首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the current study was to develop an fMRI task capable of characterizing individual differences in reading and attentional domains. Forty-nine students with a range of reading and attentional control abilities completed an event-related fMRI oddball task consisting of printed word and false font stimuli. Reading network activation was assessed by contrasting printed words with false font stimuli. Left inferior frontal gyrus and superior/middle temporal gyrus showed a main effect of stimulus type. The magnitude of the difference in activation between words and false font was correlated with word reading for both regions and reading fluency for superior/middle temporal gyrus. Regions including bilateral middle cingulate, insula and right inferior frontal gyrus showed a main effect of trial type. The difference in activation between oddball and standard trials in the right superior/middle temporal gyrus and left cerebellum was correlated with attentional control measures. Results indicate the task tapped both reading and attentional control resources. Understanding the contribution of the neural networks supporting each of these domains may provide insight into the shared neural deficits underlying the co-morbidity between developmental dyslexia and attention deficit hyperactivity disorder.  相似文献   

2.
During fMRI, dyslexic and control boys completed auditory language tasks (judging whether pairs of real and/or pseudo words rhymed or were real words) in 30 s 'on' conditions alternating with a 30 s 'off' condition (judging whether tone pairs were same). During phonological judgment, dyslexics had more activity than controls in right than left inferior temporal gyrus and in left precentral gyrus. During lexical judgment, dyslexics were less active than controls in bilateral middle frontal gyrus and more active than controls in left orbital frontal cortex. Individual dyslexics were reliably less active than controls in left insula and left inferior temporal gyrus. Dyslexic and control children differ in brain activation during auditory language processing skills that do not require reading.  相似文献   

3.
Neuroimaging studies have suggested that left inferior frontal gyrus, left inferior parietal lobule and left middle temporal gyrus are critical for semantic processing in normal children. The goal of the present functional magnetic resonance imaging (fMRI) study was to determine whether these regions are systematically related to semantic processing in children (9- to 15-year-old) diagnosed with reading disorders (RD). Semantic judgments required participants to indicate whether two words were related in meaning. The strength of semantic association varied continuously from higher association pairs (e.g., king-queen) to lower association pairs (e.g. net-ship). We found that the correlation between association strength and activation was significantly weaker for RD children compared to controls in left middle temporal gyrus and left inferior parietal lobule for both the auditory and the visual modalities and in left inferior frontal gyrus for the visual modality. These results suggest that the RD children have abnormalities in semantic search/retrieval in the inferior frontal gyrus, integration of semantic information in the inferior parietal lobule and semantic lexical representations in the middle temporal gyrus. These deficits appear to be general to the semantic system and independent of modality.  相似文献   

4.
汉语单字词音、义加工的脑激活模式   总被引:27,自引:0,他引:27  
目的:研究汉字音、义加工的脑机制。方法:采用汉字单字词为实验材料,通过功能磁共振成像扫描执行语音和语义两种认知任务的脑区。结果:语音任务激活的脑区有,左侧顶叶下部和颞上回(BA 40/39/22,BA:Brodmann Area,即布鲁德曼分区,下同),左侧枕中回(BA18/19),右侧枕下回(BA18/19),以及左中央前回(BA6)。语义任务激活的脑区有,左侧顶叶下部(BA40/39)和左侧颞上回(BA22),左侧额下回(BA10/47),右侧额中回和额上回(BA10/11),以及左侧额中回(BA11)。语义任务减去语音任务激活的脑区有,左侧额下回(BA47),左侧海马(BA36)和右侧海马旁回(BA36)。语音任务减去语义任务没有发现任何脑区的显著激活。结论:在语义任务中与语音有关的脑区得到激活;而在语音任务中与语义有关的脑区没有激活。  相似文献   

