首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Low tissue levels of (n-3) PUFA, particularly docosahexaenoic acid [DHA, 22:6(n-3)], are implicated in postpartum depression. Brain DHA content is depleted in female rats undergoing pregnancy and lactation when the diet supplies inadequate (n-3) PUFA. In this study, the effects of DHA depletion as a result of reproductive activity and an (n-3) PUFA-deficient diet were examined in 8 specific brain regions of female rats after undergoing 2 sequential reproductive cycles. Virgin females, fed the alpha-linolenic acid (ALA)-containing or deficient (low-ALA) diets for a commensurate duration (13 wk) served as a control for reproduction. Total phospholipid composition of each brain region was determined at weaning (postnatal d 21) by TLC/GC. The regional PUFA composition of ALA virgins was similar to that previously measured in male rats. All brain regions examined were affected by reproductive activity and/or the low-ALA diet; however, the magnitude of the loss of DHA and compensatory incorporation of docosapentaenoic acid [(n-6) DPA, 22:5(n-6)] varied among brain regions. In low-ALA parous dams, frontal cortex (77% of ALA virgin) and temporal lobe (83% of ALA virgin), regions involved in cognition and affect, were among those exhibiting the greatest depletion of DHA. Caudate-putamen also exhibited significant depletion of DHA (82% of ALA virgin), whereas only (n-6) DPA levels were altered in ventral striatum, hypothalamus, hippocampus, and cerebellum. This pattern of changes in regional DHA and (n-6) DPA content suggests that specific neuronal systems may be differentially affected by depletion of brain DHA in the postpartum organism.  相似文献   

2.
The fatty acid composition of membrane phospholipids affects the physicochemical properties of the membrane and thus influences cell function. In this study, the effects of 1-4 sequential pregnancies on the phospholipid fatty acid compositions of the maternal liver and erythrocytes were determined in female rats fed diets containing alpha-linolenic acid (ALA), ALA and preformed docosahexaenoic acid (DHA; ALA+DHA), or minimal ALA (low ALA). Virgin females, fed the diets for commensurate durations, served as a control for reproduction. Liver and erythrocyte total phospholipid compositions were determined at weaning by TLC/GC. In both tissues, significant main effects of diet and reproductive status were detected for many fatty acids, but a significant interaction of diet, reproductive status, and duration of treatment (no. of reproductive cycles or equivalent time period for virgins) was detected only for DHA, 22:6(n-3). Primiparous dams fed the ALA and low ALA diet had decreased liver DHA content of 31% and 74%, respectively, compared with virgin females fed the ALA diet. Liver DHA did not decrease further after additional reproductive cycles. Liver DHA content was unchanged in parous dams fed the ALA+DHA diet, but virgin females fed this diet exhibited a 50% increase in liver DHA after 13 wk of treatment. Changes in erythrocyte DHA were of similar magnitude and time course to those observed in liver, suggesting that this tissue may serve as a marker for liver DHA status.  相似文献   

3.
The long-chain PUFA, docosahexaenoic acid [22:6(n-3), DHA], a major component of neuronal membrane phospholipids, accumulates in brain during late prenatal and early neonatal development and is essential for optimal attentional and cognitive function. Because all nutrition is supplied to the developing fetus/neonate by the mother and maternal DHA status is affected by parity, this study examined the effects of maternal diet and parity on DHA accretion in the developing brain. Whole brain total phospholipid fatty acid composition was determined by TLC and GC in weanling male Long-Evans rats (n = 5) from the 1st, 2nd, 3rd, or 4th litters of dams fed diets containing alpha-linolenic acid (ALA), containing ALA and preformed DHA (ALA + DHA), or lacking ALA (low-ALA). First-litter low-ALA offspring exhibited a decrease in phospholipid fatty acid DHA content to 68% of 1st-litter ALA pups. DHA in 2nd-litter low-ALA pups was further decreased to 55% of 1st-litter ALA pups, but further decreases were not observed in subsequent litters. DHA levels increased 15-20% in 2nd to 4th-litter ALA + DHA pups and 11% in 4th-litter ALA pups compared with 1st-litter ALA pups. These findings demonstrate that maternal diet and parity interact to affect offspring brain DHA status and suggest that maternal multiparity may place offspring at greater risk of decreased accretion of brain DHA if the maternal diet contains insufficient (n-3) PUFA.  相似文献   

4.

