首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
T cells that produce both IL‐17 and IFN‐γ, and co‐express ROR‐γt and T‐bet, are often found at sites of autoimmune inflammation. However, it is unknown whether this co‐expression of T‐bet with ROR‐γt is a prerequisite for immunopathology. We show here that T‐bet is not required for the development of Th17‐driven experimental autoimmune encephalomyelitis (EAE). The disease was not impaired in T‐bet?/? mice and was associated with low IFN‐γ production and elevated IL‐17 production among central nervous system (CNS) infiltrating CD4+ T cells. T‐bet?/? Th17 cells generated in the presence of IL‐6/TGF‐β/IL‐1 and IL‐23 produced GM‐CSF and high levels of IL‐17 and induced disease upon transfer to naïve mice. Unlike their WT counterparts, these T‐bet?/– Th17 cells did not exhibit an IL‐17→IFN‐γ switch upon reencounter with antigen in the CNS, indicating that this functional change is not critical to disease development. In contrast, T‐bet was absolutely required for the pathogenicity of myelin‐responsive Th1 cells. T‐bet‐deficient Th1 cells failed to accumulate in the CNS upon transfer, despite being able to produce GM‐CSF. Therefore, T‐bet is essential for establishing Th1‐mediated inflammation but is not required to drive IL‐23‐induced GM‐CSF production, or Th17‐mediated autoimmune inflammation.  相似文献   

4.
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation‐promoting factor (Rpf) E, a latency‐associated member of the Rpf family, in promoting naïve CD4+ T‐cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL‐6, IL‐1β, IL‐23p19, IL‐12p70, and TNF‐α but not IL‐10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF‐κB signaling. RpfE‐treated DCs effectively caused naïve CD4+ T cells to secrete IFN‐γ, IL‐2, and IL‐17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T‐bet and RORγt but not GATA‐3. Furthermore, lung and spleen cells from Mtb‐infected WT mice but not from TLR4?/? mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1‐ and Th17‐polarized T‐cell expansion.  相似文献   

5.
6.
Recently, IL‐17 produced by Th17 cells was described as pro‐inflammatory cytokine with an eminent role in autoimmune diseases, e.g. rheumatoid arthritis. A lack of IL‐17 leads to amelioration of collagen‐induced arthritis. IL‐17 induction in naïve CD4+ T cells depends on IL‐6 and TGF‐β and is enhanced by IL‐23. The in vivo inflammatory potential of in vitro‐primed Th17 cells however, remains unclear. Here, we show that, although IL‐17 neutralisation results in amelioration of murine OVA‐induced arthritis, in vitro‐primed Th17 cells cannot exacerbate arthritic symptoms after adoptive transfer. Furthermore, Th17 cells cannot induce an inflammatory delayed type hypersensitivity reaction because they fail to migrate into inflamed sites, possibly due to the lack of CXCR3 expression. Also, re‐isolated Th17 cells acquired IFN‐γ expression, indicating instability of the Th17 phenotype. Taken together, the data show that IL‐6, TGF‐β and IL‐23 might not provide sufficient signals to induce “fully qualified” Th17 cells.  相似文献   

7.
Th1 and Th2 cell fates are traditionally viewed as mutually exclusive, but recent work suggests that these lineages may be more plastic than previously thought. When isolating splenic CD4+ T cells from mice infected with the parasitic helminth Schistosoma mansoni, we observed a defined population of IFN‐γ/IL‐4 double‐positive cells. These IFN‐γ+IL‐4+ cells showed differences in DNA methylation at the Ifng and Il4 loci when compared with IFN‐γ+IL‐4? (Th1) and IFN‐γ?IL‐4+ (Th2) cells, demonstrating that they represent a distinct effector cell population. IFN‐γ+IL‐4+ cells also displayed a discrete DNA methylation pattern at a CpG island within the body of the Gata3 gene, which encodes the master regulator of Th2 identity. DNA methylation at this region correlated with decreased Gata3 levels, suggesting a possible role in controlling Gata3 expression. These data provide important insight into the molecular mechanisms behind the co‐existence of Th1 and Th2 characteristics.  相似文献   

