首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll‐like receptors (TLRs) play a major part in providing innate immunity against pathogenic microorganisms. Recent studies show that these receptors are also expressed on T cells, which are the sentinels of adaptive immunity. Here, we have investigated the regulatory role of the T‐cell receptor in the functioning of these innate receptors in T cells. We show that freshly isolated human CD4+ T cells readily secrete the neutrophil chemoattractant CXCL8 upon activation with the TLR ligands Pam3CSK and flagellin. In contrast, TCR‐activated cells secrete considerably less CXCL8 but start producing IFN‐γ upon stimulation with TLR agonists in the absence of concomitant TCR engagement. These T cells show increased activation of p38 and JNK MAP‐kinases in response to TLR stimulation, and inhibition of p38 abrogates TLR‐induced IFN‐γ secretion. The shifting of the T‐cell innate immune response from CXCL8hiIFN‐γnull in freshly isolated to CXCL8loIFN‐γhi in activated T cells is also observed in response to endogenous innate stimulus, IL‐1. These results suggest that the innate immune response of human CD4+ T cells switches from a proinflammatory to an effector type following activation of these cells through the antigen receptor.  相似文献   

2.
3.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

4.
To study the role of IL‐12 as a third signal for T‐cell activation and differentiation in vivo, direct IL‐12 signaling to CD8+ T cells was analyzed in bacterial and viral infections using the P14 T‐cell adoptive transfer model with CD8+ T cells that lack the IL‐12 receptor. Results indicate that CD8+ T cells deficient in IL‐12 signaling were impaired in clonal expansion after Listeria monocytogenes infection but not after infection with lymphocytic choriomeningitis virus, vaccinia virus or vesicular stomatitis virus. Although limited in clonal expansion after Listeria infection, CD8+ T cells deficient in IL‐12 signaling exhibited normal degranulation activity, cytolytic functions, and secretion of IFN‐γ and TNF‐α. However, CD8+ T cells lacking IL‐12 signaling failed to up‐regulate KLRG1 and to down‐regulate CD127 in the context of Listeria but not viral infections. Thus, direct IL‐12 signaling to CD8+ T cells determines the cell fate decision between short‐lived effector cells and memory precursor effector cells, which is dependent on pathogen‐induced local cytokine milieu.  相似文献   

5.
CD70‐mediated stimulation of CD27 is an important cofactor of CD4+ T‐cell licensed dendritic cells (DCs). However, it is unclear how CD70‐mediated stimulation of T cells is integrated with signals that emanate from signal 3 pathways, such as type‐1 interferon (IFN‐1) and IL‐12. We find that while stimulation of CD27 in isolation drives weak EomesoderminhiT‐betlo CD8+ T‐cell responses to OVA immunization, profound synergistic expansion is achieved by cotargeting TLR. This cooperativity can substantially boost antiviral CD8+ T‐cell responses during acute infection. Concomitant stimulation of TLR significantly increases per cell IFN‐γ production and the proportion of the population with characteristics of short‐lived effector cells, yet also promotes the ability to form long‐lived memory. Notably, while IFN‐1 contributes to the expression of CD70 on DCs, the synergy between CD27 and TLR stimulation is dependent upon IFN‐1's effect directly on CD8+ T cells, and is associated with the increased expression of T‐bet in T cells. Surprisingly, we find that IL‐12 fails to synergize with CD27 stimulation to promote CD8+ T‐cell expansion, despite its capacity to drive effector CD8+ T‐cell differentiation. Together, these data identify complex interactions between signal 3 and costimulatory pathways, and identify opportunities to influence the differentiation of CD8+ T‐cell responses.  相似文献   