5.
Specialization of phonological and semantic processing in Chinese word reading   总被引:12,自引:0,他引:12  
Booth JR  Lu D  Burman DD  Chou TL  Jin Z  Peng DL  Zhang L  Ding GS  Deng Y  Liu L 《Brain research》2006,1071(1):197-207
The purpose of this study was to examine the neurocognitive network for processing visual word forms in native Chinese speakers using functional magnetic resonance imaging (fMRI). In order to compare the processing of phonological and semantic representations, we developed parallel rhyming and meaning association judgment tasks that required explicit access and manipulation of these representations. Subjects showed activation in left inferior/middle frontal gyri, bilateral medial frontal gyri, bilateral middle occipital/fusiform gyri, and bilateral cerebella for both the rhyming and meaning tasks. A direct comparison of the tasks revealed that the rhyming task showed more activation in the posterior dorsal region of the inferior/middle frontal gyrus (BA 9/44) and in the inferior parietal lobule (BA 40). The meaning task showed more activation in the anterior ventral region of the inferior/middle frontal gyrus (BA 47) and in the superior/middle temporal gyrus (BA 22,21). These findings are consistent with previous studies in English that suggest specialization of inferior frontal regions for the access and manipulation of phonological vs. semantic representations, but also suggest that this specialization extends to the middle frontal gyrus for Chinese. These findings are also consistent with the suggestion that the left middle temporal gyrus is involved in representing semantic information and the left inferior parietal lobule is involved in mapping between orthographic and phonological representations.  相似文献   

6.
A functional magnetic resonance imaging (fMRI) study during Japanese 'kana' readings was performed on Japanese dyslexic children. Five dyslexic children (aged 9-12 years) and five healthy children (aged 9-11 years) were investigated. The fMRI examination was performed by getting these children to read sentences constructed from Japanese phonograms, 'kana', compared with staring at meaningless figures as a control task. All control subjects showed activation of the left middle temporal gyrus. In the dyslexic children, the activation of the middle temporal gyrus was rather vague. However, other distinctively activated regions were detected as follows: the bilateral occipital cortex in two dyslexics, the inferior part of the frontal regions in two other dyslexics, and both the bilateral occipital cortex and the inferior part of precentral gyrus in the remaining one. These results indicate compensatory management processes for the unskilled reading ability of dyslexic children. The present results were similar to previous ones for adult dyslexia with the Roman alphabet, and suggest that brain malfunction in dyslexia during the task of reading must be common despite differences in languages.  相似文献   

7.
8.
Functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) were used to map brain activation during language tasks. While previous studies have compared performance between alphabetic literate and illiterate subjects, there have been no such data in Chinese-speaking individuals. In this study, we used fMRI to examine the effects of education on neural activation associated with silent word recognition and silent picture-naming tasks in 24 healthy right-handed Chinese subjects (12 illiterates and 12 literates). There were 30 single Chinese characters in the silent word recognition task and 30 meaningful road-signs in the silent picture-naming task. When we compared literate and illiterate subjects, we observed education-related differences in activation patterns in the left inferior/middle frontal gyrus and both sides of the superior temporal gyrus for the silent word recognition task and in the bilateral inferior/middle frontal gyrus and left limbic cingulated gyrus for the silent picture-naming task. These results indicate that the patterns of neural activation associated with language tasks are strongly influenced by education. Education appears to have enhanced cognitive processing efficiency in language tasks.  相似文献   

9.
Previous studies have revealed that phonological processing of Chinese characters elicited activation in the left prefrontal cortex, bilateral parietal cortex, and occipitotemporal regions. However, it is controversial what role the left middle frontal gyrus plays in Chinese character reading, and whether the core regions (e.g., the left superior temporal gyrus and supramarginal gyrus) for phonological processing of alphabetic languages are also involved in Chinese character reading. To address these questions, the present study used both univariate and multivariate analysis (i.e., representational similarity analysis, RSA) to explore neural representations of phonological information during Chinese character reading. Participants were scanned while performing a reading aloud task. Univariate activation analysis revealed a widely distributed network for word reading, including the bilateral inferior frontal gyrus, middle frontal gyrus, lateral temporal cortex, and occipitotemporal cortex. More importantly, RSA showed that the left prefrontal (i.e., the left middle frontal gyrus and left inferior frontal gyrus) and bilateral occipitotemporal areas (i.e., the left inferior and middle temporal gyrus and bilateral fusiform gyrus) represented phonological information of Chinese characters. These results confirmed the importance of the left middle frontal gyrus and regions in ventral pathway in representing phonological information of Chinese characters.  相似文献   

