首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Overexpression of the epidermal growth factor receptor (EGFR) promotes unregulated growth, inhibits apoptosis, and likely contributes to clinical radiation resistance of non-small cell lung cancer (NSCLC). Molecular blockade of EGFR signaling is an attractive therapeutic strategy for enhancing the cytotoxic effects of radiotherapy that is currently under investigation in preclinical and clinical studies. In the present study, we have investigated the mechanism by which gefitinib, a selective EGFR tyrosine kinase inhibitor, restores the radiosensitivity of NSCLC cells. EXPERIMENTAL DESIGN: Two NSCLC cell lines, A549 and H1299, were treated with 1 micromol/L gefitinib for 24 h before irradiation and then tested for clonogenic survival and capacity for repairing DNA double strand breaks (DSB). Four different repair assays were used: host cell reactivation, detection of gamma-H2AX and pNBS1 repair foci using immunofluorescence microscopy, the neutral comet assay, and pulsed-field gel electrophoresis. RESULTS: In clonogenic survival experiments, gefitinib had significant radiosensitizing effects on both cell lines. Results from all four DNA damage repair analyses in cultured A549 and H1299 cells showed that gefitinib had a strong inhibitory effect on the repair of DSBs after ionizing radiation. The presence of DSBs was especially prolonged during the first 2 h of repair compared with controls. Immunoblot analysis of selected repair proteins indicated that pNBS1 activation was prolonged by gefitinib correlating with its effect on pNBS1-labeled repair foci. CONCLUSIONS: Overall, we conclude that gefitinib enhances the radioresponse of NSCLC cells by suppressing cellular DNA repair capacity, thereby prolonging the presence of radiation-induced DSBs.  相似文献   

2.
Radiotherapy plays a crucial role in the treatment of many malignancies; however, locoregional disease progression remains a critical problem. This has stimulated laboratory research into understanding the basis for tumor cell resistance to radiation and the development of strategies for overcoming such resistance. We know that some cell signaling pathways that respond to normal growth factors are abnormally activated in human cancer and that these pathways also invoke cell survival mechanisms that lead to resistance to radiation. For example, abnormal activation of the epidermal growth factor receptor (EGFR) promotes unregulated growth and is believed to contribute to clinical radiation resistance. Molecular blockade of EGFR signaling is an attractive strategy for enhancing the cytotoxic effects of radiotherapy and, as shown in numerous reports, the radiosensitizing effects of EGFR antagonists correlate with a suppression of the ability of the cells to repair radiation-induced DNA double strand breaks (DSBs). The molecular connection between the EGFR and its governance of DNA repair capacity appears to be mediated by one or more signaling pathways downstream of this receptor. The purpose of this review is to highlight what is currently known regarding EGFR signaling and the processes responsible for repairing radiation-induced DNA lesions that would explain the radiosensitizing effects of EGFR antagonists.  相似文献   

3.
PURPOSE: We previously showed that phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) pathways cooperate to promote non-small cell lung cancer (NSCLC) cell proliferation in vitro. This study was designed to explore whether inhibition of these pathways effectively inhibits NSCLC tumor growth in vivo. EXPERIMENTAL DESIGN: The effects of PI3K/Akt inhibitors {LY294002, adenoviruses expressing dominant-negative mutant of the p85alpha adaptor subunit of PI3K (Ad-dnp85alpha), dominant-negative Akt [Ad-HA-Akt(KM)], or PTEN (Ad-PTEN)}, MKK4/c-jun NH2-terminal kinase (JNK) inhibitor [SP600215, adenovirus expressing dominant-negative MKK4, Ad-MKK4(KR)], and their combinations on proliferation and apoptosis in NSCLC cells were tested in vitro and in vivo using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a flow cytometry-based terminal deoxynucleotidyl transferase-mediated nick-end labeling assay, Western blot and immunohistochemical analyses, and an NSCLC xenograft tumor model. RESULTS: Ad-dnp85alpha significantly inhibited proliferation of a subset of NSCLC cell lines used in our study. Intratumoral injection of Ad-dnp85alpha induced a significant decrease in the growth of H1299 NSCLC xenograft tumors. Concurrent inhibition of the PI3K/Akt and MKK4/JNK pathways showed enhanced antiproliferative effects on H1299 cells in vitro and in vivo by increasing apoptosis. CONCLUSIONS: PI3K/Akt and MKK4/JNK pathways cooperate to stimulate NSCLC cell proliferation by maintaining cell survival, suggesting that simultaneously targeting these two pathways might be an effective therapeutic strategy against NSCLC.  相似文献   

