首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Duxbury MS  Ito H  Benoit E  Zinner MJ  Ashley SW  Whang EE 《Oncogene》2004,23(34):5834-5842
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is a glycosylphosphatidylinositol-linked immunoglobulin superfamily member that is overexpressed in a variety of human cancers. We have recently reported that suppression of CEACAM6 expression impairs pancreatic adenocarcinoma progression in vivo. In order to characterize the mechanisms through which CEACAM6 influences the malignant phenotype, CEACAM6-overexpressing Capan2 pancreatic adenocarcinoma cells were established by stable transfection. We determined the effect of CEACAM6 overexpression on cellular invasiveness towards insulin-like growth factor I (IGF-I), a peptide of critical importance in pancreatic cancer malignant cellular behavior and tumor progression. IGF-I-induced cellular invasiveness and IGF-IR expression were significantly increased in clones overexpressing CEACAM6. Using inhibitory anti-IGF-IR antibody, a requirement for IGF-IR signaling in the enhanced invasiveness towards IGF-I induced by CEACAM6 overexpression was confirmed. CEACAM6-overexpressing clones exhibited increased Akt and c-Src kinase activities, as well as higher levels of matrix metalloproteinase-2 (MMP-2) expression and activity in the presence of IGF-I. While Akt kinase is both necessary and sufficient to induce IGF-IR upregulation, c-Src kinase activity is necessary, but alone is insufficient to upregulate IGF-IR expression. CEACAM6 is an important determinant of pancreatic adenocarcinoma malignant cellular behavior and, together with its downstream targets, warrants further investigation as a therapeutic target in this disease.  相似文献   

5.
Duxbury MS  Ito H  Zinner MJ  Ashley SW  Whang EE 《Oncogene》2004,23(2):465-473
Anoikis is the apoptotic response induced in normal cells by inadequate or inappropriate adhesion to substrate. It is postulated that resistance to anoikis facilitates tumorigenesis and metastasis. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an immunoglobulin superfamily member overexpressed in a number of human cancers and implicated in anoikis resistance. We tested the effect of CEACAM6 gene silencing on anoikis in pancreatic adenocarcinoma cell lines. Anoikis was induced in PANC1, Capan2, MiaPaCa2 and Mia(AR) (a MiaPaCa2-derived anoikis-resistant subline) by culture in poly-2-hydroxyethylmethacrylate-coated wells. Anoikis was quantified by YO-PRO-1/propidium iodide staining and flow cytometry. The role of caspase activation was determined using fluorometric profiling and the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk). CEACAM6 expression was suppressed by RNA interference. Using a nude mouse orthotopic xenograft model, we assessed the effect of this treatment on in vivo metastatic ability. Anoikis resistance was associated with increased CEACAM6 expression. CEACAM6-specific short interfering ribonucleic acid (siRNA), but not control siRNA, increased susceptibility to caspase-mediated anoikis, an effect abrogated by Z-VAD-fmk, and decreased Akt phosphorylation (Ser-473) under anchorage-independent conditions. CEACAM6 gene silencing reversed the acquired anoikis resistance of Mia(AR) and inhibited its in vivo metastatic ability. CEACAM6 warrants further investigation as a novel therapeutic target for the treatment of pancreatic adenocarcinoma.  相似文献   