Background

Dietary long-chain polyunsaturated fatty acids (LC-PUFA) are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE) and phosphatidylserine (PS) in the neonates.

Methods

Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55%) and eicosapentaenoic acid (EPA, 0.75% of total fatty acids) or α-linolenic acid (ALA, 2.90%). At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA) profile. Data were analyzed by bivariate and multivariate statistics.

Results

In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P < 0.0001) and brain glial cell PE (+18%, P = 0.0001) and PS (+15%, P = 0.0009) were significantly increased compared to the ALA group. The filtered correlation analysis (P < 0.05) underlined that levels of dihomo-γ-linolenic acid (DGLA), DHA and n-3 docosapentaenoic acid (DPA) were negatively correlated with arachidonic acid (ARA) and n-6 DPA in PE of brain glial cells. No significant correlation between n-3 and n-6 LC-PUFA were found in the PS dataset. DMA level in PE was negatively correlated with n-6 DPA. DMA were found to occur in brain glial cell PS fraction; in this class DMA level was correlated negatively with DHA and positively with ARA.

Conclusion

The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.  相似文献   

5.
Long-chain PUFAs (LCPUFAs) are essential for proper neural and retinal development in many mammalian species. We investigated puppies born to dogs fed diets containing varying amounts of vegetable and marine (n-3) fatty acids during gestation/lactation. The fatty acid compositions of dogs' milk and puppy plasma phospholipids were evaluated, and electroretinographic responses of the young dogs were determined after they were weaned to the same diets. Dogs' milk fatty acid composition reflected the diets fed during gestation/lactation. The milk of dogs fed a high alpha-linolenic acid (ALA) diet was enriched in ALA but not docosahexaenoic acid (DHA). Puppies fed this ALA-enriched milk accumulated more plasma phospholipid DHA than the low (n-3) fatty acid group. However, this accumulation was less than that obtained in puppies fed preformed DHA during development and suckling (P < 0.05). Electroretinograms (ERGs) of 12-wk-old puppies revealed significantly improved visual performance in dogs fed the highest amounts of (n-3) LCPUFAs (P < 0.05). These puppies demonstrated improved rod response (improved amplitude and implicit time of the a-wave, P < 0.05). Puppies from the low (n-3) fatty acid group exhibited the poorest ERG responses compared with the high-marine or high-vegetable (n-3) groups. A novel parameter devised in this study, the initial intensity at which the a-wave was detectable (i.e., threshold intensity), also demonstrated that retinal response of puppies consuming the (n-3) LCPUFA-containing diets occurred at lower light intensity, thereby exhibiting greater rod sensitivity, than the other diet groups. These findings indicate that preformed dietary (n-3) LCPUFA is more effective than ALA in enriching plasma DHA during perinatal development and results in improved visual performance in developing dogs.  相似文献   

6.
BACKGROUND: Flaxseed oil is a rich source of 18:3n-3 (alpha-linolenic acid, or ALA), which is ultimately converted to 22:6n-3 (docosahexaenoic acid, or DHA), a fatty acid important for the development of the infant brain and retina. OBJECTIVE: The objective of this study was to determine the effect of flaxseed oil supplementation on the breast-milk, plasma, and erythrocyte contents of DHA and other n-3 fatty acids in lactating women. DESIGN: Seven women took 20 g flaxseed oil (10.7 g ALA) daily for 4 wk. Breast-milk and blood samples were collected weekly before, during, and after supplementation and were analyzed for fatty acid composition. RESULTS: Breast milk, plasma, and erythrocyte ALA increased significantly over time (P < 0.001) and after 2 and 4 wk of supplementation (P < 0.05). Over time, 20:5n-3 (eicosapentaenoic acid, or EPA) increased significantly in breast milk (P = 0.004) and in plasma (P < 0.001). In addition, plasma EPA increased significantly (P < 0.05) after 2 and 4 wk of supplementation. There were significant increases over time in breast-milk 22:5n-3 (docosapentaenoic acid, or DPA) (P < 0.02), plasma DPA (P < 0.001), and erythrocyte DPA (P < 0.01). No significant changes were observed in breast-milk, plasma, or erythrocyte DHA contents after flaxseed oil supplementation. CONCLUSIONS: Dietary flaxseed oil increased the breast-milk, plasma, and erythrocyte contents of the n-3 fatty acids ALA, EPA, and DPA but had no effect on breast-milk, plasma, or erythrocyte DHA contents.  相似文献   

