeling in the main cuneate nucleus was observed after C1 to C5 ganglion and C1 to C6 cord injections. The pattern and extent of labeling in the perihypoglossal nuclei and adjacent structures seen after cerebellar injections into lobules V and VI were comparable to those previously reported and permitted evaluation of the relay from dorsal root ganglia through the intercalatus to the vermis. Topography of the cervical projections to the nucleus intercalatus is considered with respect to that of the perihypoglossal-collicular projection. A discussion is offered of the apparent importance of nucleus intercalatus as a relay of cervical and vestibular afferent information to premotor structures involved in neck motor control. The perihypoglossal complex is viewed as being organized in such a fashion as to allow the nuclei intercalatus and prepositus hypoglossi to function as key structures in the integration of inputs related to neck and ocular motor control, respectively.  相似文献   

12.
By using improved methods for in situ hybridization to detect expression of androgen receptor (AR) mRNA, the distribution of expression was mapped in the adult male zebra finch brain. In the neural song circuit, robust expression was found in area X of the lobus parolfactorius (LPO) as well as in other song regions previously reported. Expression was also found in many areas of the hypothalamus and dorsal thalamic nuclei, nucleus intercollicularis and ventricular areas of the midbrain, cerebellar Purkinje and granule cells, the hyperstriatum, medial neostriatum, medial LPO, and archistriatum. In juvenile males, AR mRNA expression was first detected in nucleus high vocal center (HVC) at posthatch day 9 (P9), in area X at P9-P11, and in the region of the robust nucleus (RA) in the medial archistriatum by P7. Estrogen treatment of hatchling females caused an increase in the expression of AR mRNA in HVC and area X by P11, whereas treatment of hatchling males with the aromatase inhibitor fadrozole decreased the expression of AR mRNA at P11. The present results indicate that masculine development of AR expression begins in area X and HVC before they are thought to be synaptically connected, suggesting that different song nuclei initiate sexual differentiation independently of transsynaptic masculinizing influences. The present results suggest that estrogen is necessary for full masculine AR expression in the song system and that the estrogenic regulation of AR contributes to subsequent differential actions of androgen in male and female song nuclei.  相似文献   

13.
The favorable prognosis of regeneration in the peripheral nervous system after axonal lesions is generally regarded as dependent on the Schwann cell basal lamina. Laminins, a heterotrimeric group of basal lamina molecules, have been suggested to be among the factors playing this supportive role. For neurons to utilize laminin as a substrate for growth, an expression of laminin binding receptors, integrins, is necessary. In this study, we have examined the expression of laminin binding integrin subunits in dorsal root ganglion (DRG) neurons after transection to either their peripherally projecting axons, as in the sciatic nerve, followed by regeneration, or the centrally projecting axons in dorsal roots, followed by no or weak regenerative activity. In uninjured DRG, immunohistochemical staining revealed a few neurons expressing integrin subunit alpha6, whereas integrin subunits alpha7 and foremost beta1 were expressed in a majority of neurons. After an injury to the sciatic nerve, mRNAs encoding all three integrins were up-regulated in DRG neurons. By anterograde tracing, immunoreactivity for all studied integrins was also found in association with growing axons after a sciatic nerve crush lesion in vivo. In contrast, mRNA levels remained constant in DRG neurons after a dorsal root injury. Together with previous findings, this suggests that integrin subunits alpha6, alpha7, and beta1 have an important role in the regenerative response following nerve injury and that the lack of regenerative capacity following dorsal root injury could in part be explained by the absence of response in integrin regulation.  相似文献   