6.
Cheng JC  Chou CH  Kuo ML  Hsieh CY 《Oncogene》2006,25(53):7009-7018
This study is to investigate the molecular mechanism of radiation-enhanced cell invasiveness of hepatocellular carcinoma (HCC) correlating with clinical patients undergoing radiotherapy and subsequently developing metastasis. Three HCC cell lines (HepG2, Hep3B and Huh7) and normal hepatocyte cell line (CL-48) were irradiated with different doses. The effect of radiation on cell invasiveness was determined using the Boyden chamber assay. Radiation-enhanced invasion capability was evident in HCC cells but not in normal hepatocytes. Invasion was observed in gelatin-coated but not fibronectin-coated or type I collagen-coated membranes. Radiation upregulated matrix metalloproteinase-9 (MMP-9) mRNA level, MMP-9 protein level and MMP-9 activity. MMP-9 antisense oligonucleotides inhibited radiation-induced MMP-9 expression and thereby significantly inhibited radiation-induced HCC invasion. Furthermore, phosphatidylinositol 3-kinase (PI3K)/Akt chemical inhibitors LY294002 and wortmannin suppressed radiation-induced MMP-9 mRNA expression. Transient transfection with dominant-negative Akt plasmid also showed that the PI3K/Akt-signaling pathway was involved in this radiation-induced MMP-9 expression. Moreover, nuclear factor-kappaB (NF-kappaB) decoy oligodeoxynucleotide suppressed radiation enhanced MMP-9 promoter activity completely. PI3K/Akt chemical inhibitors inhibited radiation-induced NF-kappaB-driven luciferase promoter activity. Taken together, our results indicated that sublethal dose of radiation could enhance HCC cell invasiveness by MMP-9 expression through the PI3K/Akt/NF-kappaB signal transduction pathway.  相似文献   

7.
Accumulating evidence suggests an important role for cyclooxygenase-2 (COX-2) in the pathogenesis of a wide range of malignancies. Here we tested the hypothesis that the COX-2 product prostaglandin E(2) (PGE(2)) increases cellular invasive potential by inducing matrix metalloproteinase-2 (MMP-2) expression and activity through an extracellular signal-regulated kinase (ERK)/Ets-1-dependent mechanism in pancreatic cancer. PANC-1 and MIAPaCa-2 pancreatic cancer cells were treated with PGE(2) or rofecoxib, a selective COX-2 inhibitor. MMP-2 expression and activity were assayed using Western blot analysis and zymography, respectively. MMP-2 promoter activity was analyzed with a luciferase-based assay. Ets-1 activity was analyzed using gel shift assay. Ets-1 expression was specifically silenced using RNA interference. Cellular invasive and migratory potentials were determined using a Boyden chamber assay with or without Matrigel, respectively. Exogenous PGE(2) induced MMP-2 expression and activity and increased ERK1/2 phosphorylation, Ets-1 binding activity, and MMP-2 promoter activity. PGE(2) also increased cellular migratory and invasive potentials. The mitogen-activated protein kinase kinase inhibitor PD98059 and Ets-1 silencing each abolished PGE(2)-induced increases in MMP-2 expression. PD98059 and Ets-1 silencing each abrogated the effect of PGE(2) on cellular invasive potential but not on cellular migratory potential. Rofecoxib suppressed MMP-2 expression and activity, Ets-1 binding activity, MMP-2 promoter activity, and cellular migratory and invasive potentials. These results suggest that PGE(2) mediates pancreatic cancer cellular invasiveness through an ERK/Ets-1-dependent induction of MMP-2 expression and activity. They also suggest that COX-2 inhibition may represent a strategy to inhibit invasive potential in pancreatic cancer.  相似文献   

8.
Integrin-linked kinase (ILK) facilitates signal transduction between extracellular events and important intracellular survival pathways involving protein kinase B/Akt. We examined the role of ILK in determining pancreatic adenocarcinoma cellular chemoresistance to the nucleoside analogue gemcitabine. Cellular ILK expression was quantified by Western blot analysis. We examined the effects of overexpression of active ILK and of ILK knockdown induced by RNA interference on gemcitabine chemoresistance. We also examined the effects of modulating ILK expression on gemcitabine-induced caspase 3-mediated apoptosis, phosphorylation status of Akt (Ser473) and glycogen synthase kinase. Overexpression of ILK increased cellular gemcitabine chemoresistance, whereas ILK knockdown induced chemosensitization via increased caspase 3-mediated apoptosis. ILK knockdown attenuated Akt Ser473 and glycogen synthase kinase phosphorylation, whereas overexpression of constitutively active myristoylated Akt was sufficient to induce significant recovery in gemcitabine chemoresistance in the presence of ILK knockdown. Levels of ILK expression affect gemcitabine chemoresistance in pancreatic adenocarcinoma cells. This novel finding suggests that therapies directed against ILK and its downstream signaling targets may have the potential to enhance the efficacy of gemcitabine-based chemotherapy.  相似文献   