6.
Type I interferons (IFNs) have the dual ability to promote the development of the immune response and exert an anti‐inflammatory activity. We analyzed the integrated effect of IFN‐α, TCR signal strength, and CD28 costimulation on human CD4+ T‐cell differentiation into cell subsets producing the anti‐ and proinflammatory cytokines IL‐10 and IFN‐γ. We show that IFN‐α boosted TCR‐induced IL‐10 expression in activated peripheral CD45RA+CD4+ T cells and in whole blood cultures. The functional cooperation between TCR and IFN‐α efficiently occurred at low engagement of receptors. Moreover, IFN‐α rapidly cooperated with anti‐CD3 stimulation alone. IFN‐α, but not IL‐10, drove the early development of type I regulatory T cells that were mostly IL‐10+ Foxp3? IFN‐γ? and favored IL‐10 expression in a fraction of Foxp3+ T cells. Our data support a model in which IFN‐α costimulates TCR toward the production of IL‐10 whose level can be amplified via an autocrine feedback loop.  相似文献   

7.
Recent studies have indicated that Treg contribute to the HIV type 1 (HIV‐1)‐related immune pathogenesis. However, it is not clear whether T cells with suppressive properties reside within the HIV‐1‐specific T‐cell population. Here, PBMC from HIV‐1‐infected individuals were stimulated with a 15‐mer Gag peptide pool, and HIV‐1‐specific T cells were enriched by virtue of their secretion of IL‐10 or IFN‐γ using immunomagnetic cell‐sorting. Neither the IL‐10‐secreting cells nor the IFN‐γ‐secreting cells expressed the Treg marker FOXP3, yet the IL‐10‐secreting cells potently suppressed anti‐CD3/CD28‐induced CD4+ as well as CD8+ T‐cell proliferative responses. As shown by intracellular cytokine staining, IL‐10‐ and IFN‐γ‐producing T cells represent distinct subsets of the HIV‐1‐specific T cells. Our data collectively suggest that functionally defined HIV‐1‐specific T‐cell subsets harbor potent immunoregulatory properties that may contribute to HIV‐1‐associated T‐cell dysfunction.  相似文献   

8.
Interleukin‐2 (IL‐2) is a mainstay for current immunotherapeutic protocols but its usefulness in patients is reduced by severe toxicities and because IL‐2 facilitates regulatory T (Treg) cell development. IL‐21 is a type I cytokine acting as a potent T‐cell co‐mitogen but less efficient than IL‐2 in sustaining T‐cell proliferation. Using various in vitro models for T‐cell receptor (TCR)‐dependent human T‐cell proliferation, we found that IL‐21 synergized with IL‐2 to make CD4+ and CD8+ T cells attain a level of expansion that was impossible to obtain with IL‐2 alone. Synergy was mostly evident in naive CD4+ cells. IL‐2 and tumour‐released transforming growth factor‐β (TGF‐β) are the main environmental cues that cooperate in Treg cell induction in tumour patients. Interleukin‐21 hampered Treg cell expansion induced by IL‐2/TGF‐β combination in naive CD4+ cells by facilitating non‐Treg over Treg cell proliferation from the early phases of cell activation. Conversely, IL‐21 did not modulate the conversion of naive activated CD4+ cells into Treg cells in the absence of cell division. Treg cell reduction was related to persistent activation of Stat3, a negative regulator of Treg cells associated with down‐modulation of IL‐2/TGF‐β‐induced phosphorylation of Smad2/3, a positive regulator of Treg cells. In contrast to previous studies, IL‐21 was completely ineffective in counteracting the suppressive activity of Treg cells on naive and memory, CD4+ and CD8+ T cells. Present data provide proof‐of‐concept for evaluating a combinatorial approach that would reduce the IL‐2 needed to sustain T‐cell proliferation efficiently, thereby reducing toxicity and controlling a tolerizing mechanism responsible for the contraction of the T‐cell response.  相似文献   