7.
BACKGROUND: Vegetarians have lower platelet and plasma concentrations of n-3 polyunsaturated fatty acids (PUFAs) than do omnivores. We recently showed that male vegetarians have higher platelet aggregability than do omnivores. OBJECTIVE: We investigated whether male vegetarians (n = 17) who consumed an increased amount of dietary alpha-linolenic acid (ALA) showed any changes in their tissue profile of PUFAs, plasma thromboxane concentrations, platelet aggregability, or hemostatic factors. DESIGN: During the study, all subjects maintained their habitual vegetarian diets except that a proportion of dietary fat was replaced with vegetable oils and margarines that were provided. Initially, all subjects consumed a low-ALA diet (containing safflower oil and safflower oil-based margarine) for 14 d; they then consumed either a moderate-ALA diet (containing canola oil and canola oil-based margarine) or a high-ALA diet (containing linseed oil and linseed oil-based margarine) for 28 d. Blood samples were collected at day 0 (baseline), day 14, and day 42. RESULTS: Eicosapentaenoic acid, docosapentaenoic acid, total n-3 PUFAs, and the ratio of n-3 to n-6 PUFAs were significantly increased (P < 0.05), whereas the ratio of arachidonic acid to eicosapentaenoic acid was decreased (P < 0.05), in platelet phospholipids, plasma phospholipids, and triacylglycerols after either the moderate-ALA or high-ALA diet compared with the low-ALA diet. No significant differences were observed in thrombotic risk factors. CONCLUSION: ALA from vegetable oils (canola and linseed) has a beneficial effect on n-3 PUFA concentrations of platelet phospholipids and plasma lipids in vegetarian males.  相似文献   

8.
Lead (Pb) exposure has been reported to increase arachidonic (AA) and docosahexaenoic (DHA) acids. To determine whether Pb effects on fatty acid composition are influenced by dietary (n-3) fatty acid restriction, weanling female rats were fed either an (n-3)-adequate or -deficient diet to maturity and mated. At parturition, dams in each group were subdivided to receive either 0.2% Pb or Na-acetate in their drinking water during lactation only. Pups were analyzed for fatty acid content in liver, plasma, and brain at either 3 or 11 wk. The (n-3)-deficient diets markedly decreased total (n-3) fatty acids, and increased total (n-6) fatty acids including both AA and docosapentaenoic (n-6) in each compartment (P < 0.05). The main effects of Pb were in the livers of weanling rats where there was a 56% loss in total fatty acid concentration concurrent with increased relative percentages of AA and DHA. Thus, because there was a greater percentage of liver nonessential fatty acid lost relative to the essential fatty acids (EFA), there was no net change in AA concentration. There was a diet x Pb interaction for a decrease in liver DHA concentration evident only in the (n-3)-adequate group. There were also diet x Pb interactions in plasma at 11 wk and in brain at 3 wk. These data are consistent with the hypothesis of a Pb-induced increase in fatty acid catabolism, perhaps as a source of energy.  相似文献   