4.
5.
Nucleolin (C23) is an important anti-apoptotic protein that is ubiquitously expressed in exponentially growingeukaryotic cells. In order to understand the impact of C23 in radiation therapy, we attempted to investigate therelationship of C23 expression with the radiosensitivity of human non-small cell lung cancer (NSCLC) cells.We investigated the role of C23 in activating the catalytic subunit of DNA-dependent protein kinase (DNAPKcs),which is a critical protein for DNA double-strand breaks (DSBs) repair. As a result, we found that theexpression of C23 was negatively correlated with the radiosensitivity of NSCLC cell lines. In vitro clonogenicsurvival assays revealed that C23 knockdown increased the radiosensitivity of a human lung adenocarcinomacell line, potentially through the promotion of radiation-induced apoptosis and adjusting the cell cycle to a moreradiosensitive stage. Immunofluorescence data revealed an increasing quantity of γ-H2AX foci and decreasingradiation-induced DNA damage repair following knockdown of C23. To further clarify the mechanism of C23in DNA DSBs repair, we detected the expression of DNA-PKcs and C23 proteins in NSCLC cell lines. C23 mightparticipate in DNA DSBs repair for the reason that the expression of DNA-PKcs decreased at 30, 60, 120 and 360minutes after irradiation in C23 knockdown cells. Especially, the activity of DNA-PKcs phosphorylation sitesat the S2056 and T2609 was significantly suppressed. Therefore we concluded that C23 knockdown can inhibitDNA-PKcs phosphorylation activity at the S2056 and T2609 sites, thus reducing the radiation damage repairand increasing the radiosensitivity of NSCLC cells. Taken together, the inhibition of C23 expression was shownto increase the radiosensitivity of NSCLC cells, as implied by the relevance to the notably decreased DNA-PKcsphosphorylation activity at the S2056 and T2609 clusters. Further research on targeted C23 treatment maypromote effectiveness of radiotherapy and provide new targets for NSCLC patients.  相似文献   

6.
Nishikawa T  Munshi A  Story MD  Ismail S  Stevens C  Chada S  Meyn RE 《Oncogene》2004,23(42):7125-7131
The melanoma differentiation-associated gene-7 (mda-7) was identified by virtue of its enhanced expression in human melanoma cells induced into terminal differentiation. Enforced expression of mda-7 in human cancer cell lines of diverse origins results in the suppression of growth and induction of apoptosis. We have shown that adenoviral-mediated mda-7 (Ad-mda7) radiosensitizes non-small-cell lung cancer (NSCLC) cells by enhancing the apoptotic pathway. To identify the mechanism of this radiosensitization, we examined the level of proteins involved in the nonhomologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Western blot analysis indicated that the expression of NHEJ pathway components Ku70, XRCC4, and DNA ligase IV was downregulated in NSCLC cells--A549 with Ad-mda7 treatment. No such change was observed in normal human CCD16 fibroblasts previously shown not to be radiosensitized by Ad-mda7. The biological significance of these changes of expression of proteins critical for repair of radiation-induced DSBs was confirmed via the analysis of DSB rejoining kinetics using pulsed field gel electrophoresis and assessment of host cell reactivation capacity following Ad-mda7 treatment. Based on these results, we hypothesize that Ad-mda7 sensitizes NSCLC cells to ionizing radiation by suppressing the activity of NHEJ, a pathway essential for repair of radiation-induced DSBs.  相似文献   

