首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about the effects of manganese (Mn) exposure over neurodevelopment and whether these early insults result in effects lasting into adulthood. To determine if early Mn exposure produces lasting neurobehavioral and neurochemical effects, we treated neonate rats with oral Mn (0, 25, or 50 mg Mn/kg/d over PND 1-21) and evaluated (1) behavioral performance in the open arena in the absence (PND 97) and presence (PND 98) of a d-amphetamine challenge, (2) brain dopamine D1 and D2-like receptors and dopamine transporter densities in the prefrontal cortex, striatum, and nucleus accumbens (PND 107), and (3) astrocyte marker glial fibrillary acidic protein (GFAP) levels in these same brain regions (PND 24 and 107). We found that preweaning Mn exposure did not alter locomotor activity or behavior disinhibition in adult rats, though Mn-exposed animals did exhibit an enhanced locomotor response to d-amphetamine challenge. Preweaning Mn exposure led to increased D1 and D2 receptor levels in the nucleus accumbens and prefrontal cortex, respectively, compared with controls. We also found increased GFAP expression in the prefrontal cortex in Mn-exposed PND 24 weanlings, and increased GFAP levels in prefrontal cortex, medial striatum and nucleus accumbens of adult (PND 107) rats exposed to preweaning Mn, indicating an effect of Mn exposure on astrogliosis that persisted and/or progressed to other brain regions in adult animals. These data show that preweaning Mn exposure leads to lasting molecular and functional impacts in multiple brain regions of adult animals, long after brain Mn levels returned to normal.  相似文献   

2.
The central nervous system is affected by polychlorinated biphenyls (PCBs). Previous studies have indicated that developmental exposure to PCBs impairs behavioral performance and alters cognitive abilities. This study assessed the effects of lactational and postnatal exposure to a commercial PCBs mixture, Aroclor 1254 (A1254), on mice performing several neurobehavioral tasks including the open field test, novel object test, elevated plus maze test, Y‐maze test, and tail suspension test. In the open field test, PCBs treatment (6 and 18 mg/kg/day) was associated with increased movement, time duration, and frequency in the central zone in female but not male mice. PCBs‐treated female mice (6 and 18 mg/kg/day) also showed decreased novel object recognition, indicating impairment in recognition memory. Finally, we performed autoradiographic receptor binding assays for dopamine (DA) D1 and D2 receptors, dopamine transporter (DAT), and the N‐methyl‐D ‐aspartic acid (NMDA) receptor after behavioral tests to examine whether alterations occurred in the dopaminergic and NMDAergic systems of the brain. Our results showed that PCBs treatment did not change D1 and D2 receptors or DAT binding in the dorsal striatum of female mice. However, PCBs treatment significantly decreased NMDA receptor binding in the dorsal striatum, frontal cortex, cingulate cortex, and motor cortex, and CA3 and dentate gyrus (DG) of the hippocampus in female mice. Collectively, our results suggest that long‐term PCBs exposure can induce anxiolytic behavior, cognitive deficits, and changes of NMDA receptors. Synapse, 2011. © 2011 Wiley©Liss, Inc.  相似文献   

3.
Cognitive deficits associated with cardiac arrest have been well documented; however, the corresponding deficits in animal models of global ischemia have not been comprehensively assessed, particularly after long‐term, clinically relevant survival times. We exposed male Sprague–Dawley rats to 10 min of bilateral carotid artery occlusion + systemic hypotension (40–45 mmHg) or sham surgery, and used histopathological assessments for short‐term survival animals (16 days) and both behavioral and histopathological assessments for long‐term survival animals (270 days). Analyses revealed significant long‐term deficits in ischemic animals’ learning, memory (T‐maze, radial arm maze), working memory (radial arm maze), and reference memory (Morris water maze, radial arm maze) abilities that were not associated with a general cognitive decline. Histological results showed significant increases in glial fibrillary acidic protein, neuron glia 2, OX‐42 and ED‐1 staining, as well as significant decreases in microtubule‐associated protein 2 staining and cornu ammonis area 1 (CA1) cell counts 16 days post‐ischemia. The pattern at 270 days was similar, but notably there was a persistent elevation of ED‐1 staining, suggesting recent cell death as well as significant atrophy of CA1. Whereas previous work has primarily reported transient changes in behavior after global ischemia, this study describes disturbances in several different functional domains following CA1 cell loss at clinically relevant survival times. Moreover, the histopathological outcome is suggestive of a spontaneous repopulation of CA1, but this was not sufficient to offset the behavioral impairments arising from the ischemic insult.  相似文献   