9.
10.
CEACAM6 is a determinant of pancreatic adenocarcinoma cellular invasiveness   总被引:5,自引:0,他引:5  
Pancreatic adenocarcinoma is among the most aggressively invasive malignancies. The immunoglobulin superfamily member carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is emerging as an important determinant of the malignant phenotype in a range of cancers. We sought to define the role of CEACAM6 in pancreatic adenocarcinoma cellular invasiveness. CEACAM6 was stably overexpressed in Capan2 cells, which inherently express low levels of CEACAM6. Retrovirally mediated RNA interference was used to silence CEACAM6 expression in BxPC3 cells, which inherently overexpress CEACAM6. Cellular invasiveness was quantified using a modified Boyden chamber assay. Overexpression of CEACAM6 increased Capan2 cellular invasiveness, whereas CEACAM6 knockdown attenuated BxPC3 invasiveness. A role for the c-Src tyrosine kinase in mediating CEACAM6-dependent invasiveness was defined using constitutively active and dominant-negative c-Src expression constructs. c-Src-dependent modulation of matrix metalloproteinase-9 activity contributes significantly to the increased cellular invasiveness induced by CEACAM6 overexpression. Levels of CEACAM6 expression can modulate pancreatic adenocarcinoma cellular invasiveness in a c-Src-dependent manner. This pathway warrants further investigation as a target for therapy.  相似文献   

11.
12.
Bae IH  Park MJ  Yoon SH  Kang SW  Lee SS  Choi KM  Um HD 《Cancer research》2006,66(10):4991-4995
Given a previous report that Bcl-w is expressed in gastric cancer cells, particularly in those of an infiltrative morphology, we investigated whether Bcl-w expression influences the invasiveness of gastric cancer cells. To accomplish this, Bcl-w was overexpressed in adherent types of gastric adenocarcinoma cell lines, and this was found to result in an increase in their migratory and invasive potentials. These effects were not induced when Bcl-2 was overexpressed in the same cell types. Consistently, Bcl-w, but not Bcl-2, overexpression increased matrix metalloproteinase-2 (MMP-2) expression, and synthetic or natural inhibitors of MMP-2 abolished Bcl-w-induced cell invasion. Bcl-w overexpression also activated phosphoinositide 3-kinase (PI3K), Akt, and Sp1, and the blocking effects of each of these components using pharmacologic inhibitors, dominant-negative mutants, or small interfering RNA abolished the ability of Bcl-w to induce MMP-2 and cell invasion. The inhibition of PI3K/Akt signaling also prevented Sp1 activation. Overall, our data suggest that Bcl-w, which was previously shown to enhance gastric cancer cell survivability, also promotes their invasiveness by inducing MMP-2 expression via the sequential actions of PI3K, Akt, and Sp1.  相似文献   