7.
8.
PURPOSE: It is known that blockage of epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K) activity enhances radiation sensitivity of human tumor cells presenting a K-RAS mutation. In the present study, we investigated whether impaired repair of DNA double-strand breaks (DSB) is responsible for the radiosensitizing effect of EGFR and PI3K inhibition in K-RAS mutated (K-RAS(mt)) cells. EXPERIMENTAL DESIGN: The effect of the EGFR tyrosine kinase inhibitor BIBX1382BS (BIBX) on cellular radiosensitivity was determined in K-RAS(mt) (A549) and K-RAS(wt) (FaDu) cell lines by clonogenic survival assay. Radiation-induced phosphorylation of H2AX (Ser139), ATM (Ser1981), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs; Thr2609) was analyzed by immunoblotting. Twenty-four hours after irradiation, residual DSBs were quantified by identification of gammaH2AX foci and frequency of micronuclei. RESULTS: BIBX reduced clonogenic survival of K-RAS(mt)-A549 cells, but not of K-RAS(wt)-FaDu cells, after single-dose irradiation. Analysis of the radiation-induced H2AX phosphorylation revealed that BIBX, as well as the PI3K inhibitor LY294002, leads to a marked reduction of P-H2AX in K-RAS(mt)-A549 and MDA-MB-231 cells, but not in K-RAS(wt)-FaDu and HH4ded cells. Likewise, radiation-induced autophosphorylation of DNA-PKcs at Thr2609 was only blocked in A549 cells by these two inhibitors and AKT1 small interfering RNA transfection. However, neither in K-RAS(mt) nor in K-RAS(wt) cells the inhibitors did affect radiation-induced ATM phosphorylation. As a consequence of inhibitor treatment, a significant enhancement of both residual DSBs and frequency of micronuclei was apparent only in A549 but not in FaDu cells following radiation. CONCLUSION: Targeting of the EGFR-dependent PI3K-AKT pathway in K-RAS-mutated A549 cells significantly affects postradiation survival by affecting the activation of DNA-PKcs, resulting in a decreased DSB repair capacity.  相似文献   

9.
PURPOSE: To identify the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) during gamma-ionizing radiation (gamma-IR) treatment for non-small-cell lung cancer cells. METHODS AND MATERIALS: Wild-type PTEN or mutant forms of PTEN plasmids were transfected to construct stable transfectants of the NCI-H1299 non-small-cell lung cancer cell line. Combined effects of PTEN expression and IR treatment were tested using immunoblot, clonogenic, and cell-counting assays. Related signaling pathways were studied with immunoblot and kinase assays. RESULTS: At steady state, stable transfectants showed almost the same proliferation rate but had different AKT phosphorylation patterns. When treated with gamma-IR, wild-type PTEN transfectants showed higher levels of cell death compared with mock vector or mutant transfectants, and showed increased G(2)/M cell-cycle arrest accompanied by p21 induction and CDK1 inactivation. NCI-H1299 cells were treated with phosphosinositide-3 kinase (PI3K)/AKT pathway inhibitor (LY29002), resulting in reduced AKT phosphorylation levels. Treatment of NCI-H1299 cells with LY29002 and gamma-IR resulted in increased cell-cycle arrest and p21 induction. Endogenous wild-type PTEN-containing NCI-H460 cells were treated with PTEN-specific siRNA and then irradiated with gamma-IR: however reduced PTEN levels did not induce cell-cycle arrest or p21 expression. CONCLUSIONS: Taken together, these findings indicate that PTEN may modulate cell death or the cell cycle via AKT inactivation by PTEN and gamma-IR treatment. We also propose that a PTEN-PI3K/AKT-p21-CDK1 pathway could regulate cell death and the cell cycle by gamma-IR treatment.  相似文献   

10.
Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population.  相似文献   

11.
Radiotherapy (RT) is an important treatment for non-small cell lung cancer (NSCLC). However, the major obstacles to successful RT include the low radiosensitivity of cancer cells and the restricted radiation dose, which is given without damaging normal tissues. Therefore, the sensitizer that increases RT efficacy without dose escalation will be beneficial for NSCLC treatment. Eurycomalactone (ECL), an active quassinoid isolated from Eurycoma longifolia Jack, has been demonstrated to possess anticancer activity. In this study, we aimed to investigate the effect of ECL on sensitizing NSCLC cells to X-radiation (X-ray) as well as the underlying mechanisms. The results showed that ECL exhibited selective cytotoxicity against the NSCLC cells A549 and COR-L23 compared to the normal lung fibroblast. Clonogenic survival results indicated that ECL treatment prior to irradiation synergistically decreased the A549 and COR-L23 colony number. ECL treatment reduced the expression of cyclin B1 and CDK1/2 leading to induce cell cycle arrest at the radiosensitive G2 /M phase. Moreover, ECL markedly delayed the repair of radiation-induced DNA double-strand breaks (DSBs). In A549 cells, pretreatment with ECL not only delayed the resolving of radiation-induced -H2AX foci but also blocked the formation of 53BP1 foci at the DSB sites. In addition, ECL pretreatment attenuated the expression of DNA repair proteins Ku-80 and KDM4D in both NSCLC cells. Consequently, these effects led to an increase in apoptosis in irradiated cells. Thus, ECL radiosensitized the NSCLC cells to X-ray via G2 /M arrest induction and delayed the repair of X-ray-induced DSBs. This study offers a great potential for ECL as an alternative safer radiosensitizer for increasing the RT efficiency against NSCLC.  相似文献   