10.
Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments to visual words in a group of 9- to 15-year-old children. Subjects were asked to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral inferior frontal gyri (Brodmann area [BA] 47, 45) and left middle temporal gyrus (BA 21). Words with strong semantic association elicited significantly greater activation in bilateral inferior parietal lobules (BA 40), suggesting stronger integration of highly related semantic features. By contrast, words with weak semantic association elicited greater activation in left inferior frontal gyrus (BA 45) and middle temporal gyrus (BA 21), suggesting more difficult feature search and more extensive access to semantic representations. We also examined whether age and skill explained unique variance in the patterns of activation. Increasing age was correlated with greater activation in left middle temporal gyrus (BA 21) and inferior parietal lobule (BA 40), suggesting that older children have more elaborated semantic representations and more complete semantic integration processes, respectively. Decreasing age was correlated with activation in right superior temporal gyrus (BA 22) and decreasing accuracy was correlated with activation in right middle temporal gyrus (BA 21), suggesting the engagement of ancillary systems in the right hemisphere for younger and lower-skill children.  相似文献   

11.
We examined developmental differences, in location and extent of fMRI language activation maps, between adults and children while performing a semantic fluency task. We studied 29 adults and 16 children with echo planar imaging BOLD fMRI at 1.5 T using covert semantic verbal fluency (generation of words to categories compared to rest) using a block design. Post task testing was administered to assess performance. Individual data were analyzed with an a priori region of interest approach from t maps (t = 4) and asymmetry indices (AI). Group studies were analyzed using SPM 99 (Wellcome, UK; fixed effect, corrected P < 0.0001). We found no significant differences in location or laterality of activation between adults and children for a semantic verbal fluency task. Adults activated more pixels than children in left inferior frontal gyrus and left middle frontal gyrus, but AIs were the similar across ages (r(2) < 0.09). Extent or laterality of activation was not affected by performance (r(2) < 0.15). The brain areas that process semantic verbal fluency are similar in children and adults. The laterality of activation does not change appreciably with age and appears to be strongly lateralized by age 7 years.  相似文献   

12.
PURPOSE: Lateralization of language function is crucial to the planning of surgery in children with frontal or temporal lobe lesions. We examined the utility of functional magnetic resonance imaging (fMRI) as a determinant of lateralization of expressive language in children with cerebral lesions. METHODS: fMRI language lateralization was attempted in 35 children (29 with epilepsy) aged 8-18 years with frontal or temporal lobe lesions (28 left hemisphere, five right hemisphere, two bilateral). Axial and coronal fMRI scans through the frontal and temporal lobes were acquired at 1.5 Tesla by using a block-design, covert word-generation paradigm. Activation maps were lateralized by blinded visual inspection and quantitative asymmetry indices (hemispheric and inferior frontal regions of interest, at p<0.001 uncorrected and p<0.05 Bonferroni corrected). RESULTS: Thirty children showed significant activation in the inferior frontal gyrus. Lateralization by visual inspection was left in 21, right in six, and bilateral in three, and concordant with hemispheric and inferior frontal quantitative lateralization in 93% of cases. Developmental tumors and dysplasias involving the inferior left frontal lobe had activation overlying or abutting the lesion in five of six cases. fMRI language lateralization was corroborated in six children by frontal cortex stimulation or intracarotid amytal testing and indirectly supported by aphasiology in a further six cases. In two children, fMRI language lateralization was bilateral, and corroborative methods of language lateralization were left. Neither lesion lateralization, patient handedness, nor developmental versus acquired nature of the lesion was associated with language lateralization. Involvement of the left inferior or middle frontal gyri increased the likelihood of atypical language lateralization. CONCLUSIONS: fMRI lateralizes language in children with cerebral lesions, although caution is needed in interpretation of individual results.  相似文献   