14.
A clone encoding mouse brain Na,K-ATPase alpha-subunit was isolated from a mouse brain lambda gt11 cDNA library by using antisera to mouse and bovine brain alpha-subunit. A comparison of the nucleotide sequence of this clone with published sequences of rat brain alpha-subunit isoform clones showed it to be most similar to rat brain alpha 1. An RNA antisense probe prepared from the cDNA insert of the mouse clone detected a single mRNA of approximately 4.5 kb in Northern blots of mouse brain and kidney RNAs. This probe hybridized only to an alpha 1-cDNA insert from rat brain under high stringency conditions on Northern blots. The RNA antisense probe was used for in situ hybridization to sections of mouse kidney, cerebellum, and retina, and the cellular distribution of alpha-subunit mRNA (alpha-mRNA) was compared with that of alpha-subunit polypeptide (alpha-subunit) detected by immunofluorescence in similar sections. In kidney, alpha-mRNA distribution closely paralleled that of the polypeptide with abundant expression in ascending thick limbs and cortical distal tubules and weaker labeling in cortical proximal tubules. The co-distribution of alpha-mRNA and polypeptide in kidney where Na,K-ATPase localization is well established is consistent with the specificity of these probes. In the retina, prominent labeling with both probes was seen in photoreceptor inner segments, inner nuclear layer, and ganglion cell bodies. Plexiform layers and optic fibers expressed abundant alpha-subunit but little mRNA. Light labeling for both was seen in the outer nuclear layer. In cerebellum, alpha-mRNA and alpha-subunit were associated with soma of granule cells, basket cells, and stellate cells. Glomeruli and basket terminals contained abundant alpha-subunit but exhibited little reactivity with the riboprobe. In Purkinje cell bodies, in contrast, the antibody used to identify the cDNA clone did not resolve significant polypeptide in the somal plasmalemma despite abundant somal mRNA expression. Comparison of distribution of the two probes in cerebellum and retina indicates that message accumulation is primarily in cell bodies, while alpha-subunit epitopes may be co-expressed in cell bodies and/or transported to distant sites in cell-specific patterns.  相似文献   

15.
The cerebellins are a family of four secreted proteins, two of which, Cbln1 and Cbln3, play an important role in the formation and maintenance of parallel fiber‐Purkinje cell synapses. We have identified the chicken homologue of Cbln2 and, through the use of in situ hybridization, shown that it is expressed by specific subsets of neurons in the dorsal root ganglia (DRGs) and spinal cord starting shortly after those neurons are generated. In the developing spinal cord, Cbln2 is highly expressed by dI1, dI3, dI5, and dILB dorsal interneurons and to a lesser extent by dI2, dI4, dI6, and dILA dorsal interneurons, but not by ventral (v0–v3) interneurons. After the spinal cord has matured and neurons have migrated to their final destinations, Cbln2 is abundant in the dorsal horn. In the DRGs, Cbln2 is expressed by TrkB+ and TrkC+ sensory neurons, but not by TrkA+ sensory neurons. Interestingly, regions of the spinal cord where TrkB+ and TrkC+ afferents terminate (i.e., laminae II, III, IV, and VI) exhibit the highest levels of Cbln2 expression. Cbln2 is also expressed by preganglionic sympathetic neurons and their targets in the sympathetic chain ganglia. Thus, the results show that Cbln2 is frequently expressed by synaptically connected neuronal populations. This, in turn, raises the possibility that if Cbln2, like Cbln1, plays a role in the formation and maintenance of synapses, it may somehow mediate bi‐directional communication between discrete populations of neurons and their appropriate neuronal targets. J. Comp. Neurol. 518:2818–2840, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Loss of neurons has been considered to be a prime cause of nervous disturbances that occur with advancing age. However, the notion of a constitutive aging-related loss of neurons has been challenged recently in several studies that used up-to-date methods for counting neurons. In this study, we have applied stereological techniques with the objective of obtaining quantitative data on total neuron numbers and the distribution of neuron cross-sectional areas in the fifth cervical (C5) and fourth lumbar (L4) dorsal root ganglion (DRG) of 3- and 30-month-old Sprague-Dawley rats. Tissue data were recorded on a confocal laser-scanning microscope with the use of the optical-disector technique and random, systematic sampling. Aged rats of both sexes disclosed only a small decrease (≈12%) in the number of cervical and lumbar DRG neurons. Furthermore, there was no significant correlation between the degree of neuron loss and the extent of behavioral deficits among the aged individuals. The DRG neurons of aged rats had a smaller mean cross-sectional area (≈15%; P < 0.001) at both DRG levels. Further analysis of the male cohorts was carried out by using isolectin B4 and neurofilament subunit (phosphorylated 200 kDa; RT97) immunoreactivity (IR) as selective markers for unmyelinated and myelinated axons, respectively, and disclosed no significant change in the relative frequencies of immunoreactive neuron profiles in the old rats. However, RT97-IR DRG neurons of the aged rats had significantly smaller cross-sectional areas (≈9% in C5; ≈16% in L4; P < 0.001) than the young adult rats, indicating a selective cell body atrophy among myelinated primary afferents during aging. The results indicate that loss of primary sensory neurons cannot exclusively explain the functional deficits in sensory perception among senescent individuals. It seems likely that other factors at the subcellular level and/or target interaction(s) contribute substantially to the sensory impairments observed with advancing age. J. Comp. Neurol. 396:211–222, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
It is widely thought that, after peripheral injury, some low‐threshold mechanoreceptive (LTMR) afferents “sprout” into pain‐specific laminae (I–II) of the dorsal horn and are responsible for chronic pain states such as mechanical allodynia. Although recent studies have questioned this hypothesis, they fail to account for a series of compelling results from single‐fiber analyses showing extensive projections from large‐diameter myelinated afferents into nocireceptive layers after nerve injury. Here we show that, in the thoracic spinal cord of naïve adult mouse, all myelinated nociceptors gave rise to terminal projections throughout the superficial dorsal horn laminae (I–II). Most (70%) of these fibers had large‐diameter axons with recurving flame‐shaped central arbors that projected throughout the dorsal horn laminae I–V. This morphology was reminiscent of that attributed to sprouted LTMRs described in previous studies. After peripheral nerve axotomy, we found that LTMR afferents with narrow, uninflected somal action potentials did not sprout into superficial laminae of the dorsal horn. Only myelinated noiceptive afferents with broad, inflected somal action potentials were found to give rise to recurving collaterals and project into superficial “pain‐specific” laminae after axotomy. We conclude that the previously undocumented central morphology of large, myelinated cutaneous nociceptors may very well account for the morphological findings previously thought to require sprouting of LTMRs. J. Comp. Neurol. 508:500–509, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Dorsal root ganglion (DRG) sensory neurons are particularly vulnerable to diabetes mellitus. There is evidence that the disease decreases both circulating and retrogradely transported neurotrophic factors that are essential to the normal maintenance and function of these cells. A substantive loss of trophic support should cause DRG neurons to respond as though they were axotomized and, like an axotomy, cause significant changes in cytoskeletal gene expression within these cells. Such changes might contribute to the deficits in sensory neuronal function that characterize diabetic neuropathy. The current study used quantitativein situhybridization to test the hypothesis that streptozotocin-induced diabetes, like an axotomy, increases class III β-tubulin gene expression and decreases neurofilament 68-kDa gene expression in lumbar DRG neurons. In animals that had been diabetic for 8 weeks with mean blood glucose levels of 340 mg/dl, lumbar DRG class III β-tubulin mRNA mean steady-state levels were twofold higher than those in age-matched nondiabetic controls. Moreover, in the same animals, diabetes decreased lumbar DRG 68-kDa neurofilament mRNA mean steady-state levels by more than half. These data show that diabetes causes changes in primary sensory neuronal cytoskeletal gene expression that mimic those caused by axotomy. Moreover, they support the idea that a loss of neurotrophic support contributes to the pathogenesis of diabetic neuropathy.  相似文献   