13.
The mechanisms by which c-erbB-dependent signaling contribute to the invasive potential of HNSCC remain to be fully elucidated. We have previously shown that c-erbB autocrine and/or paracrine stimulation upregulates MMP-9 but has no effect on the related gelatinase, MMP-2. BTC, a major c-erbB ligand, has the ability to efficiently activate all c-erbB receptors and to bind directly to EGFR and c-erbB-4. BTC is commonly expressed in HNSCC cells and exerts the most potent effects in terms of MMP induction relative to other c-erbB ligands so far tested. In the present study, we explored the contribution of major downstream events triggered by BTC/c-erbB receptor signaling to the regulation of MMP-9 and in vitro invasiveness of HNSCC cells. In human HNSCC cell lines, SIHN-006 and Detroit-562, BTC treatment resulted in rapid tyrosine phosphorylation of all c-erbB receptors whereas both endogenous MMP-9 and BTC-stimulated MMP-9 were predominantly mediated via EGFR. BTC induced ERK1/2, JNK/SAPK and Akt phosphorylation with differing kinetics but not p38 kinase. The BTC-dependent activation of JNK and PI3K/Akt pathways occurred predominantly via EGFR, whereas activation of the MEK-1/ERK pathway occurred via all 4 c-erbB receptors, although again predominantly via EGFR. Selective inhibition of ERK/MAPK (by PD98059 or U0126) and PI3K (by LY294002 or wortmannin) led to marked reduction of both basal and BTC-induced MMP-9 activity and invasive ability of HNSCC cells. In contrast, inhibition of p38 kinase with SB203580 produced no such effects. A specific inhibitor of NF-kappa B, BAY 11-7085, also blocked the stimulatory effect of BTC. No remarkable inhibition of MMP-9 and invasion was observed on targeting other cellular activities, such as PKA, PKC and PLC-gamma. Taken together, our data show that BTC induces MMP-9 production and invasion primarily through activation of EGFR, MAPK and PI3K/Akt in HNSCC cells.  相似文献   

14.
15.
Liu D  Zhang Y  Dang C  Ma Q  Lee W  Chen W 《Oncology reports》2007,18(3):673-677
Previously, we have documented that the aggressive and highly metastatic behavior of pancreatic cancer may be due to the aberrant expression of nerve growth factor (NGF) and its high-affinity receptor, proto-oncogene TrkA. In this study, we sought to determine the effect of suppressing TrkA expression on pancreatic cancer chemosensitivity to gemcitabine. Human pancreatic cancer cell lines PANC-1, MIA-PaCa-2 and ASPC-1 were studied. The expression and kinase activity of TrkA were determined by Western blot analysis and in vitro kinase assay respectively. RNA interference was used to suppress TrkA expression. Gemcitabine-induced cytotoxicity was determined by tetrazolium reduction assay and caspase profiling was performed. The effect of TrkA-specific siRNA on PI3K/Akt activity was also quantified. TrkA expression and kinase activity in cell lines were directly correlated with gemcitabine chemoresistance. TrkA-specific siRNA suppressed TrkA expression and kinase activity, and furthermore increased gemcitabine-induced, caspase-mediated apoptosis. PI3K/Akt activity was decreased by suppression of TrkA expression. Taken together, these data demonstrated that TrkA is a determinant of pancreatic adenocarcinoma chemoresistance and PI3K/Akt is a key signaling component by which NGF activation of the TrkA signal transduction pathway protects pancreatic cancer cells from chemotherapy-induced cell death.  相似文献   

16.
Transforming growth factor-beta1 (TGF-beta1) plays a crucial role in adhesion and migration of human cancer cells. Besides, integrins are the major adhesive molecules in mammalian cells. Here we found that TGF-beta1 increased the migration and cell surface expression of beta1 integrin in human lung cancer cells (A549 cells). TGF-beta1 stimulation increased phosphorylation of p85alpha subunit of phosphatidylinositol 3-kinase (PI3K) and Ser(473) of Akt was determined. Besides, we performed that PI3K inhibitor (Ly294002) or Akt inhibitor suppressed the TGF-beta1-induced migration activities of A549 cells. Treatment of A549 cells with NF-kappaB inhibitor (PDTC) or IkappaB protease inhibitor (TPCK) also repressed TGF-beta1-induced cells migration and beta1 integrins expression. In addition, treatment of A549 cells with TGF-beta1 induced IkappaB kinase alpha/beta (IKKalpha/beta) phosphorylation, IkappaB phosphorylation, p65 Ser(536) phosphorylation, and kappaB-luciferase activity. Furthermore, the TGF-beta1-mediated increases in IKKalpha/beta, IkappaBalpha phosphorylation and p65 Ser(536) phosphorylation were inhibited by Ly294002 and Akt inhibitor. Co-transfection with p85alpha and Akt mutants also reduced the TGF-beta1-induced kappaB-luciferase activity. Taken together, our results suggest that TGF-beta1 acts through PI3K/Akt, which in turn activates IKKalpha/beta and NF-kappaB, resulting in the activations of beta1 integrins and contributing the migration of human lung cancer cells.  相似文献   