9.
Persistence of memory CD8+ T cells is known to be largely controlled by common gamma chain cytokines, such as IL‐2, IL‐7 and IL‐15. However, other molecules may be involved in this phenomenon. We show here that TLR2?/? mice have a decreased frequency of memory phenotype CD8+ T cells when compared with WT mice. This prompted us to investigate the role of TLR2 in the homeostasis of memory CD8+ T cells. We describe here a new TLR2‐dependent mechanism which, in the absence of specific antigen, directly controls memory CD8+ T‐cell proliferation and IFN‐γ secretion. We demonstrate that TLR2 engagement on memory CD8+ T cells increases their proliferation and expansion induced by IL‐7 both in vitro and in vivo. We also show that TLR2 ligands act in synergy with IL‐2 to induce IFN‐γ secretion in vitro. Both conclusions are obtained with spontaneously arising memory phenotype and antigen‐specific memory CD8+ T cells. Altogether, our data support the idea that continuous TLR2 signaling in response to microbial stimuli or endogenous danger signals might directly contribute to the maintenance of the diversity memory CD8+ T cells in the organism.  相似文献   

10.
IL‐17, produced by a distinct lineage of CD4+ helper T (Th) cells termed Th17 cells, induces the production of pro‐inflammatory cytokines from resident cells and it has been demonstrated that over‐expression of IL‐17 plays a crucial role in the onset of several auto‐immune diseases. Here we examined the role of IL‐17 in the pathogenesis of autoimmune gastritis, a disease that was previously believed to be mediated by IFN‐γ. Significantly higher levels of IL‐17 and IFN‐γ were found in the stomachs and stomach‐draining lymph nodes of mice with severe autoimmune gastritis. Unlike IL‐17, which was produced solely by CD4+ T cells in gastritic mice, the majority of IFN‐γ‐producing cells were CD8+ T cells. However, CD8+ T cells alone were not able to induce autoimmune gastritis. T cells that were deficient in IL‐17 or IFN‐γ production were able to induce autoimmune gastritis but to a much lower extent compared with the disease induced by wild‐type T cells. These data demonstrate that production of neither IL‐17 nor IFN‐γ by effector T cells is essential for the initiation of autoimmune gastritis, but suggest that both are required for the disease to progress to the late pathogenic stage that includes significant tissue disruption.  相似文献   

11.
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN‐γ and, to a lesser extent, of IL‐17 by CD4+ T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag‐unrelated CD4+ T‐cell responses. Here we demonstrate that PstS1, a 38 kDa‐lipoprotein of Mtb, promotes Ag‐independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4+ and CD8+ memory T cells, amplifies secretion of IFN‐γ and IL‐22 and induces IL‐17 production by effector memory cells in an Ag‐unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α? subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL‐6, IL‐1β and, to a lower extent, IL‐23. IL‐6 secretion by PstS1‐stimulated DCs was required for IFN‐γ, and to a lesser extent for IL‐22 responses by Ag85B‐specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.  相似文献   

12.
13.
14.
Interstitial pneumonia (IP) is a chronic progressive interstitial lung disease associated with poor prognosis and high mortality. However, the pathogenesis of IP remains to be elucidated. The aim of this study was to clarify the role of pulmonary γδT cells in IP. In wild‐type (WT) mice exposed to bleomycin, pulmonary γδT cells were expanded and produced large amounts of interferon (IFN)‐γ and interleukin (IL)‐17A. Histological and biochemical analyses showed that bleomycin‐induced IP was more severe in T cell receptor (TCR‐δ‐deficient (TCRδ–/–) mice than WT mice. In TCRδ–/– mice, pulmonary IL‐17A+CD4+ Τ cells expanded at days 7 and 14 after bleomycin exposure. In TCRδ–/– mice infused with γδT cells from WT mice, the number of pulmonary IL‐17A+ CD4+ T cells was lower than in TCRδ–/– mice. The examination of IL‐17A–/– TCRδ–/– mice indicated that γδT cells suppressed pulmonary fibrosis through the suppression of IL‐17A+CD4+ T cells. The differentiation of T helper (Th)17 cells was determined in vitro, and CD4+ cells isolated from TCRδ–/– mice showed normal differentiation of Th17 cells compared with WT mice. Th17 cell differentiation was suppressed in the presence of IFN‐γ producing γδT cells in vitro. Pulmonary fibrosis was attenuated by IFN‐γ‐producing γδT cells through the suppression of pulmonary IL‐17A+CD4+ T cells. These results suggested that pulmonary γδT cells seem to play a regulatory role in the development of bleomycin‐induced IP mouse model via the suppression of IL‐17A production.  相似文献   