12.
Das AK  Chen BP  Story MD  Sato M  Minna JD  Chen DJ  Nirodi CS 《Cancer research》2007,67(11):5267-5274
The epidermal growth factor receptor (EGFR) is an important determinant of radioresponse, whose elevated expression and activity frequently correlates with radioresistance in several cancers, including non-small cell lung carcinoma (NSCLC). We reported recently that NSCLC cell lines harboring somatic, activating mutations in the tyrosine kinase domain (TKD) of the EGFR exhibit significant delays in the repair of DNA double-strand breaks (DSB) and poor clonogenic survival in response to radiation. Here, we explore the mechanisms underlying mutant EGFR-associated radiosensitivity. In three representative NSCLC cell lines, we show that, unlike wild-type (WT) EGFR, receptors with common oncogenic TKD mutations, L858R or DeltaE746-E750, are defective in radiation-induced translocation to the nucleus and fail to bind the catalytic and regulatory subunits of the DNA-dependent protein kinase (DNA-PK), a key enzyme in the nonhomologous end-joining repair pathway. Moreover, despite the presence of WT EGFR, stable exogenous expression of either the L858R or the DeltaE746-E750 mutant forms of EGFR in human bronchial epithelial cells significantly delays repair of ionizing radiation (IR)-induced DSBs, blocks the resolution of frank or microhomologous DNA ends, and abrogates IR-induced nuclear EGFR translocation or binding to DNA-PK catalytic subunit. Our study has identified a subset of naturally occurring EGFR mutations that lack a critical radioprotective function of EGFR, providing valuable insights on how the EGFR mediates cell survival in response to radiation in NSCLC cell lines.  相似文献   

13.
目的 观察酪氨酸激酶抑制ARQ197对肺癌H1299细胞的放射增敏作用及机制。方法 首先用不同浓度的重组人肝细胞生长因子(HGF)和ARQ197分别处理H1299 细胞,应用克隆形成实验法检测细胞增殖,筛选出用于放射敏感性研究的HGF和ARQ197的合适浓度。随后将细胞分为对照组、HGF处理组、ARQ197处理组、HGF+ARQ197处理组,观察不同组别之间差异。最后用蛋白印记检测HGF、单纯放射或联合应用ARQ197对c-Met及下游Akt和Erk1/2蛋白表达和活化的影响。结果 H1299细胞的克隆形成率随着HGF浓度增加呈进行性升高,而ARQ197则进行性下降。LQ模型细胞存活曲线示HGF、HGF+ARQ197处理及ARQ197对H1299细胞的放射增益比分别为0.85、1.20、1.27(存活分数为0.1时的剂量比)。H1299细胞在HGF刺激后p-cMet、p-Akt、p-Erk1/2高表达,HGF+ARQ197中随着ARQ197浓度增加p-cMet、p-Akt、p-Erk1/2蛋白表达进行性下降。细胞接受2 Gy照射后p-cMet、p-Akt、p-Erk1/2高表达,但照射+ARQ197后p-cMet、p-Akt、p-Erk1/2蛋白表达显著下降,但总的cMet、Akt、Erk1/2蛋白表达无明显变化。结论 ARQ197通过抑制HGF/c-Met及其下游传导通路的活化对离体肺癌H1299细胞有显著放射增敏作用。  相似文献   