17.
Wan X  Helman LJ 《Oncogene》2003,22(50):8205-8211
Constitutive activation of Akt has been found in many types of human cancer, and is believed to promote proliferation and increased cell survival thereby contributing to cancer progression. In this study, we examined Akt phosphorylation on Ser473 and Thr308 in seven IGF-II-overexpressing rhabdomyosarcomas (RMS) cells. All the RMS cell lines tested had high levels of Akt phosphorylation on Thr308, whereas three cell lines (Rh5, Rh18, and CTR) had a much lower level of Akt phosphorylation on Ser473. To determine whether the difference in Akt phosphorylation on Ser473, but not on Thr308, observed among cell lines is a cell-specific phenomenon or due to other factors, which possibly downregulate Akt phosphorylation, we examined expression of PTEN protein, which acts as a negative regulator of the PI3K/Akt signaling pathway through its ability to dephosphorylate phosphatidylinositol 3,4,5-triphosphate (PIP3). The levels of PTEN expression inversely correlate with Akt phosphorylation on Ser473, but not on Thr308. Consistent with this finding, transfection of wild-type PTEN into RMS and mouse myoblast C2C12 cells resulted in reduced Akt phosphorylation on Ser473, but not on Thr308. Our data suggest that Ser473 may be a key target residue for PTEN to modulate the effects of IGF-II on activating the PI3K/Akt pathway in RMS cells. A better understanding of the pathway in RMS will likely contribute to insights into the biology of the RMS tumorigenesis and hopefully lead to novel therapeutic options.  相似文献   

18.
19.
20.
Glioblastoma multiforme (GBM) is the most common and highly aggressive type of primary brain tumor. Tumor-associated macrophages (TAMs) secrete TNF-α that activates important survival pathways including Akt (PKB)/mTOR network. The mammalian target of rapamycin (mTOR) network functions downstream of PI3K/Akt pathway to regulate cell growth, proliferation and survival. mTOR exists in two distinct complexes-mTORC1 and mTORC2 that differ in their components and sensitivity to rapamycin. The rapamycin-insensitive complex (mTORC2) consists of mTOR, mLST8, Rictor, mSin1 and Protor and regulates the actin cytoskeleton in addition to activating Akt (protein kinase B). The present study aimed to investigate the role of Rictor-a core component of mTORC2 in regulating proliferation, survival, and invasion in gliomas. siRNA-mediated loss of Rictor function in human glioma cell lines, LN18 and LN229 and in primary GBM cells resulted in elevated expression and activity of MMP-9 and significant increase in the invasive potential of these cells. Mechanistic studies revealed that the activation of Raf-1-MEK-ERK pathway was essential for induction of MMP-9 activity and enhanced invasion. Interestingly, ablation of Rictor did not affect TNF-α-induced MMP-9 activity and invasiveness suggesting that TNF-α in the microenvironment of tumor might overrule the function of Rictor as a negative regulator of MMP-9 and invasion. Silencing Rictor had no effect on the survival or proliferation in the cell lines in the presence or absence of TNF-α. Our findings identify a role for Rictor in bridging two major pathways-Akt (PKB)/mTOR and Raf-1-MEK-ERK in regulating MMP-9 activity and invasion of glioma tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号