9.
High linoleic acid (LA) intakes have been suggested to reduce alpha-linolenic acid [ALA, 18:3(n-3)] metabolism to eicosapentaenoic acid [EPA, 20:5(n-3)] and docosahexaenoic acid [DHA, 22:6(n-3)], and favor high arachidonic acid [ARA, 20:4(n-6)]. We used a randomized cross-over study with men (n = 22) to compare the effect of replacing vegetable oils high in LA with oils low in LA in foods, while maintaining constant ALA, for 4 wk each, on plasma (n-3) fatty acids. Nonvegetable sources of fat, except fish and seafoods, were unrestricted. We determined plasma phospholipid fatty acids at wk 0, 2, 4, 6, and 8, and triglycerides, cholesterol, serum CRP, and IL-6, and platelet aggregation at wk 0, 4, and 8. LA and ALA intakes were 3.8 +/- 0.12% and 1.0 +/- 0.05%, and 10.5 +/- 0.53% and 1.1 +/- 0.06% energy with LA:ALA ratios of 4:0 and 10:1 during the low and high LA diets, respectively. The plasma phospholipid LA was higher and EPA was lower during the high than during the low LA diet period (P < 0.001), but DHA declined over the 8-wk period (r = -0.425, P < 0.001). The plasma phospholipid ARA:EPA ratios were (mean +/- SEM) 20.7 +/- 1.52 and 12.9 +/- 1.01 after 4 wk consuming the high or low LA diets, respectively (P < 0.001); LA was inversely associated with EPA (r = -0.729, P < 0.001) but positively associated with ARA:EPA (r = 0.432, P < 0.001). LA intake did not influence ALA, ARA, DPA, DHA, or total, LDL or HDL cholesterol, CRP or IL-6, or platelet aggregation. In conclusion, high LA intakes decrease plasma phospholipid EPA and increase the ARA:EPA ratio, but do not favor higher ARA.  相似文献   

10.
【目的】研究高智商(IQ>135)与低智商(IQ<90)学生体内n-6与n-3脂肪酸水平差异,以及补充n-3类多不饱和脂肪酸(polyunsaturated fatty acids,PUFAs)对IQ<90的学生体内脂肪酸组成的影响作用。【方法】整群抽取浙江余姚中等水平乡镇的2所普通小学,通过智力测定筛选出IQ<90以及>135的学生两组,采集静脉血分析其脂肪酸组成。采用随机对照研究方法,将IQ<90的学生进行随机分组,分别给予为期3个月的干预食物(富含n-3 PUFAs)与对照食物,对干预前后的血脂肪酸水平数据进行比较。【结果】智商高低学生体内脂肪酸水平存在明显差异:IQ>135的学生其体内花生四稀酸(arachidonic acid,AA)、二十碳五烯酸(eicosapentaenoic acid,EPA)、二十二碳六烯酸(docosa-hexaenoic acid,DHA)以及n-3 PUFAs水平明显高于IQ<90的学生(P<0.001或<0.05);而亚油酸(linoleic acid,LA)水平以及n-6/n-3 PUFAs比例明显低于IQ<90的学生(P<0.05或<0.01)。同时,在对IQ<90的学生补充富含n-3PUFAs的食物后,其体内脂肪酸组成也发生显著变化,表现为:α-亚麻酸(α-linolenic acid,ALA)、EPA、DHA以及n-3 PU-FAs水平显著提高(P<0.05或<0.001),而n-6/n-3 PUFAs比例明显下降(P<0.001)。【结论】智商高的学生体内AA及DHA水平较高而n-6/n-3 PUFAs比例较低。同时,对智商低的学生补充n-3 PUFAs可以改变其体内的脂肪酸组成,使其更为接近高智商学生体内的脂肪酸组成。  相似文献   