13.
Theoretical models for lexical access to visual objects have been based mainly on adult data. To investigate the developmental aspects of object recognition and lexical access in children, a large-scale functional MRI (fMRI) study was performed in 283 normal children ages 5-18 using a word-picture matching paradigm in which children would match an aurally presented noun to one of two pictures (line drawings). Using group Independent Component Analysis (ICA), six task-related components were detected, including (a) the posterior superior temporal gyrus bilaterally; (b) the fusiform, inferior temporal, and middle occipital gyri bilaterally; (c) the dorsal aspect of the inferior frontal gyrus bilaterally, the left precuneus, the left superior/middle temporal gyrus, and the anterior cingulate; (d) the right medial fusiform gyrus; (e) a left-lateralized component including the inferior/middle frontal, middle temporal, medial frontal, and angular gyri, as well as the thalamus and the posterior cingulate; and (f) the ventral/anterior aspect of the inferior frontal gyrus bilaterally. Increased activation associated with age was seen in the components (b) and (d) (ventral visual pathway) for object recognition, and (c) and (f) likely associated with semantic maintenance and response selection. Increased activation associated with task performance was seen in components (b) and (d) (ventral visual pathway) while decreased activation associated with task performance was seen in component (f) (ventral/anterior inferior frontal gyrus). The results corroborate the continued development of the ventral visual pathway throughout the developmental period.  相似文献   

14.
OBJECTIVE: To identify age-dependent activation patterns of verbal fluency with functional MRI (fMRI). BACKGROUND: Few fMRI language studies have been performed in children, and none provide comparison data to adult studies. Normative data are important for interpretation of similar studies in patients with epilepsy. METHODS: A total of 10 normal children (5 boys, 5 girls; mean age, 10.7 years; range, 8.1 to 13.1 years) and 10 normal adults (5 men, 5 women; mean age, 28.7 years; range, 19.3 to 48 years) were studied on a 1.5-T Signa MRI scanner using BOLD echo planar imaging of the frontal lobes with a verbal fluency paradigm, covert word generation to letters. Studies were analyzed with a cross-correlation algorithm (r = 0.7). A region-of-interest analysis was used to determine the extent, magnitude, and laterality of brain activation. RESULTS: Children and adults activated similar regions, predominantly in left inferior frontal cortex (Broca's area) and left middle frontal gyrus (dorsolateral prefrontal cortex). Children had, on average, 60% greater extent of activation than adults, with a trend for greater magnitude of activation. Children also had significantly more right hemisphere and inferior frontal gyrus activation than adults. CONCLUSIONS: In a test of verbal fluency, children tended to activate cortex more widely than adults, but activation patterns for fluency appear to be established by middle childhood. Thus, functional MRI using verbal fluency paradigms may be applied to pediatric patient populations for determining language dominance in anterior brain regions. The greater activation found in children, including the right inferior frontal gyrus, may reflect developmental plasticity for the ongoing organization of neural networks, which underlie language capacity.  相似文献   

15.
OBJECTIVE: To evaluate the reliability of temporal and frontal functional MRI (fMRI) activation for the assessment of language dominance, as compared with the Wada test. PATIENTS AND METHODS: Ten patients with temporal lobe epilepsy were studied using blood oxygen level dependent fMRI and echoplanar imaging (1.5-T). Three tasks were used: semantic verbal fluency, covert sentence repetition, and story listening. Data were analyzed using pixel by pixel autocorrelation and cross-correlation. fMRI laterality indices were defined for several regions of interest as the ratio (L - R)/(L + R), L being the number of activated voxels in the left hemisphere and R in the right hemisphere. Wada laterality indices were defined as the difference in the percentages of errors in language tests between left and right carotid injections. RESULTS: Semantic verbal fluency: The asymmetry of frontal activation was correlated with Wada laterality indices. The strongest correlation was observed in the precentral/middle frontal gyrus/inferior frontal sulcus area. Story listening: The asymmetry of frontal, but not temporal, activation was correlated with Wada laterality indices. Covert sentence repetition: No correlation was observed. CONCLUSIONS: There was a good congruence between hemispheric dominance for language as assessed with the Wada test and fMRI laterality indices in the frontal but not in the temporal lobes. The story listening and the covert sentence repetition tasks increased the sensitivity of detection of posterior language sites that may be useful for brain lesion surgery.  相似文献   