14.
The tumor suppressor gene PTEN, which encodes a multifunctional phosphatase protein, is mutated in a variety of human cancers. Several reports have indicated that it has growth-suppressive and proapoptosis properties and displayed an altered expression pattern during human oncogenesis. Overexpression of PTEN leads to decreasing cell growth and tumorigenicity in vitro and in vivo. In the present study, we further demonstrated that overexpression of PTEN mediated by adenovirus suppressed bladder cancer cell growth and significantly induced apoptosis, through downregulating of survivin and activating of caspase cascades. Our results indicate that Ad-PTEN exerts its tumor suppressive effect on bladder cancer cells through inhibiting survivin and upregulating caspase-related proteins. Thus Ad-PTEN may be potentially therapeutic for the treatment of bladder cancers.  相似文献   

15.
Han B  Dong Z  Liu Y  Chen Q  Hashimoto K  Zhang JT 《Oncogene》2003,22(34):5325-5337
  相似文献   

16.
The prognosis of patients with brain metastasis (BM) is poor. In our study, we demonstrated that AZD3759, an EGFR tyrosine kinase inhibitors (TKIs) with excellent blood–brain barrier (BBB) penetration, combined with radiation enhanced the antitumor efficacy in BM model from EGFR mutant (EGFRm) NSCLC. Besides, the antitumor activity displayed no difference between radiation concurrently with AZD3759 and radiation sequentially with AZD3759. Mechanistically, we found that two factors determined the enhanced efficacy: cells with EGFRm which were sensitive to AZD3759, and a relative high concentration of AZD3759. We have validated mechanisms underlying the radiosensitizing effect of AZD3759, which were involved in decreased cell proliferation and survival, and suppressed repair of DNA damage. Moreover, our study found that AZD3759 inhibited both the non‐homologous end joining (NHEJ) and homologous recombination (HR) DNA double‐strand breaks (DSBs) repair pathway, and abrogated the G2/M checkpoint to suppress DNA damage repair. We also detected the BBB penetration of AZD3759 when combined with cranial radiation. The results showed the BBB penetration of AZD3759 was decreased within 24 hr after radiation, however, the free concentration of AZD3759 in brain kept at a high level in the context of radiation. In conclusion, our findings suggest that AZD3759 combined with radiation enhances the antitumor activity in BM from EGFRm NSCLC, this combination therapy may be an effective treatment option for BM from EGFRm NSCLC.  相似文献   

17.
目的:探讨腺病毒介导的PTEN基因表达体外对SGC-7901胃癌细胞生长抑制作用及其分子机制。方法:将携有PTEN基因的复制缺陷型腺病毒载体(Ad-PTEN)感染SGC-7901胃癌细胞,用RT-PCR法检测Ad-PTEN在细胞中的表达,光学显微镜及荧光显微镜下观察Ad-PTEN感染细胞前后形态的变化,MTT法检测Ad-PTEN对SGC-7901胃癌细胞生长的抑制作用,用流式细胞术(FCM)检测SGC-7901胃癌细胞凋亡率。RT-PCR分析Bax、Bcl-2、p53、Survivin细胞凋亡相关基因的表达。结果:Ad-PTEN基因组感染SGC-7901胃癌细胞后,RT-PCR结果显示PTEN目的基因能在SGC-7901胃癌细胞中转录,其表达可明显抑制该胃癌细胞的生长,并诱导细胞凋亡。其凋亡机制可能与Bax/Bcl-2比值、p53基因表达上调、Survivin下调有关。结论:重组腺病毒Ad-PTEN具有抑制SGC-7901胃癌细胞生长和诱导细胞凋亡的作用。  相似文献   

18.
Chemotherapy is one major approach for treating non-small cell lung carcinoma (NSCLC). However, the progression-free survival rate depends on whether there is tumor metastasis after drug treatment. The biological behavior for its characteristics remains to be clarified. Here, we treated A549 and H1299 NSCLC cell lines with cisplatin, doxorubicin and gemcitabine at the IC(50) dose. Most attached cells were surviving cells (A549-A and H1299-A), whereas only a small portion of detached cells survived and reattached to tissue culture plates (A549-R and H1299-R) for further growth. Using cisplatin, a series of H1299 sublines (H1299-R2~H1299-R5) were also generated by the same selection procedure. Drug treatment increased the migratory ability of A549-R and H1299-R cells. A serial selection could enhance the invasiveness of cells. Cisplatin treatment inhibited the adhesion ability of H1299-R cells compared with their H1299 and H1299-A counterparts. H1299-R cells exhibited increased drug resistance to cisplatin and increased expression of ABCG2, CD133 and CD44. Compared with mice subcutaneously injected with H1299 cells, mice subcutaneously injected with H1299-R cells showed an increase in the number of metastatic lung nodules. We conclude that H1299-R cells selected by suboptimal doses of cisplatin following detachment from and reattachment to the tissue culture plate acquire an enhanced malignant phenotype. Therefore, they provide a more faithful lung cancer model associated with biological aggressiveness for studying clinically recurrent cancers after chemotherapy.  相似文献   