19.
A double-labelling procedure combining immunohistochemical staining with in situ hybridization using a radiolabelled cRNA probe was employed to demonstrate oestrogen receptor-like immunoreactivity and preproenkephalin-A mRNA in the medullary and spinal dorsal horn of female rats. Both markers labelled large numbers of neurons in the substantia gelatinosa and its trigeminal homologue. Many of these neurons were double-labelled, displaying both oestrogen receptor-like- immunoreactivity and preproenkephalin-A mRNA; cell counts showed that 40–60% of the of the oestrogen receptor-like-immunoreactive cells in the superficial laminae also were labelled for preproenkephalin-A mRNA, and that 60–70% of the preproenkephalin-A mRNA-labelled neurons in the same laminae displayed oestrogen receptor-like immunoreactivity. Previous studies have shown that oestrogen receptors can bind to the promoter region of the preproenkephalin-A gene, and studies on the hypothalamus have demonstrated that oestrogen regulates enkephalin expression in select neuronal populations. The present results demonstrate that enkephalinergic neurons in the superficial dorsal horn contain oestrogen receptors and suggest that oestrogen may play an important role in the modulation of sensory and nociceptive processing in the lower medulla and spinal cord.  相似文献   

20.
目的 :为探讨癫活动对大鼠GDNF基因表达的影响。方法 :应用同位素标记的原位杂交研究海人藻酸致后大鼠海马区GDNFmRNA表达时相的变化。结果 :正常大鼠海马未见GDNFmRNA表达 ,而癫大鼠海马神经元在致后 4h以后出现GDNFmRNA表达强烈的上调反应 ,12h达高峰 ,且各区均有表达 ,此后逐渐衰减 ,2 4h恢复正常。结论 :癫后内源性GDNFmRNA表达上调很可能是神经元对抗兴奋性损害的一种保护效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号