4.
Prenatal exposure to alcohol can result in fetal alcohol syndrome (FAS), characterized by growth retardation, facial dysmorphologies, and a host of neurobehavioral impairments. Neurobehavioral effects in FAS, and in alcohol-related neurodevelopmental disorder, include poor learning and memory, attentional deficits, and motor dysfunction. Many of these behavioral deficits can be modeled in rodents. This paper reviews the literature suggesting that many fetal alcohol effects result, at least in part, from teratogenic effects of alcohol on the hippocampus. Neurobehavioral studies show that animals exposed prenatally to alcohol are impaired in many of the same spatial learning and memory tasks sensitive to hippocampal damage, including T-mazes, the Morris water maze, and the radial arm maze. Direct evidence for hippocampal involvement is provided by neuroanatomical studies of the hippocampus documenting reduced numbers of neurons, lower dendritic spine density on pyramidal neurons, and decreased morphological plasticity after environmental enrichment in rats exposed prenatally to alcohol. Electrophysiological studies also demonstrate changes in synaptic activity in in vitro hippocampal brain slices isolated from prenatal alcohol-exposed animals. Considered together, these observations demonstrate that prenatal exposure to alcohol can result in abnormal hippocampal development and function. Such studies provide a better understanding of neurological deficits associated with FAS in humans, and may also contribute to the development of strategies to ameliorate the effects of prenatal alcohol exposure on behavior.  相似文献   

5.
Administration of heroin or phenobarbital to pregnant mice evokes neurochemical and behavioral deficits consequent to disruption of septohippocampal cholinergic innervation. The present study evaluates the relationship between the drug-induced biochemical changes and the behavioral deficits, applying two different approaches: neural grafting and within-individual correlations of biochemistry and behavior. Mice were exposed transplacentally to phenobarbital or heroin on gestational days 9-18 and tested in adulthood. Drug-exposed mice displayed impaired radial arm maze performance, increases in presynaptic choline transporter sites (monitored with [(3)H]hemicholinium-3 binding), upregulation of membrane-associated protein kinase C (PKC) activity, and desensitization of the PKC response to a cholinergic agonist, carbachol. Grafting of cholinergic cells to the impaired hippocampus reversed the behavioral deficits nearly completely and restored basal PKC activity and the PKC response to carbachol to normal; the drug effects on hemicholinium-3 binding were also slightly obtunded by neural grafting, but nevertheless remained significantly elevated. There were significant correlations between the performance in the eight-arm maze and both basal PKC activity and PKC desensitization, and to a lesser extent, between behavioral performance and hemicholinium-3 binding. Taken together, these findings indicate an inextricable link between the biochemical effects of prenatal drug exposure on the PKC signaling cascade and adverse behavioral outcomes. The ability of neural grafting to reverse both the drug-induced changes in PKC and behaviors linked to septohippocampal cholinergic function suggest a mechanistic link between this signaling pathway and neurobehavioral teratology caused by heroin or phenobarbital.  相似文献   