15.
The 2009/10 pandemic (pH1N1) highlighted the need for vaccines conferring heterosubtypic immunity against antigenically shifted influenza strains. Although cross‐reactive T cells are strong candidates for mediating heterosubtypic immunity, little is known about the population‐level prevalence, frequency, and cytokine‐secretion profile of heterosubtypic T cells to pH1N1. To assess this, pH1N1 sero‐negative adults were recruited. Single‐cell IFN‐γ and IL‐2 cytokine‐secretion profiles to internal proteins of pH1N1 or live virus were enumerated and characterised. Heterosubtypic T cells recognising pH1N1 core proteins were widely prevalent, being detected in 90% (30 of 33) of pH1N1‐naïve individuals. Although the last exposure to influenza was greater than 6 months ago, the frequency and proportion of the IFN‐γ‐only‐secreting T‐cell subset was significantly higher than the IL‐2‐only‐secreting subset. CD8+ IFN‐γ‐only‐secreting heterosubtypic T cells were predominantly CCR7?CD45RA? effector‐memory phenotype, expressing the tissue‐homing receptor CXCR3 and degranulation marker CD107. Receipt of the 2008–09 influenza vaccine did not alter the frequency of these heterosubtypic T cells, highlighting the inability of current vaccines to maintain this heterosubtypic T‐cell pool. The surprisingly high prevalence of pre‐existing circulating pH1N1‐specific CD8+ IFN‐γ‐only‐secreting effector memory T cells with cytotoxic and lung‐homing potential in pH1N1‐seronegative adults may partly explain the low case fatality rate despite high rates of infection of the pandemic in young adults.  相似文献   

16.
In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8+ T‐cell and NKT‐cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8+ T‐cell subsets. IL‐15‐dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8+CD44hiCD122+ T cells and ∼80% decrease in NKT cells. TRAF2TKO CD8+CD44hi T cells exhibited impaired dose‐dependent proliferation to exogenous IL‐15. In contrast, TRAF2TKO CD8+ T cells proliferated normally to anti‐CD3 and TRAF2TKO CD8+CD44hi T cells exhibited normal proliferation to exogenous IL‐2. TRAF2TKO CD8+ T cells expressed normal levels of IL‐15‐associated receptors and possessed functional IL‐15‐mediated STAT5 phosphorylation, however TRAF2 deletion caused increased AKT activation. Loss of CD8+CD44hiCD122+ and NKT cells was mechanistically linked to an inability to respond to IL‐15. The reduced CD8+CD44hiCD122+ T‐cell and NKT‐cell populations in TRAF2TKO mice were rescued in the presence of high dose IL‐15 by IL‐15/IL‐15Rα complex administration. These studies demonstrate a critical role for TRAF2 in the maintenance of peripheral CD8+ CD44hiCD122+ T‐cell and NKT‐cell homeostasis by modulating sensitivity to T‐cell intrinsic growth factors such as IL‐15.  相似文献   

17.
The interleukin (IL)‐4‐induced gene1 (IL4I1), which encodes the L‐amino acid oxidase enzyme, plays an important immunoregulatory role. Indeed, this enzyme which is produced by B cells—including neoplastic B cells—dendritic cells and macrophages has been shown to inhibit proliferation, cytotoxicity and IFN‐γ production by tumor‐infiltrating CD8+ T cells, thus favoring tumor escape. Moreover, the same gene has been found to be constitutively expressed by CD4+ T helper 17 (Th17) cells, where it down‐regulates cell proliferation through a reduction of CD3 chains expression in the T‐cell receptor complex, thus impairing IL‐2 production, and by maintaining in the same cells a high expression of Tob1, which inhibits cell cycle entry, through a still unknown mechanism. Finally, IL4I1 has been shown to drive the differentiation of naive T cells into inducible regulatory T (iTreg) cells. Taken together, IL4I1 down‐regulates the effector CD8+ T‐cell response, promotes the development of iTreg cells and limits the expansion of Th17 cells, thus not only favoring tumor escape, but also reducing the potentially dangerous effects of adaptive immune responses in chronic inflammatory disorders.  相似文献   