8.
In helper T cells, IL‐13 is traditionally considered a Th2‐type cytokine that is coexpressed with IL‐4. Using mouse models of immunization and autoimmunity, we demonstrate that IL‐13 is frequently uncoupled from IL‐4, and that it can be produced by both IFN‐γ+ Th1 cells and IL‐17+ Th17 cells. We report that these IL‐13‐producing Th1 and Th17 cells are distinct from classical IL‐4+ Th2 cells and that they are relatively common, appearing in the context of both protective and pathogenic T‐cell responses. We also demonstrate that IL‐13 and Th2‐type cytokines can have important consequences in Th1‐ and Th17‐dominated settings, such as lymphopenia‐induced autoimmune disease, where they can be either pro‐ or anti‐inflammatory, depending on whether they act on innate or adaptive immune cells. Taken together, our studies indicate that IL‐13 production is more widespread than previously appreciated and that blocking this cytokine may have therapeutic benefits even in settings where traditional IL‐4‐driven Th2‐type responses are not evident.  相似文献   

9.
IL‐6 is a pleiotropic cytokine involved in the physiology of virtually every organ system. Recent studies have demonstrated that IL‐6 has a very important role in regulating the balance between IL‐17‐producing Th17 cells and regulatory T cells (Treg). The two T‐cell subsets play prominent roles in immune functions: Th17 cell is a key player in the pathogenesis of autoimmune diseases and protection against bacterial infections, while Treg functions to restrain excessive effector T‐cell responses. IL‐6 induces the development of Th17 cells from naïve T cells together with TGF‐β; in contrast, IL‐6 inhibits TGF‐β‐induced Treg differentiation. Dysregulation or overproduction of IL‐6 leads to autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA), in which Th17 cells are considered to be the primary cause of pathology. Given the critical role of IL‐6 in altering the balance between Treg and Th17 cells, controlling IL‐6 activities is potentially an effective approach in the treatment of various autoimmune and inflammatory diseases. Here, we review the role of IL‐6 in regulating Th17/Treg balance and describe the critical functions of IL‐6 and Th17 in immunity and immune‐pathology.  相似文献   

10.
The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum‐infected NK‐cell‐depleted mice (NK‐LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham‐treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN‐γ) and Th17 (IL‐17), but higher levels of Th2 (IL‐4), cytokines. Consistently, NK‐LDCs were less efficient in directing C. muridarum‐specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4+ T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL‐12p70, IL‐6, and IL‐23 by LDCs. The neutralization of IFN‐γ in the culture decreased the production of IL‐12p70 by LDCs, whereas the blockade of TNF‐α resulted in diminished IL‐6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.  相似文献   

11.
The cytokines IL‐6, IL‐1β, TGF‐β, and IL‐23 are considered to promote Th17 commitment. Langerhans cells (LC) represent DC in the outer skin layers of the epidermis, an environment extensively exposed to pathogenic attack. The question whether organ‐resident DC like LC can evoke Th17 immune response is still open. Our results show that upon stimulation by bacterial agonists, epidermal LC and LC‐like cells TLR2‐dependently acquire the capacity to polarize Th17 cells. In Th17 cells, expression of retinoid orphan receptor γβ was detected. To clarify if IL‐17+cells could arise per se by stimulated LC we did not repress Th1/Th2 driving pathways by antibodies inhibiting differentiation. In CD1c+/langerin+ monocyte‐derived LC‐like cells (MoLC), macrophage‐activating lipopeptide 2, and peptidoglycan (PGN) induced the release of the cytokines IL‐6, IL‐1β, and IL‐23. TGF‐β, a cytokine required for LC differentiation and survival, was found to be secreted constitutively. Anti‐TLR2 inhibited secretion of IL‐6, IL‐1β, and IL‐23 by MoLC, while TGF‐β was unaffected. The amount of IL‐17 and the ratio of IL‐17 to IFN‐γ expression was higher in MoLC‐ than in monocyte‐derived DC‐cocultured Th cells. Anti‐IL‐1β, ‐TGF‐β and ‐IL‐23 decreased the induction of Th17 cells. Interestingly, blockage of TLR2 on PGN‐stimulated MoLC prevented polarization of Th cells into Th17 cells. Thus, our findings indicate a role of TLR2 in eliciting Th17 immune responses in inflamed skin.  相似文献   

12.
13.
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN‐γ and, to a lesser extent, of IL‐17 by CD4+ T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag‐unrelated CD4+ T‐cell responses. Here we demonstrate that PstS1, a 38 kDa‐lipoprotein of Mtb, promotes Ag‐independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4+ and CD8+ memory T cells, amplifies secretion of IFN‐γ and IL‐22 and induces IL‐17 production by effector memory cells in an Ag‐unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α? subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL‐6, IL‐1β and, to a lower extent, IL‐23. IL‐6 secretion by PstS1‐stimulated DCs was required for IFN‐γ, and to a lesser extent for IL‐22 responses by Ag85B‐specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.  相似文献   