6.
Antipsychotic treatment during pregnancy is indicated when risk of drug exposure to the fetus is outweighed by the untreated psychosis in the mother. Although increased risk of congenital malformation has not been associated with most available antipsychotic drugs, there is a paucity of knowledge on the subtle neurodevelopmental and behavioral consequences of prenatal receptor blockade by these drugs. In the present study, antipsychotic drugs, sulpiride (SUL, a selective D2 receptor antagonist) and risperidone (RIS, a D2/5HT2 receptor antagonist) were administered to pregnant Sprague-Dawley dams from gestational day 6 to 18. Both RIS and SUL prenatal exposed rats had lower birth body weights compared to controls. RIS exposure had a significant main effect to retard body weight growth in male offspring until postnatal day (PND) 60. Importantly, water maze tests revealed that SUL prenatal exposure impaired visual cue response in visual task performance (stimulus-response, S-R memory), but not place response as reflected in hidden platform task (spatial memory acquisition and retention). In addition, prenatal SUL treatment reduced spontaneous activity as measured in open field. Both behavioral deficits suggest that SUL prenatal exposure may lead to subtle disruption of striatum development and related learning and motor systems. RIS exposure failed to elicit deficits in both water maze tasks and increased rearing in open field test. These results suggest prenatal exposure to SUL and RIS may produce lasting effects on growth, locomotion and memory in rat offspring. And the differences may exist in the effects of antipsychotic drugs which selectively block dopamine D2 receptors (SUL) as compared to second generation drugs (RIS) that potently antagonize serotonin and dopamine receptors.  相似文献   

7.
Bisphenol A (BPA), an environmental endocrine‐disrupting chemical, has been extensively evaluated for reproductive toxicity and carcinogenicity. However, little is known about the behavioral and neurochemical effects of BPA exposure. This study examined whether chronic daily exposure to an environmental endocrine‐disrupting chemical, bisphenol A [(BPA); 100 μg/kg/day or 500 μg/kg/day, p.o.], from prenatal Day 7 to postnatal Day 36 would lead to changes in anxiety and memory in mice. First, we observed the behavioral alterations of BPA‐treated mice using two anxiety‐related models, the open field test and elevated plus maze (EPM) test. In the open field test, BPA treatment (100 μg/kg/day) increased movement in the central zone. BPA treatment (500 μg/kg/day) also increased the time spent in the open arms in the EPM test. Second, we measured cognitive ability in the Y‐maze test and novel object test. BPA‐treated mice showed decreased alternation behavior in the Y‐maze at both of doses, indicating working memory impairment. BPA‐treated mice (100 μg/kg/day) also showed decreased novel object recognition as expressed by central locomotion and frequency in the central zone, showing recognition memory impairment. Finally, to measure changes in the dopaminergic and NMDAergic systems in the brain, we performed autoradiographic receptor binding assays for dopamine D1 and D2 receptors, the NMDA receptor, and the dopamine transporter. BPA treatment increased D2 receptor binding in the caudate putamen (CPu) but decreased DAT binding. BPA treatment also decreased NMDA receptor binding in the frontal cortex and CA1, CA3, and DG of the hippocampus. Taken together, our results suggest that long‐term BPA exposure in mice can induce anxiolytic behaviors, cognitive deficits and changes in the dopaminergic and NMDAergic systems. Synapse 64:432–439, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Recent studies have shown that tactile stimulation (TS) in pups is able to prevent and/or minimize fear, anxiety behaviors, and addiction to psychostimulant drugs in adult rats. In these studies, animals have been exposed to handling from postnatal day (PND) 1–21. This study was designed to precisely establish which period of preweaning development has a greater influence of TS on neuronal development. After birth, male pups were exposed to TS from PND1–7, PND8–14, and PND15–21. In adulthood, the different periods of postnatal TS were assessed through behavioral, biochemical, and molecular assessments. Animals that received TS from PND8‐14 showed lower anxiety‐like symptoms, as observed by decreased anxiety index in elevated plus maze. This same TS period was able to improve rats' working memory by increasing the percentage of alternation rate in Y‐maze, and induce better ability to cope with stressful situations, as showed in the defensive burying test by a reduced time of burying behavior. On the other hand, animals receiving TS in the first week of life showed longest cumulative burying time, which is directly related to increased anxiety‐like behavior. Moreover, TS from PND8‐14 showed lower corticosterone levels and better oxidative status, as observed by decreased lipid peroxidation and increased catalase activity in the hippocampus. Brain‐derived neurotrophic factor (BDNF) immunocontent was increased in the hippocampus of animals receiving TS from PND8‐14, while glucocorticoid receptors immunocontent was decreased in both TS1‐7 and TS15‐21, but not TS8‐14. To the best of our knowledge, this study is the first to show TS can be more efficient if applied over a focused period of neonatal development (PND8‐14) and this beneficial influence can be reflected on reduced emotionality and increased ability to address stressful situations in adulthood. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Despite the basic differences in their underlying biological targets, prenatal exposure to heroin or phenobarbital produces similar syndromes of neurobehavioral deficits, involving defects in septohippocampal cholinergic innervation-related behaviors. At the cellular level, these deficits are associated with cholinergic hyperactivity, characterized by increased concentrations of muscarinic receptors and enhanced second messenger activity linked to the receptors. In the present study, we determined whether the cellular changes are mechanistically linked to altered behavior, using two different approaches: neural grafting and correlations between behavior and biochemistry within the same individual animals. Mice were exposed transplacentally to phenobarbital or heroin on gestation days 9-18 and, as adults, received fetal cholinergic grafts or were sham-operated. Prenatal drug exposure resulted in deficits in behavioral performance tested in the eight-arm radial maze, accompanied by increases in hippocampal M(1)-muscarinic receptor expression and muscarinic receptor-mediated IP formation. Neural grafting reversed both the behavioral deficits and the muscarinic hyperactivity. In the drug-exposed offspring, there was a significant correlation between maze performance and carbachol-induced inositol phosphate (IP) formation. These studies indicate that deficits of cholinergic function underlie the neurobehavioral deficits seen in the hippocampus of animals exposed prenatally to heroin or phenobarbital, and consequently that the observed cholinergic hyperactivity is an unsuccessful attempt to compensate for the loss of cholinergic function. The fact that the damage can be reversed by neural grafting opens up novel approaches to the restoration of brain function after prenatal insults.  相似文献   