18.
CD161++CD8+ T cells represent a novel subset that is dominated in adult peripheral blood by mucosal‐associated invariant T (MAIT) cells, as defined by the expression of a variable‐α chain 7.2 (Vα7.2)‐Jα33 TCR, and IL‐18Rα. Stimulation with IL‐18+IL‐12 is known to induce IFN‐γ by both NK cells and, to a more limited extent, T cells. Here, we show the CD161++ CD8+ T‐cell population is the primary T‐cell population triggered by this mechanism. Both CD161++Vα7.2+ and CD161++Vα7.2? T‐cell subsets responded to IL‐12+IL‐18 stimulation, demonstrating this response was not restricted to the MAIT cells, but to the CD161++ phenotype. Bacteria and TLR agonists also indirectly triggered IFN‐γ expression via IL‐12 and IL‐18. These data show that CD161++ T cells are the predominant T‐cell population that responds directly to IL‐12+IL‐18 stimulation. Furthermore, our findings broaden the potential role of MAIT cells beyond bacterial responsiveness to potentially include viral infections and other inflammatory stimuli.  相似文献   

19.
Mucosal‐associated invariant T (MAIT) cells are characterized by an invariant TCRVα7.2 chain recognizing microbial vitamin B metabolites presented by the MHC‐Ib molecule MR1. They are mainly detectable in the CD8+ and CD8?CD4? “double negative” T‐cell compartments of mammals and exhibit both Th1‐ and Th17‐associated features. As MAIT cells show a tissue‐homing phenotype and operate at mucosal surfaces with myriads of pathogenic encounters, we wondered how IL‐15, a multifaceted cytokine being part of the intestinal mucosal barrier, impacts on their functions. We demonstrate that in the absence of TCR cross‐linking, human MAIT cells secrete IFN‐γ, increase perforin expression and switch on granzyme B production in response to IL‐15. As this mechanism was dependent on the presence of CD14+ cells and sensitive to IL‐18 blockade, we identified IL‐15 induced IL‐18 production by monocytes as an inflammatory, STAT5‐dependent feedback mechanism predominantly activating the MAIT‐cell population. IL‐15 equally affects TCR‐mediated MAIT‐cell functions since it dramatically amplifies bacteria‐induced IFN‐γ secretion, granzyme production, and cytolytic activity at early time points, an effect being most pronounced under suboptimal TCR stimulation conditions. Our data reveal a new quality of IL‐15 as player in an inflammatory cytokine network impacting on multiple MAIT‐cell functions.  相似文献   

20.
IL‐15 is a pleiotropic cytokine involved in host defense as well as autoimmunity. IL‐15‐deficient mice show a decrease of memory phenotype (MP) CD8+ T cells, which develop naturally in naïve mice and whose origin is unclear. It has been shown that self‐specific CD8+ T cells developed in male H‐Y antigen‐specific TCR transgenic mice share many similarities with naturally occurring MP CD8+ T cells in normal mice. In this study, we found that H‐Y antigen‐specific CD8+ T cells in male but not female mice decreased when they were crossed with IL‐15‐deficient mice, mainly due to impaired peripheral maintenance. The self‐specific TCR transgenic CD8+ T cells developed in IL‐15‐deficient mice showed altered surface phenotypes and reduced effector functions ex vivo. Bystander activation of the self‐specific CD8+ T cells was induced in vivo during infection with Listeria monocytogenes, in which proliferation but not IFN‐γ production was IL‐15‐dependent. These results indicated important roles for IL‐15 in the maintenance and functions of self‐specific CD8+ T cells, which may be included in the naturally occurring MP CD8+ T‐cell population in naïve normal mice and participate in innate host defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号