11.
Docosahexaenoic acid [DHA, 22:6(n-3)] is enriched in brain membrane phospholipids and is important to brain development and function through its influence on neurite outgrowth and neurotransmitter secretion. Fusion of intracellular vesicles with the plasma membrane involving SNARE [soluble N-ethylmaleimide-sensitive fusion (NSF) protein attachment protein receptor] protein assembly, membrane fusion, and then disassembly are events common in membrane extension and neurotransmitter release. We determined whether feeding an (n-3) fatty acid-deficient diet, known to reduce brain phospholipid DHA, alters SNARE protein and SNARE complex expression or protein nitrosylation in the hippocampus of rats. Female rats were fed diets with 1.3 or 0.02% energy (n-3) alpha-linolenic acid from 2 wk before gestation then throughout gestation and lactation (n = 8/diet), and the male offspring were weaned to the maternal diet. Hippocampus phospholipid fatty acids and SNARE proteins were determined in male offspring at 90 d of age. Hippocampus phospholipid DHA was lower and (n-6) docosapentaenoic acid [DPA, 22:5(n-6)] was higher in the (n-3) fatty acid-deficient rats compared with the control group (P < 0.05). Multiplex Western blots using antibodies to syntaxin, synaptosome-associated protein of 25kDa (SNAP-25), and complexin II, showed higher ternary SNARE complexes but no differences in syntaxin, SNAP-25, or complex II expression in hippocampus of the (n-3) fatty acid-deficient rats compared with the control group (P < 0.05). S-nitrosylation of syntaxin was also significantly lower in the (n-3) fatty acid-deficient rats than in the control group. These studies suggest that altered SNARE complex binding or disassembly could be important in explaining the diverse cellular events associated with altered tissue DHA.  相似文献   

12.
The importance of maternal dietary fatty acids on arachidonic acid [AA; 20:4(n-6)] and docosahexaenoic acid [DHA; 22:6(n-3)] in fetal brain nerve growth cone membranes and monoaminergic neurotransmitters was investigated. Rats were fed purified diets containing 20 g/100 g safflower oil with 74.3% 18:2(n-6), 0.2% 18:3(n-3), soybean oil with 55.4% 18:2(n-6), 7.7% 18:3(n-3) or high fish oil with 24.6% 22:6(n-3) through gestation. Tissue for rats within a litter were pooled at birth, brain growth cone membranes prepared and phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) fatty acids quantified by gas-liquid chromatography. Dopamine, serotonin, and the metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxyindolacetic acid were quantified by HPLC. Growth cone membranes from offspring of rats fed safflower oil had significantly lower, and offspring of rats fed high 22:6(n-3) fish oil had significantly higher 22:6(n-3) in PE, PS and PI than the soybean oil group. The growth cone membrane PC, PE and PS 20:4(n-6) was significantly lower in the fish oil than in the soybean or safflower oil groups. Serotonin concentration was significantly higher in brain of offspring in the safflower oil compared with the soybean oil group. The newborn brain dopamine was inversely related to PE DHA and PS DHA (P < 0.001), but positively related to PC AA (P < 0.05). These studies show that maternal dietary fatty acids may alter fetal brain growth cone (n-6) and (n-3) fatty acids, and neurotransmitters involved in neurite extension, target finding and synaptogenesis. The functional importance, however, is not known at this time.  相似文献   

13.
BACKGROUND: Maternal essential fatty acid status declines during pregnancy, and as a result, neonatal concentrations of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) may not be optimal. OBJECTIVE: Our objective was to improve maternal and neonatal fatty acid status by supplementing pregnant women with a combination of alpha-linolenic acid (ALA, 18:3n-3) and linoleic acid (LA, 18:2n-6), the ultimate dietary precursors of DHA and AA, respectively. DESIGN: From week 14 of gestation until delivery, pregnant women consumed daily 25 g margarine supplying either 2.8 g ALA + 9.0 g LA (n = 29) or 10.9 g LA (n = 29). Venous blood was collected for plasma phospholipid fatty acid analyses at weeks 14, 26, and 36 of pregnancy, at delivery, and at 32 wk postpartum. Umbilical cord blood and vascular tissue samples were collected to study neonatal fatty acid status also. Pregnancy outcome variables were assessed. RESULTS: ALA+LA supplementation did not prevent decreases in maternal DHA and AA concentrations during pregnancy and, compared with LA supplementation, did not increase maternal and neonatal DHA concentrations but significantly increased eicosapentaenoic acid (20:5n-3) and docosapentaenoic acid (22:5n-3) concentrations. In addition, ALA+LA supplementation lowered neonatal AA status. No significant differences in pregnancy outcome variables were found. CONCLUSIONS: Maternal ALA+LA supplementation did not promote neonatal DHA+AA status. The lower concentrations of Osbond acid (22:5n-6) in maternal plasma phospholipids and umbilical arterial wall phospholipids with ALA+LA supplementation than with LA supplementation suggest only that functional DHA status improves with ALA+LA supplementation.  相似文献   