10.
Behavioral adaptation to an anxiogenic environment involves the activity of various interconnected limbic regions, such as the amygdala, hippocampus and prefrontal cortex. Prenatal stress (PS) in rats affects the ability to cope with environmental challenges and alters brain plasticity, leading to long-lasting behavioral and neurobiological alterations. We examined in PS and control animals whether behavioral reactivity was correlated to neuronal activation by assessing Fos protein expression in limbic regions of rats exposed to a low or high anxiogenic environment (the closed and open arms of an elevated plus maze, respectively). A negative correlation was found between behavioral and neuronal activation, with a lower behavioral reactivity and a higher neuronal response observed in rats exposed to the more anxiogenic environment (the open arm) with respect to the less anxiogenic environment (the closed arm). Interestingly, the variation in the neurobehavioral response between the two arms of the maze was less pronounced in rats that had been subjected to PS. This study provides a remarkable example of how long-lasting changes in brain plasticity induced by PS affect the ability of limbic neurons to cope with anxiogenic stimuli of different strength.  相似文献   

11.
The abuse of methamphetamine (METH) is a serious public health problem because METH can cause persistent dopaminergic deficits in the brains of both animal models and humans. Surprisingly, adolescent postnatal day (PND)40 rats are resistant to these METH‐induced deficits, whereas young adult PND90 rats are not. Studies described in this report used rotating disk electrode voltammetry and western blotting techniques to investigate whether there are age‐dependent differences in monoamine transporter function in PND38–42 and PND88–92 rats that could contribute to this phenomenon. The initial velocities of dopamine (DA) transport into, METH‐induced DA efflux from, and DA transporter (DAT) immunoreactivity in striatal suspensions are greater in PND38–42 rats than in PND88–92 rats. DA transport velocities into vesicles that cofractionate with synaptosomal membranes after osmotic lysis are also greater in PND38–42 rats. However, there is no difference in vesicular monoamine transporter‐2 (VMAT‐2) immunoreactivity between the two age groups in this fraction. This suggests that younger rats have a greater capacity to sequester cytoplasmic DA into membrane‐associated vesicles due to kinetically upregulated VMAT‐2 and also have increased levels of functionally active DAT. In the presence of METH, these may provide additional routes of cellular efflux for DA that is released from vesicles into the cytoplasm and thereby prevent cytoplasmic DA concentrations in younger rats from rising to neurotoxic levels after drug administration. These findings provide novel insight into the age‐dependent physiological regulation of neuronal DA sequestration and may advance the treatment of disorders involving abnormal DA disposition including substance abuse and Parkinson's disease. Synapse 63:147–151, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Dopamine (DA) is a catecholamine neurotransmitter that regulates many aspects of motivated behavior in animals. Extracellular DA is highly regulated by the presynaptic high-affinity dopamine transporter (DAT), and drug- or genetically induced deficiencies in DAT function result in loss of DA reuptake. Mice in which DAT expression has been ablated have been previously proposed to be a relevant model of attention deficit hyperactivity disorder and have led to mechanistic insights regarding psychostimulant drug actions. However, very little previous work has emphasized the biobehavioral development of DAT-deficient mice. We therefore examined motoric, emotional and cognitive phenotypes in preadolescent (P22-26) DAT mutant mice. Consistent with previous reports in adult DAT(-/-) mice, we observed a hyperlocomotive phenotype in preadolescent mice across multiple assays. Somewhat surprisingly, spatial working memory in a Y-maze appeared intact, suggesting that cognitive phenotypes may emerge relatively late in development following hyperdopaminergia. Anxiety levels appeared to be reduced in DAT(-/-) mice, as defined by elevated plus maze and light-dark preference assays. No significant differences were observed between wild-type and heterozygous mice, suggesting a minimal impact of DAT haploinsufficiency on neurobehavioral status. Taken together, these data for the first time establish behavioral phenotypes of DAT mutant mice during development and suggest complex developmental stage-dependent effects of DA signaling on cognitive and emotional behaviors.  相似文献   