19.
C Ling  Y Xie  D Zhao  Y Zhu  J Xiang  J Yang 《Cancer gene therapy》2012,19(10):697-706
Radiotherapy is the common treatment of choice for locally advanced lung cancer, but the radioresistance of lung cancer remains a significant therapeutic obstacle. We previously demonstrated that adenovirus-mediated inhibitor of growth 4 (ING4) tumor suppressor gene delivery (AdVING4) can chemosensitize human hepatocarcinoma cells to anticancer drug cisplatin (CDDP). However, its radiosensitizing effects in cancer therapy are largely elusive. In the present study, we investigated the therapeutic efficacy of AdVING4 gene therapy combined with ionizing radiotherapy for SPC-A1 human non-small-cell lung cancer (NSCLC) cells in vitro and in vivo in athymic nude mice, and also elucidated its underlying mechanisms. We found that AdVING4 gene therapy plus radiotherapy induced synergistic tumor suppression and apoptosis in in vitro SPC-A1 human NSCLC cells and in vivo SPC-A1 xenografted tumors s.c. implanted in athymic nude mice. Mechanistically, AdVING4 combined with radiation resulted in a substantial upregulation of Bax, Fas, FasL and Cleaved Caspase-3, and downregulation of Bcl-2 in SPC-A1 human NSCLC xenografted tumors. In addition, AdVING4 plus radiation synergistically reduced the tumor vessel CD34 expression and microvessel density (MVD) in vivo. Most importantly, AdVING4 potentially blocked the radiation-induced enhancement of cyclooxygenase-2 and survivin radioresistant factors, and vascular endothelial growth factor and IL-8 proangiogenic factors. The enhanced antitumor effects elicited by AdVING4 plus radiotherapy were closely associated with the cooperative activation of intrinsic and extrinsic apoptotic pathways, and synergistic inhibition of tumor angiogenesis. Thus, our results suggested that AdVING4 combined with radiotherapy may be a feasible and effective strategy for treatment of radioresistant NSCLC and other cancers.  相似文献   

20.
PURPOSE: Survivin, a member of the inhibitor of apoptosis protein family, is an attractive target for cancer therapy. We have now investigated the effect of YM155, a small-molecule inhibitor of survivin expression, on the sensitivity of human non-small cell lung cancer (NSCLC) cell lines to gamma-radiation. EXPERIMENTAL DESIGN: The radiosensitizing effect of YM155 was evaluated on the basis of cell death, clonogenic survival, and progression of tumor xenografts. Radiation-induced DNA damage was evaluated on the basis of histone H2AX phosphorylation and foci formation. RESULTS: YM155 induced down-regulation of survivin expression in NSCLC cells in a concentration- and time-dependent manner. A clonogenic survival assay revealed that YM155 increased the sensitivity of NSCLC cells to gamma-radiation in vitro. The combination of YM155 and gamma-radiation induced synergistic increases both in the number of apoptotic cells and in the activity of caspase-3. Immunofluorescence analysis of histone gamma-H2AX also showed that YM155 delayed the repair of radiation-induced double-strand breaks in nuclear DNA. Finally, combination therapy with YM155 and gamma-radiation delayed the growth of NSCLC tumor xenografts in nude mice to a greater extent than did either treatment modality alone. CONCLUSIONS: These results suggest that YM155 sensitizes NSCLC cells to radiation both in vitro and in vivo, and that this effect of YM155 is likely attributable, at least in part, to the inhibition of DNA repair and enhancement of apoptosis that result from the down-regulation of survivin expression. Combined treatment with YM155 and radiation warrants investigation in clinical trials as a potential anticancer strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号