14.
BACKGROUND: Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. OBJECTIVES: We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). DESIGN: The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. RESULTS: The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from <1 y to >20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. CONCLUSIONS: The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.  相似文献   

15.
BACKGROUND: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. OBJECTIVE: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. DESIGN: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to 1 of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. RESULTS: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. CONCLUSION: An intake of 相似文献   

16.
To examine the incorporation of n-3 polyunsaturated fatty acids (PUFAs) into erythrocyte membranes during and after moderate n-3 PUFA intake, 12 healthy men were fed three diets for 6-wk periods in a 3 x 3 crossover design, supplying different amounts of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3): a control diet, a fish diet (0.15 g EPA/d, 0.41 g DHA/d), and a fish + oil diet (5 g fish oil/d; 0.99 g EPA/d and 0.99 g DHA/d). A 6-wk washout period was allowed between diets. Between 6 and 12 wk after the fish + oil diet, erythrocyte EPA and DHA were still declining and it was only after 18 wk that erythrocyte EPA had returned to baseline whereas DHA had not. Investigators examining variables that are influenced by altered membrane fatty acid composition should be aware of these prolonged effects when designing studies. Protracted washout periods (greater than 18 wk) make the classic crossover design prohibitive and a parallel design becomes essential.  相似文献   

17.
One of the debates in infant nutrition concerns whether dietary 18 : 3n-3 (linolenic acid) can provide for the accretion of 22 : 6n-3 (docosahexaenoic acid, DHA) in neonatal tissues. The objective of the present study was to determine whether low or high 18 : 3n-3 v. preformed 22 : 6n-3 in the maternal diet enabled a similar 22 : 6n-3 content in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS) of glial cells from whole brain (cerebrum and cerebellum) of 2-week-old rat pups. At parturition, the dams were fed semi-purified diets containing either increasing amounts of 18 : 3n-3 (18 : 2n-6 to 18 : 3n-3 fatty acid ratio of 7.8 : 1, 4.4 : 1 or 1 : 1), preformed DHA, or preformed 20 : 4n-6 (arachidonic acid)+DHA. During the first 2 weeks of life, the rat pups from the respective dams received only their dam's milk. The fatty acid composition of the pups' stomach contents (dam's milk) and phospholipids from glial cells were quantified. The 20 : 4n-6 and 22 : 6n-3 content in the stomach from rat pups at 2 weeks of age reflected the fatty acid composition of the dam's diet. The 20 : 4n-6 content of PE and PS in the glial cells was unaffected by maternal diet treatments. Preformed 22 : 6n-3 in the maternal diet increased the 22 : 6n-3 content of glial cell PE and PS compared with maternal diets providing an 18 : 2n-6 to 18 : 3 n-3 fatty acid ratio of 7.8 : 1, 4.4 : 1 or 1 : 1 (P<0.0001). There was no significant difference in the 20 : 4n-6 and 22 : 6n-3 content of glial cell PC and PI among maternal diet treatments. It was concluded that maternal dietary 22 : 6n-3 is more effective than low or high levels of maternal dietary 18 : 3n-3 at increasing the 22 : 6n-3 content in PE and PS of glial cells from the whole brain of rat pups at 2 weeks of age. The findings from the present study have important implications for human infants fed infant formulas that are devoid of 22 : 6n-3.  相似文献   

18.

Background

Previous work showed that the functional cardiac effect of dietary alpha-linolenic acid (ALA) in rats requires a long feeding period (6 months), although a docosahexaenoic (DHA) acid-supply affects cardiac adrenergic response after 2 months. However, the total cardiac membrane n-3 polyunsaturated fatty acid (PUFA) composition remained unchanged after 2 months. This delay could be due to a specific reorganization of the different subcellular membrane PUFA profiles. This study was designed to investigate the evolution between 2 and 6 months of diet duration of the fatty acid profile in sarcolemmal (SL), mitochondrial (MI), nuclear (NU) and sarcoplasmic reticulum (SR) membrane fractions.

