首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
INTRODUCTION: Multidrug resistance (MDR) is the main cause of failure in cancer therapy. One mechanism responsible for MDR is the active efflux of drugs by ATP-binding cassette (ABC) transporters. Several agents have been developed to block transporter-mediated drug efflux and some of these compounds have entered Phase II/III clinical testing. Evidence is also emerging of the role played by ABC transporters in cancer cell signalling that is likely to be important in disease progression and which is distinct from MDR. AREAS COVERED: This article reviews current literature to analyse the rationale for targeting ABC transporters in cancer. Preclinical and clinical results of ABC transporter inhibitors in early clinical trials, as single agents or in combination with other drugs, are described. The development of new strategies to target MDR and the emerging roles of ABC transporters in cancer signalling are discussed. EXPERT OPINION: The intense active search for safe and effective inhibitors of ABC transporters has led to some success in MDR reversal in preclinical studies. However, there has been little impact on clinical outcome. The discovery of novel, potent and nontoxic inhibitors as well as new treatment strategies is therefore needed.  相似文献   

4.
Pleiotropic drug resistance (PDR) is a well-described phenomenon occurring in fungi. PDR shares several similarities with processes in bacteria and higher eukaryotes. In mammalian cells, multidrug resistance (MDR) develops from an initial single drug resistance, eventually leading to a broad cross-resistance to many structurally and functionally unrelated compounds. Notably, a number of membrane-embedded energy-consuming ATP-binding cassette (ABC) transporters have been implicated in the development of PDR/MDR phenotypes. The yeast Saccharomyces cerevisiae genome harbors some 30 genes encoding ABC proteins, several of which mediate PDR. Therefore, yeast served as an important model organism to study the functions of evolutionary conserved ABC genes, including those mediating clinical antifungal resistance in fungal pathogens. Moreover, yeast cells lacking endogenous ABC pumps are hypersensitive to many antifungal drugs, making them suitable for functional studies and cloning of ABC transporters from fungal pathogens such as Candida albicans. This review discusses drug resistance phenomena mediated by ABC transporters in the model system S. cerevisiae and certain fungal pathogens.  相似文献   

5.
The role of ABC transporters in drug resistance, metabolism and toxicity   总被引:1,自引:0,他引:1  
ATP Binding Cassette (ABC) transporters form a special family of membrane proteins, characterized by homologous ATP-binding, and large, multispanning transmembrane domains. Several members of this family are primary active transporters, which significantly modulate the absorption, metabolism, cellular effectivity and toxicity of pharmacological agents. This review provides a general overview of the human ABC transporters, their expression, localization and basic mechanism of action. Then we shortly deal with the human ABC transporters as targets of therapeutic interventions in medicine, including cancer drug resistance, lipid and other metabolic disorders, and even gene therapy applications. We place a special emphasis on the three major groups of ABC transporters involved in cancer multidrug resistance (MDR). These are the classical P-glycoprotein (MDR1, ABCB1), the multidrug resistance associated proteins (MRPs, in the ABCC subfamily), and the ABCG2 protein, an ABC half-transporter. All these proteins catalyze an ATP-dependent active transport of chemically unrelated compounds, including anticancer drugs. MDR1 (P-glycoprotein) and ABCG2 preferentially extrude large hydrophobic, positively charged molecules, while the members of the MRP family can extrude both hydrophobic uncharged molecules and water-soluble anionic compounds. Based on the physiological expression and role of these transporters, we provide examples for their role in Absorption-Distribution-Metabolism-Excretion (ADME) and toxicology, and describe several basic assays which can be applied for screening drug interactions with ABC transporters in the course of drug research and development.  相似文献   