13.
Preconception exposure to EtOH through the paternal route may affect neurobehavioral and developmental features of offspring. This study investigates the effects of paternal exposure to EtOH before conception on the hyperactivity, inattention, and impulsivity behavior of male offspring in mice. Sire mice were treated with EtOH in a concentration range approximating human binge drinking (0–4 g/kg/day EtOH) for 7 weeks and mated with untreated females mice to produce offspring. EtOH exposure to sire mice induced attention deficit hyperactivity disorder (ADHD)‐like hyperactive, inattentive, and impulsive behaviors in offspring. As a mechanistic link, both protein and mRNA expression of dopamine transporter (DAT), a key determinant of ADHD‐like phenotypes in experimental animals and humans, were significantly decreased by paternal EtOH exposure in cerebral cortex and striatum of offspring mice along with increased methylation of a CpG region of the DAT gene promoter. The increase in methylation of DAT gene promoter was also observed in the sperm of sire mice, suggesting germline changes in the epigenetic methylation signature of DAT gene by EtOH exposure. In addition, the expression of two key regulators of methylation‐dependent epigenetic regulation of functional gene expression, namely, MeCP2 and DNMT1, was markedly decreased in offspring cortex and striatum sired by EtOH‐exposed mice. These results suggest that preconceptional exposure to EtOH through the paternal route induces behavioral changes in offspring, possibly via epigenetic changes in gene expression, which is essential for the regulation of ADHD‐like behaviors. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Outbred CD-1 mice were exposed to oxazepam (15 mg/kg PO twice/day) on days 12-16 of fetal life, i.e., at a critical ontogenetic stage of Type II benzodiazepine (BDZ) receptor increase, and fostered at birth to untreated dams. At adulthood, radial arm maze performance, activity-habituation test in an open-field arena (either single 15-min test or three 5-min sessions at 24-h intervals), approach to a novel stimulus object, and amphetamine or scopolamine effects thereon were assessed in male progeny. Overall, the oxazepam exposed (OX) mice were much less efficient in the radial arm maze task than the vehicle exposed (VEH) animals. Pre-test scopolamine injection, but not amphetamine, significantly impaired the arm maze performance of OX mice when compared with the corresponding VEH-scopolamine animals. In separate nonlearned behavioral tasks, prenatal oxazepam did not affect either baseline activity levels in the open field or the response to the amphetamine and the scopolamine challenge, while it considerably increased the latency of first approach to a novel object and produced a deficit of habituation in the course of the subsequent exploratory period. Concomitant investigation at the neurochemical level showed that the adult OX animals had a significant increase in both Bmax and in the affinity (Kd) of cholinergic muscarinic receptors in the hippocampal formation when compared to the vehicle-exposed controls.  相似文献   