14.
Human Th17 clones and circulating Th17 cells showed lower susceptibility to the anti‐proliferative effect of TGF‐β than Th1 and Th2 clones or circulating Th1‐oriented T cells, respectively. Accordingly, human Th17 cells exhibited lower expression of clusterin, and higher Bcl‐2 expression and reduced apoptosis in the presence of TGF‐β, in comparison with Th1 cells. Umbilical cord blood naïve CD161+CD4+ T cells, which contain the precursors of human Th17 cells, differentiated into IL‐17A‐producing cells only in response to IL‐1β plus IL‐23, even in serum‐free cultures. TGF‐β had no effect on constitutive RORγt expression by umbilical cord blood CD161+ T cells but it increased the relative proportions of CD161+ T cells differentiating into Th17 cells in response to IL‐1β plus IL‐23, whereas under the same conditions it inhibited both T‐bet expression and Th1 development. These data suggest that TGF‐β is not critical for the differentiation of human Th17 cells, but indirectly favors their expansion because Th17 cells are poorly susceptible to its suppressive effects.  相似文献   

15.
16.
17.
IL‐33 has recently been identified as a cytokine endowed with pro‐Th2 functions, raising the question of its effect on invariant natural killer T cell (iNKT), which are potent IL‐4 producers. Here, we report a two‐fold increase of iNKT‐cell counts in spleen and liver after a 7‐day treatment of mice with IL‐33, which results from a direct effect, given that purified iNKT cells express the T1/ST2 receptor constitutively and respond to IL‐33 by in vitro expansion and functional activation. Conversely to the expected pro‐Th2 effect, IL‐33 induced a preferential increase in IFN‐γ rather than IL‐4 production upon TCR engagement that depended on endogenous IL‐12. Moreover, in combination with the pro‐inflammatory cytokine IL‐12, IL‐33 enhanced IFN‐γ production by both iNKT and NK cells. Taken together these data support the conclusion that IL‐33 can contribute as a co‐stimulatory factor to innate cellular immune responses.  相似文献   

18.
Interferon‐gamma producing CD4+ T (Th1) cells and IL‐17‐producing CD4+ T (Th17) cells are involved in the pathogenesis of several autoimmune diseases including multiple sclerosis. Therefore, the development of treatment strategies controlling the generation and expansion of these effector cells is of high interest. Frankincense, the resin from trees of the genus Boswellia, and particularly its prominent bioactive compound acetyl‐11‐keto‐β‐boswellic acid (AKBA), have potent anti‐inflammatory properties. Here, we demonstrate that AKBA is able to reduce the differentiation of human CD4+ T cells to Th17 cells, while slightly increasing Th2‐ and Treg‐cell differentiation. Furthermore, AKBA reduces the IL‐1β‐triggered IL‐17A release of memory Th17 cells. AKBA may affect IL‐1β signaling by preventing IL‐1 receptor‐associated kinase 1 phosphorylation and subsequently decreasing STAT3 phosphorylation at Ser727, which is required for Th17‐cell differentiation. The effects of AKBA on Th17 differentiation and IL‐17A release make the compound a good candidate for potential treatment of Th17‐driven diseases.  相似文献   

19.
20.
Gp130 is the common receptor of the IL‐6 family of cytokines and is involved in many biological processes, including acute phase response, inflammation and immune reactions. To investigate the role of gp130 under inflammatory conditions, T‐cell‐specific conditional gp130 mice were first bred to the IL‐10‐deficient background and were then infected with the gastrointestinal nematode Trichuris muris. While IL‐10?/? mice were highly susceptible to T. muris, developed a mixed Th1/Th17 response and displayed severe inflammation of the caecum, infection of mice with an additional T‐cell‐specific deletion of gp130 signalling completely reversed the phenotype. These mice showed an accelerated worm expulsion that was associated with the rapid generation of a strong Th2 immune response and a significant increase in Foxp3‐expressing Treg. Therefore, gp130 signalling in T cells regulates a switch between proinflammatory and pathogenic Th1/Th17 cells and regulatory Th2/Treg in vivo. Taken together, the data demonstrate that gp130 signalling in T cells is a positive regulator of inflammatory processes, favouring the Th1/Th17 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号