6.
Malignant gliomas are frequently chemoresistant and this resistance seems to depend on at least two mechanisms. First, the poor penetration of many anticancer drugs across the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB) and blood-tumor barrier (BTB), due to their interaction with several ATP-binding cassette (ABC) drug efflux transporters that are overexpressed by the endothelial or epithelial cells of these barriers. Second, resistance may involve the tumor cells themselves. Although ABC drug efflux transporters in tumor cells confer multidrug resistance (MDR) on several other solid tumors, their role in gliomas is unclear. This review focuses on astrocytes and summarizes the current state of knowledge about the expression, distribution and function of ABC transporters in normal and tumor astroglial cells. The recognition of anticancer drugs by ABC transporters in astroglial cells and their participation in the multidrug resistance phenotype of human gliomas is discussed.  相似文献   

7.
ATP-binding cassette (ABC) membrane proteins comprise a superfamily of transporters with a wide variety of substrates. Humans have 49 members in this superfamily. Several human ABC transporters, such as ABCB1 and ABCC1, have been attributed to cause multidrug resistance (MDR) in cancer treatment when over-expressed. In the past, an MDR cancer cell line MCF7/AdVp3000 has been selected, and overexpression of ABCG2 was thought to cause MDR in this cell line. However, ectopic overexpression of ABCG2 in MCF7 cells could not explain the high drug resistance level observed with the selected cell line. In this study, we designed an AmpArray analysis to profile whether other ABC transporters were also selected to contribute to the increased drug resistance in MCF7/AdVp3000 cells. We found that 16 ABC transporters, including ABCG2, had >/=1.5-fold altered expression in MCF7/AdVp3000 compared with the parental MCF7 cells. In particular, the expression of ABCA4 and ABCC3 was increased by 132- and 459-fold, respectively, whereas ABCG2 was increased by approximately 3000-fold. Furthermore, the elevated expression of these three transporters reversed with the reversed drug resistance phenotype, and silencing ABCC3 expression in MCF7/AdVp3000 cells significantly reduced doxorubicin resistance. Thus, other ABC transporters in addition to ABCG2 are likely to contribute to the MDR selected in MCF7/AdVp3000 cells. This study also shows that AmpArray can be used as a quick and easy tool to profile the expression of ABC transporters in resistant cell lines and tumor samples for potential use in individualized design of therapy.  相似文献   

8.
Multidrug resistance: retrospect and prospects in anti-cancer drug treatment   总被引:20,自引:0,他引:20  
Conventional cancer chemotherapy is seriously limited by the multidrug resistance (MDR) commonly exhibited by tumour cells. One mechanism by which a living cell can achieve multiple resistances is via the active efflux of a broad range of anticancer drugs through the cellular membrane by MDR proteins. Such drugs are exported in both ATP-dependent and -independent manners, and can occur despite considerable concentration gradients. To the ATP-dependent group belongs the ATP-binding cassette (ABC) transporter family, which includes P-gp, MRP, BCRP, etc. Another protein related to MDR, though not belonging to the ABC transporter family, is lung resistance-related protein (LRP). All of these proteins are involved in diverse physiological processes, and are responsible for the uptake and efflux of a multitude of substances from cancer cells. Many inhibitors of MDR transporters have been identified over the years. Firstly, MDR drugs were not specifically developed for inhibiting MDR; in fact, they had other pharmacological properties, as well as a relatively low affinity for MDR transporters. They included compounds of diverse structure and function, such as verapamil and cyclosporine, and caused side effects. Secondly, the new drugs were more inhibitor-specific, in terms of MDR transport, and were designed to reduce such side effects (e.g., R-verapamil, dexniguldipine, etc.). Unfortunately, they displayed poor response in clinical studies. Recently, new compounds obtained from drug development programs conducted by the pharmaceutical industry are characterized by a high affinity to MDR transporters and are efficient at nanomolar concentrations. Some of these compounds (e.g., MS-209) are currently under clinical trials for specific forms of advanced cancers. We aim to provide an overview of the properties associated with those mammalian MDR transporters known to mediate significant transport of relevant drugs in cancer treatments. We also summarize recent advances concerning resistance to cancer drug therapies with respect to the function and overexpression of ABC and LRP multidrug transporters.  相似文献   