15.
In utero methamphetamine (MA) exposure leads to a range of adverse effects, such as decreased attention, reduced working‐memory capability, behavioral dysregulation, and spatial memory impairments in exposed children. In the current experiment, preweaning Sprague‐Dawley rats—as a model of third trimester human exposure—were administered the spin trapping agent, N‐tert‐butyl‐α‐phenylnitrone (PBN), daily prior to MA. Rats were given 0 (SAL) or 40 mg/kg PBN prior to each MA dose (10 mg/kg, 4× per day) from postnatal day (P) 6–15. Littermates underwent Cincinnati water maze, Morris water maze, and radial water maze assessment beginning on P30 (males) or P60 (females). Males were also tested for conditioned contextual and cued freezing, while females were trained in passive avoidance. Findings show that, regardless of age/sex, neonatal MA induced deficits in all tests, except passive avoidance. PBN did not ameliorate these effects, but had a few minor effects. Taken together, MA induced learning deficits emerge early and persist, but the mechanism remains unknown.  相似文献   

16.
Adult rats exposed to the DNA‐methylating agent methylazoxymethanol on embryonic day 17 show a pattern of neurobiological deficits that model some of the neuropathological and behavioral changes observed in schizophrenia. Although it is generally assumed that these changes reflect targeted disruption of embryonic neurogenesis, it is unknown whether these effects generalise to other antimitotic agents administered at different stages of development. In the present study, neurochemical, behavioral and electrophysiological techniques were used to determine whether exposure to the antimitotic agent Ara‐C later in development recapitulates some of the changes observed in methylazoxymethanol (MAM)‐treated animals and in patients with schizophrenia. Male rats exposed to Ara‐C (30 mg/kg/day) at embryonic days 19.5 and 20.5 show reduced cell numbers and heterotopias in hippocampal CA1 and CA2/3 regions, respectively, as well as cell loss in the superficial layers of the pre‐ and infralimbic cortex. Birth date labeling with bromodeoxyuridine reveals that the cytoarchitectural changes in CA2/3 are a consequence rather that a direct result of disrupted cortical neurogenesis. Ara‐C‐treated rats possess elevated levels of cortical dopamine and DOPAC (3,4‐didyhydroxypheylacetic acid) but no change in norepinephrine or serotonin. Ara‐C‐treated rats are impaired in their ability to learn the Morris water maze task and showed diminished synaptic plasticity in the hippocampocortical pathway. These data indicate that disruption of neurogenesis at embryonic days 19.5 and 20.5 constitutes a useful model for the comparative study of deficits observed in other gestational models and their relationship to cognitive changes observed in schizophrenia.  相似文献   

17.
Children whose mothers used cocaine during pregnancy appear to have an increased incidence of certain neurobehavioral deficits. Rodent models of prenatal cocaine exposure have mimicked these deficits in the offspring, yet the biochemical basis of the behavioral abnormalities is unknown. We have been able to reproduce short-term memory deficits in our rat intravenous model of prenatal cocaine exposure, and as short-term memory is dependent on the function of dopamine neurons innervating the medial prefrontal cortex, we hypothesized that prenatal cocaine induces a dysfunction in the regulation of this pathway. Here we report that mild footshock stress, which preferentially activates the mesoprefrontal dopamine system, leads to an enhanced increase in dopamine turnover in the ventromedial prefrontal cortex of adolescent (postnatal day 35-37) rats exposed to cocaine in utero, suggesting that the dopamine neurons innervating this region are hyperresponsive in these rats. Thus, this biochemical alteration may be central to some of the cognitive deficits exhibited by offspring that were exposed to cocaine during fetal development.  相似文献   