Methods

Male Wistar rats were randomly assigned to 3 dietary groups (n = 10/diet/period), either n-3 PUFA-free diet (CTL), or ALA or DHA-rich diets. After 2 or 6 months, the subcellular cardiac membrane fractions were separated by differential centrifugations and sucrose gradients. Each membrane profile was analysed by gas chromatography (GC) after lipid extraction.

Results

As expected the n-3 PUFA-rich diets incorporated n-3 PUFA instead of n-6 PUFA in all the subcellular fractions, which also exhibited individual specificities. The diet duration increased SFA and decreased PUFA in SL, whereas NU remained constant. The SR and MI enriched in n-3 PUFA exhibited a decreased DHA level with ageing in the DHA and CTL groups. Conversely, the n-3 PUFA level remained unchanged in the ALA group, due to a significant increase in docosapentaenoic acid (DPA). N-3 PUFA rich diets lead to a better PUFA profile in all the fractions and significantly prevent the profile modifications induced by ageing.

Conclusion

With the ALA diet the n-3 PUFA content, particularly in SR and SL kept increasing between 2 and 6 months, which may partly account for the delay to achieve the modification of adrenergic response.  相似文献   

19.
OBJECTIVE: To assess the utility of serum phospholipid fatty acid (FA) levels as a biochemical indicator of habitual dietary fatty acid intake in Japanese, whose diet is characterized by low fat intake and high intake of n-3 polyunsaturated fatty acids (PUFA) of marine origin. SUBJECTS AND METHODS: Eighty-seven male volunteers from four public health center districts that were part of the Japan Public Health Center based Prospective Study (JPHC Study) cohort I, were included in this study. Habitual intake of fatty acid was obtained by 7 day weighed dietary records four times (in one area only twice) in 1994--1995. Blood was collected twice, in February and August of the same year, and the composition of FA in serum phospholipid was analyzed by gas chromatography. The correlation coefficient between serum phospholipid FA levels and fatty acid intake was calculated. RESULTS: High correlations were observed for eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA), which are marine origin n-3 PUFA (r=0.75, 0.49, 0.50, respectively). No significant correlation was observed for saturated fatty acid (SFA), although the monounsaturated fatty acid (MUFA), palmitoleic acid and oleic acid intake were moderately correlated (r=0.22, 0.35, respectively). The correlations for EPA, DPA and DHA were similar in both samples collected in February and August. CONCLUSIONS: These data suggest that in populations with a high and stable over time intake of n-3 PUFA of marine origin, a single measurement of serum phospholipids reflects the ranking of habitual intake of marine origin n-3 PUFA.  相似文献   

20.
(n-3) PUFA, including DHA, are essential for neural development and accumulate extensively in the fetal and infant brain. (n-3) PUFA concentrations in breast milk, which are largely dependent on maternal diet and tissue stores, are correlated with infant PUFA status. We investigated the effect of prenatal DHA supplementation on PUFA concentrations in breast milk at 1 mo postpartum. In a double-blind, randomized, controlled trial conducted in Mexico, pregnant women were supplemented daily with 400 mg DHA or placebo from 18-22 wk gestation to parturition. Fatty acid concentrations in breast milk obtained from 174 women at 1 mo postpartum were determined using GLC and were expressed as % by weight of total detected fatty acids. Breast milk DHA concentrations in the DHA and placebo groups were (mean ± SD) 0.20 ± 0.06 and 0.17 ± 0.07 (P < 0.01), respectively, and those of α-linolenic acid (ALA) were 1.38 ± 0.47 and 1.24 ± 0.46 (P = 0.01), respectively. Concentrations of EPA and arachidonic acid did not differ between groups (P > 0.05). Maternal plasma DHA concentrations at 1 mo postpartum correlated positively with breast milk DHA at 1 mo postpartum in both the placebo and DHA groups (r = 0.4; P < 0.01 for both treatment groups). Prenatal DHA supplementation from 18-22 wk gestation to parturition increased concentrations of DHA and ALA in breast milk at 1 mo postpartum, providing a mechanism through which breast-fed infants could benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号