9.
ATP-binding cassette (ABC) transporters are involved in a variety of physiological processes such as lipid metabolism, ion homeostasis and immune functions. A large number of these proteins have been causatively linked to rare and common human genetic diseases including familial high-density lipoprotein deficiency, retinopathies, cystic fibrosis, diabetes and cardiomyopathies. Furthermore, genetic variations in ABC transporter genes and deregulated expression patterns significantly contribute to drug resistance in human cancer and pancreatic beta cells and alter the pharmacokinetic properties of a variety of drugs. Up-to-date 15 ABC transporters have been identified in human pancreatic beta cells, however only a few of them are identified to date as proteins/genes associated with multidrug resistance (MDR) in diabetes mellitus. Prominent members include the multidrug resistance protein 1 (MRP1/ABCC1), sulfonylurea receptor 1 (SUR1/ABCC8), the multi drug transporter TAP2 and member of the ATP-binding cassette transporter subfamily A (ABCA1). ABCC8 is a subunit of the pancreatic beta-cell K(ATP) channel and plays a key role in the regulation of glucose-induced insulin secretion. Although the physiological role of these transporters to MDR is not yet fully understood, they play an important role in the blood-membrane barrier in pancreatic beta cells. The aim of this article is to provide an overview and to present few examples of drug treatment in MDR in diabetes mellitus associated with function of ABC-transporters.  相似文献   

10.
Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.  相似文献   

11.
The ATP-binding cassette (ABC) transporters constitute a large family of membrane proteins, which transport a variety of compounds through the membrane against a concentration gradient at the cost of ATP hydrolysis. Substrates of the ABC transporters include lipids, bile acids, xenobiotics, and peptides for antigen presentation. As they transport exogenous and endogenous compounds, they reduce the body load of potentially harmful substances. One by-product of such protective function is that they also eliminate various useful drugs from the body, causing drug resistance. This review is a brief summary of the structure, function, and expression of the important drug resistance-conferring members belonging to three subfamilies of the human ABC family; these are ABCB1 (MDR1/P-glycoprotein of subfamily ABCB), subfamily ABCC (MRPs), and ABCG2 (BCRP of subfamily ABCG), which are expressed in various organs. In the text, the transporter symbol that carries the subfamily name (such as ABCB1, ABCC1, etc.) is used interchangeably with the corresponding original names, such as MDR1P-glycoprotein, MRP1, etc., respectively. Both nomenclatures are maintained in the text because both are still used in the transporter literature. This helps readers relate various names that they encounter in the literature. It now appears that P-glycoprotein, MRP1, MRP2, and BCRP can explain the phenomenon of multidrug resistance in all cell lines analyzed thus far. Also discussed are the gene structure, regulation of expression, and various polymorphisms in these genes. Because genetic polymorphism is thought to underlie interindividual differences, including their response to drugs and other xenobiotics, the importance of polymorphism in these genes is also discussed.  相似文献   

12.
ATP-binding cassette (ABC) transporters are present in the majority of human tumors and are involved in multidrug resistance (MDR). Therefore, compounds that inhibit the function of ABC transporters may improve the efficacy of anticancer agents. Previous research has shown that zafirlukast is a reversal drug for multidrug resistance protein (MRP) 1-mediated MDR. In the present study, we assessed whether zafirlukast could be a reversal agent for other ABC transporter-mediated MDR. Using the MTT assay, we found that zafirlukast enhanced the cytotoxicity of several anticancer drugs that are substrates of breast cancer resistance proteins (BCRP/ABCG2), including mitoxantrone and SN-38. Furthermore, zafirlukast could partially reverse P-glycoprotein-mediated (P-gp/ABCB1) and MRP7 (ABCC10)-mediated MDR at nontoxic doses. Studies on [(3)H]-mitoxantrone accumulation and efflux have shown that zafirlukast increases the intracellular accumulation of [(3)H]-mitoxantrone by directly inhibiting ABCG2-mediated drug efflux. Western blot analysis indicated that zafirlukast did not alter the expression of ABCG2. In addition, a docking model predicted the binding conformation of zafirlukast within the transmembrane region of homology-modeled human ABCG2. Our findings suggest a possible strategy to potentially enhance the activity of anticancer drugs using a clinically approved drug with known side effects and drug-drug interactions.  相似文献   