16.
Assessing inter-individual variability of functional activations is of practical importance in the use of functional magnetic resonance imaging (fMRI) in a clinical context. In this fMRI study we addressed this issue in 30 right-handed, healthy subjects using rhyme detection (phonologic) and semantic categorization tasks. Significant activations, found mainly in the left hemisphere, concerned the inferior frontal gyrus, the superior/middle temporal gyri, the prefrontal cortex, the inferior parietal lobe, the superior parietal lobule/superior occipital gyrus, the pre-central gyrus, and the supplementary motor area. Intensity/spatial analysis comparing activations in both tasks revealed an increased involvement of frontal regions in the semantic task and of temporo-parietal regions in the phonologic task. The frequency of activation analyzed in nine regional subdivisions revealed a high inter-subject variability but showed that the most frequently activated regions were the inferior frontal gyrus and the prefrontal cortex. Laterality indices, strongly lateralizing in both tasks, were slightly higher in the semantic (0.76 +/- 0.19) than the phonologic task (0.66 +/- 0.27). Frontal dominance indices (a measure of frontal vs. posterior left hemisphere dominance) indicated more robust frontal activations in the semantic than the phonologic task. Our study allowed the characterization of the most frequently involved foci in two language tasks and showed that the combination of these tasks constitutes a suitable tool for determining language lateralization and for mapping major language areas.  相似文献   

17.
Cao F  Peng D  Liu L  Jin Z  Fan N  Deng Y  Booth JR 《Human brain mapping》2009,30(3):797-809
Developmental differences in the neurocognitive networks for phonological and semantic processing in Chinese word reading were examined in 13 adults and 13 children using functional magnetic resonance imaging (fMRI). Rhyming and semantic association judgments were made to two-character words that were presented sequentially in the visual modality. These lexical tasks were compared with a nonlinguistic control task involving judgment of line patterns. The first main finding was that adults showed greater activation than children in right middle occipital gyrus on both the meaning and rhyming task, suggesting adults more effectively engage right hemisphere brain regions involved in the visual-spatial analysis of Chinese characters. The second main finding was that adults showed greater activation than children in left inferior parietal lobule for the rhyming as compared with the meaning task, suggesting greater specialization of phonological processing in adults. The third main finding was that children who had better performance in the rhyming task on characters with conflicting orthographic and phonological information relative to characters with nonconflicting information showed greater activation in left middle frontal gyrus, suggesting greater engagement of brain regions involved in the integration of orthography and phonology.  相似文献   

18.
Behavioral studies have shown discrepant results regarding the role of phonology in predicting math gains. The objective of this study was to use fMRI to study the role of activation during a rhyming judgment task in predicting behavioral gains on math fluency, multiplication, and subtraction skill. We focused within the left middle/superior temporal gyrus and left inferior frontal gyrus, brain areas associated with the storage of phonological representations and with their access, respectively. We ran multiple regression analyses to determine whether activation predicted gains in the three math measures, separately for younger (i.e. 10 years old) and older (i.e 12 years old) children. Results showed that activation in both temporal and frontal cortex only predicted gains in fluency and multiplication skill, and only for younger children. This study suggests that both temporal and frontal cortex activation during phonological processing are important in predicting gains in math tasks that involve the retrieval of facts that are stored as phonological codes in memory. Moreover, these results were specific to younger children, suggesting that phonology is most important in the early stages of math development. When the math task involved subtractions, which relies on quantity representations, phonological processes were not important in driving gains.  相似文献   

19.
Categorization is fundamental to our perception and understanding of the environment. However, little is known about the neural bases underlying the categorization of sounds. Using human functional magnetic resonance imaging (fMRI) we compared the brain responses to a category discrimination task with an auditory discrimination task using identical sets of sounds. Our stimuli differed along two dimensions: a speech-nonspeech dimension and a fast-slow temporal dynamics dimension. All stimuli activated regions in the primary and nonprimary auditory cortices in the temporal cortex and in the parietal and frontal cortices for the two tasks. When comparing the activation patterns for the category discrimination task to those for the auditory discrimination task, the results show that a core group of regions beyond the auditory cortices, including inferior and middle frontal gyri, dorsomedial frontal gyrus, and intraparietal sulcus, were preferentially activated for familiar speech categories and for novel nonspeech categories. These regions have been shown to play a role in working memory tasks by a number of studies. Additionally, the categorization of nonspeech sounds activated left middle frontal gyrus and right parietal cortex to a greater extent than did the categorization of speech sounds. Processing the temporal aspects of the stimuli had a greater impact on the left lateralization of the categorization network than did other factors, particularly in the inferior frontal gyrus, suggesting that there is no inherent left hemisphere advantage in the categorical processing of speech stimuli, or for the categorization task itself.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号