18.
Cognitive deficits have been observed in different animal models of adult-onset hypothyroidism. Thus, this study was delineated to evaluate whether diphenyl diselenide, an organoselenium compound with neuroprotective and antioxidant properties, could afford protection against the detrimental effects of hypothyroidism on behavioral parameters. Hypothyroidism condition was induced in female rats by continuous exposure to methimazole (MTZ) at 20 mg/100 ml in the drinking water, during 3 months. MTZ-induced hypothyroid rats were fed with either standard or a diet containing 5 ppm of diphenyl diselenide for 3 months. Behavioral assessments were performed monthly, in the following order: elevated plus maze, open field and Morris water maze. The levels of thyroid hormones in the animals exposed to MTZ were lower than control until the end of experimental period. The rats exposed to MTZ had a significant weight loss from the first month, which was not modified by diphenyl diselenide supplementation. In elevated plus maze test, MTZ exposure caused a reduction on the number of entries of animals in closed arms, which was avoided by diphenyl diselenide supplementation. In Morris water maze, the parameters latency to reach the platform and distance performed to find the escape platform in the test session were significantly greater in MTZ group when compared to control. These cognitive deficits observed in MTZ-induced hypothyroid rats were restored by dietary diphenyl diselenide. The group fed with diphenyl diselenide alone exhibited a better spatial learning and memory capability in some parameters of Morris water maze when compared to the control group. In summary, our data provide evidence of the effectiveness of dietary diphenyl diselenide in improving the performance of control and hypothyroid rats in the water maze test.  相似文献   

19.
The effect of restraint stress (RS) on neurobehavioral and brain oxidative stress parameters, and their modulation by antioxidants were evaluated in male and cycling female rats. Exposure to RS suppressed both open arm entries and open arm time in the elevated plus maze and these changes were more marked in males than in females. Assay of brain homogenates revealed that the behavioral suppression was associated with similar differential increases in malondialdehye (MDA) and decreases in glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels in males and females. Pretreatment with alpha-tocopherol (25 and 50 mg/kg) and N-acetylcysteine (100 and 200 mg/kg), attenuated the stress induced alteration of behavioral and oxidative stress markers in a consistent manner in both male and female rats. These findings suggest that males may be more susceptible than females to stress induced neurobehavioral changes and free radicals may exert a regulatory influence in such gender dependent responses to stress.  相似文献   

20.
Organotins such as monomethyltin (MMT) are widely used as heat stabilizers in PVC and CPVC piping, which results in their presence in drinking water supplies. Concern for neurotoxicity produced by organotin exposure during development has been raised by published findings of a deficit on a runway learning task in rat pups perinatally exposed to MMT (Noland EA, Taylor DH, Bull RJ. Monomethyl and trimethyltin compounds induce learning deficiencies in young rats. Neurobehav Toxicol Teratol 1982;4:539-44). The objective of these studies was to replicate the earlier publication and further define the dose-response characteristics of MMT following perinatal exposure. In Experiment 1, female Sprague-Dawley rats were exposed via drinking water to MMT (0, 10, 50, 245 ppm) before mating and throughout gestation and lactation (until weaning at postnatal day [PND] 21). Behavioral assessments of the offspring included: a runway test (PND 11) in which the rat pups learned to negotiate a runway for dry suckling reward; motor activity habituation (PNDs 13, 17, and 21); learning in the Morris water maze (as adults). Other endpoints in the offspring included measures of apoptosis (DNA fragmentation) at PND 22 and as adults, as well as brain weights and neuropathological evaluation at PND 2, 12, 22, and as adults. There were no effects on any measure of growth, development, cognitive function, or apoptosis following MMT exposure. There was a trend towards decreased brain weight in the high dose group. In addition, there was vacuolation of the neuropil in a focal area of the cerebral cortex of the adult offspring in all MMT dose groups (1-3 rats per treatment group). In Experiment 2, pregnant rats were exposed from gestational day 6 until weaning to 500 ppm MMT in drinking water. The offspring behavioral assessments again included the runway task (PND 11), motor activity habituation (PND 17), and Morris water maze (as adults). In this second study, MMT-exposed females consumed significantly less water than the controls throughout both gestation and lactation, although neither dam nor pup weights were affected. As in Experiment 1, MMT-exposure did not alter pup runway performance, motor activity, or cognitive function. These results indicate that perinatal exposure to MMT, even at concentrations which decrease fluid intake, does not result in significant neurobehavioral or cognitive deficits. While mild neuropathological lesions were observed in the adult offspring, the biological significance of this restricted finding is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号