13.
ATP-binding cassette (ABC) transporters are a super family of channel proteins that include multi-drug resistance 1 (MDR1/P-gp) and multi-drug resistance related proteins (MRPs) whose functions include the efflux of ions, nutrients, lipids, amino acids, peptides, proteins and drugs. The three-dimensional structures of bacterial and human ABC transporters demonstrate that these proteins are ATP-dependent molecular machines that scan the inner membrane leaflet for lipids/drugs and flip them to the outer membrane leaflet. In many human cancers, the level of expression of MDR1 is an important independent prognostic factor that determines response to combination chemotherapy. Intrinsic and acquired resistance to chemotherapy exposure are due to a high level of MDR1 expression that enhances drug efflux, with associated poor clinical outcome and lower complete remission (CR) rates. Recent clinical trials in hematological and solid malignancies have shown promise for a prolonged remission and improved overall survival when the MDR1 P-gp is inhibited when combined with chemotherapy. Structure-based homology modeling of these ABC transporters may help design novel drug candidates to both the membrane-spanning domain (MSD) and the nucleotide-binding domain (NBD) located within the cytoplasm. This review will highlight advances in the utilization of homology modeling in the drug discovery process and how this will impact on fundamental insights to the development of novel therapeutics that could alter and/or inhibit their functions.  相似文献   

14.
多药耐药(multidrug resistance,MDR)是肿瘤化疗失败的主要原因。MDR的产生与P-糖蛋白(P-glycoprotein,P-gp)的过度表达相关。P-gp是由MDR1基因编码的膜转运蛋白,属于转运蛋白超家族,即ABC家族(ATP binding cassette family),具有能量依赖性药泵功能。过度表达的P-gp导致细胞内药物外排增加是MDR发生的主要机制。细胞内外的许多信号物质(包括化疗药物,紫外线、组织缺氧、化学致癌物质等)都能诱导MDR1基因的表达。本文主要介绍了MDR1调控的信号传导机制研究进展。  相似文献   

15.
16.
ATP-Binding Cassette (ABC) transporters are important mediators of multidrug resistance (MDR) in patients with cancer. Although their role in MDR has been extensively studied in vitro, their value in predicting response to chemotherapy has yet to be fully determined. Establishing a molecular diagnostic assay dedicated to the quantitation of ABC transporter genes is therefore critical to investigate their involvement in clinical MDR. In this article, we provide an overview of the methodologies that have been applied to analyze the mRNA expression levels of ABC transporters, by describing the technology, its pros and cons, and the experimental protocols that have been followed. We also discuss recent studies performed in our laboratory that assess the ability of the currently available high-throughput gene expression profiling platforms to discriminate between highly homologous genes. This work led to the conclusion that high-throughput TaqMan-based qRT-PCR platforms provide standardized clinical assays for the molecular detection of ABC transporters and other families of highly homologous MDR-linked genes encoding, for example, the uptake transporters (solute carriers-SLCs) and the phase I and II metabolism enzymes.  相似文献   

17.
ATP-binding cassette (ABC) multidrug transporters confer resistance in human cancer cells as well as in pathogenic microorganisms by mediating the extrusion of various chemotherapeutic drugs out of the cell. In aquatic invertebrates, the presence of ABC transporters which are involved in the multi-xenobiotic resistance has been demonstrated. However, most studies have been confined to the MDR1 subfamily. In the present study, we characterized the expression and localization of the ABC multidrug transporters including MDR1, MRP1 and BCRP subfamily in the Indian-rock oyster Saccostrea forskali. To our knowledge, these data represent one of the first reports on the orthologues of MRP1 and BCRP in marine invertebrates. Furthermore, the observations of (i) the expression of the ABC multidrug proteins in detoxifying tissues; (ii) the induction of these transporters upon exposure to an environmental organic pollutant tributyltin (TBT); and (iii) the concentration-dependent inhibition of rhodamine efflux by TBT imply a possible role of these proteins in the export of TBT. Our findings along with previous studies suggest that the ABC multidrug transporters act as a detoxifying mechanism of various toxic agents including TBT in aquatic organisms.  相似文献   

18.
BACKGROUND: Multi-drug resistance (MDR) of cancer cells is an obstacle to effective chemotherapy of cancer. The ATP-binding cassette (ABC) transporters, including P-glycoprotein (ABCB1), MRP1 (ABCC1) and ABCG2, play an important role in the development of this resistance. An attractive approach to overcoming MDR is the inhibition of the pumping action of these transporters. Several inhibitors/modulators of ABC transporters have been developed, but cytotoxic effects and adverse pharmacokinetics have prohibited their use. The ongoing search for such inhibitors/modulators that can be applied in the clinic has led to three generations of compounds. The most recent inhibitors are more potent and less toxic than first-generation compounds, yet some are still prone to adverse effects, poor solubility and unfavorable changes in the pharmacokinetics of the anticancer drugs. OBJECTIVE: This review provides an update of the published work on the development of potent modulators to overcome MDR in cancer cells, their present status in clinical studies and suggestions for further improvement to obtain better inhibitors. METHODS: This review summarizes recent advances in the development of less toxic modulators, including small molecules and natural products. In addition, a brief overview of other novel approaches that can be used to inhibit ABC drug transporters mediating MDR has also been provided. CONCLUSION: The multifactorial nature of MDR indicates that it may be important to develop modulators that can simultaneously inhibit both the function of the drug transporters and key signaling pathways, which are responsible for development of this phenomenon.  相似文献   

19.
Human multidrug resistance ABC transporters are ubiquitous membrane proteins responsible for the efflux of multiple, endogenous or exogenous, compounds out of the cells, and therefore they are involved in multi-drug resistance phenotype (MDR). They thus deeply impact the pharmacokinetic parameters and toxicity properties of drugs. A great pressure to develop inhibitors of these pumps is carried out, by either ligand-based drug design or (more ideally) structure-based drug design. In that goal, many biochemical studies have been carried out to characterize their transport functions, and many efforts have been spent to get high-resolution structures. Currently, beside the 3D-structures of bacterial ABC transporters Sav1866 and MsbA, only the mouse ABCB1 complete structure has been published at high-resolution, illustrating the tremendous difficulty in getting such information, taking into account that the human genome accounts for 48 ABC transporters encoding genes. Homology modeling is consequently a reasonable approach to overcome this obstacle. The present review describes, in the first part, the different approaches which have been published to set up human ABC pump 3D-homology models allowing the localization of binding sites for drug candidates, and the identification of critical residues therein. In a second part, the review proposes a more accurate strategy and practical keys to use such biological tools for initiating structure-based drug design.  相似文献   

20.
Transport by ATP-dependent efflux pumps, such as P-glycoprotein (PGP) and multi-drug resistance related proteins (MRPs), influences bioavailability and disposition of drugs. These efflux pumps serve as defence mechanisms and determine bioavailability and CNS concentrations of many drugs. However, despite the fact that substantial data have been accumulated on the structure, function and pharmacological role of ABC transporters and even though modification of PGP function is an important mechanism of drug interactions and adverse effects in humans, there is a striking lack of data on variability of the underlying genes. This review focuses on the human drug transporter proteins PGP (MDR1) and the multi-drug resistance proteins MRP1 and MRP2. An overview is provided of pharmacologically relevant genetic, structural and functional data as well as on hereditary polymorphisms, their phenotypical consequences and pharmacological implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号