首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most multiple imputation (MI) methods for censored survival data either ignore patient characteristics when imputing a likely event time, or place quite restrictive modeling assumptions on the survival distributions used for imputation. In this research, we propose a robust MI approach that directly imputes restricted lifetimes over the study period based on a model of the mean restricted life as a linear function of covariates. This method has the advantages of retaining patient characteristics when making imputation choices through the restricted mean parameters and does not make assumptions on the shapes of hazards or survival functions. Simulation results show that our method outperforms its closest competitor for modeling restricted mean lifetimes in terms of bias and efficiency in both independent censoring and dependent censoring scenarios. Survival estimates of restricted lifetime model parameters and marginal survival estimates regain much of the precision lost due to censoring. The proposed method is also much less subject to dependent censoring bias captured by covariates in the restricted mean model. This particular feature is observed in a full statistical analysis conducted in the context of the International Breast Cancer Study Group Ludwig Trial V using the proposed methodology.  相似文献   

2.
Multiple imputation is commonly used to impute missing covariate in Cox semiparametric regression setting. It is to fill each missing data with more plausible values, via a Gibbs sampling procedure, specifying an imputation model for each missing variable. This imputation method is implemented in several softwares that offer imputation models steered by the shape of the variable to be imputed, but all these imputation models make an assumption of linearity on covariates effect. However, this assumption is not often verified in practice as the covariates can have a nonlinear effect. Such a linear assumption can lead to a misleading conclusion because imputation model should be constructed to reflect the true distributional relationship between the missing values and the observed values. To estimate nonlinear effects of continuous time invariant covariates in imputation model, we propose a method based on B‐splines function. To assess the performance of this method, we conducted a simulation study, where we compared the multiple imputation method using Bayesian splines imputation model with multiple imputation using Bayesian linear imputation model in survival analysis setting. We evaluated the proposed method on the motivated data set collected in HIV‐infected patients enrolled in an observational cohort study in Senegal, which contains several incomplete variables. We found that our method performs well to estimate hazard ratio compared with the linear imputation methods, when data are missing completely at random, or missing at random. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We consider the situation of estimating the marginal survival distribution from censored data subject to dependent censoring using auxiliary variables. We had previously developed a nonparametric multiple imputation approach. The method used two working proportional hazards (PH) models, one for the event times and the other for the censoring times, to define a nearest neighbor imputing risk set. This risk set was then used to impute failure times for censored observations. Here, we adapt the method to the situation where the event and censoring times follow accelerated failure time models and propose to use the Buckley–James estimator as the two working models. Besides studying the performances of the proposed method, we also compare the proposed method with two popular methods for handling dependent censoring through the use of auxiliary variables, inverse probability of censoring weighted and parametric multiple imputation methods, to shed light on the use of them. In a simulation study with time‐independent auxiliary variables, we show that all approaches can reduce bias due to dependent censoring. The proposed method is robust to misspecification of either one of the two working models and their link function. This indicates that a working proportional hazards model is preferred because it is more cumbersome to fit an accelerated failure time model. In contrast, the inverse probability of censoring weighted method is not robust to misspecification of the link function of the censoring time model. The parametric imputation methods rely on the specification of the event time model. The approaches are applied to a prostate cancer dataset. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We develop an approach, based on multiple imputation, that estimates the marginal survival distribution in survival analysis using auxiliary variables to recover information for censored observations. To conduct the imputation, we use two working survival models to define a nearest neighbour imputing risk set. One model is for the event times and the other for the censoring times. Based on the imputing risk set, two non-parametric multiple imputation methods are considered: risk set imputation, and Kaplan-Meier imputation. For both methods a future event or censoring time is imputed for each censored observation. With a categorical auxiliary variable, we show that with a large number of imputes the estimates from the Kaplan-Meier imputation method correspond to the weighted Kaplan-Meier estimator. We also show that the Kaplan-Meier imputation method is robust to mis-specification of either one of the two working models. In a simulation study with time independent and time-dependent auxiliary variables, we compare the multiple imputation approaches with an inverse probability of censoring weighted method. We show that all approaches can reduce bias due to dependent censoring and improve the efficiency. We apply the approaches to AIDS clinical trial data comparing ZDV and placebo, in which CD4 count is the time-dependent auxiliary variable.  相似文献   

5.
A popular method for analysing repeated‐measures data is generalized estimating equations (GEE). When response data are missing at random (MAR), two modifications of GEE use inverse‐probability weighting and imputation. The weighted GEE (WGEE) method involves weighting observations by their inverse probability of being observed, according to some assumed missingness model. Imputation methods involve filling in missing observations with values predicted by an assumed imputation model. WGEE are consistent when the data are MAR and the dropout model is correctly specified. Imputation methods are consistent when the data are MAR and the imputation model is correctly specified. Recently, doubly robust (DR) methods have been developed. These involve both a model for probability of missingness and an imputation model for the expectation of each missing observation, and are consistent when either is correct. We describe DR GEE, and illustrate their use on simulated data. We also analyse the INITIO randomized clinical trial of HIV therapy allowing for MAR dropout. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The treatment of missing data in comparative effectiveness studies with right-censored outcomes and time-varying covariates is challenging because of the multilevel structure of the data. In particular, the performance of an accessible method like multiple imputation (MI) under an imputation model that ignores the multilevel structure is unknown and has not been compared to complete-case (CC) and single imputation methods that are most commonly applied in this context. Through an extensive simulation study, we compared statistical properties among CC analysis, last value carried forward, mean imputation, the use of missing indicators, and MI-based approaches with and without auxiliary variables under an extended Cox model when the interest lies in characterizing relationships between non-missing time-varying exposures and right-censored outcomes. MI demonstrated favorable properties under a moderate missing-at-random condition (absolute bias <0.1) and outperformed CC and single imputation methods, even when the MI method did not account for correlated observations in the imputation model. The performance of MI decreased with increasing complexity such as when the missing data mechanism involved the exposure of interest, but was still preferred over other methods considered and performed well in the presence of strong auxiliary variables. We recommend considering MI that ignores the multilevel structure in the imputation model when data are missing in a time-varying confounder, incorporating variables associated with missingness in the MI models as well as conducting sensitivity analyses across plausible assumptions.  相似文献   

7.
Propensity score models are frequently used to estimate causal effects in observational studies. One unresolved issue in fitting these models is handling missing values in the propensity score model covariates. As these models usually contain a large set of covariates, using only individuals with complete data significantly decreases the sample size and statistical power. Several missing data imputation approaches have been proposed, including multiple imputation (MI), MI with missingness pattern (MIMP), and treatment mean imputation. Generalized boosted modeling (GBM), which is a nonparametric approach to estimate propensity scores, can automatically handle missingness in the covariates. Although the performance of MI, MIMP, and treatment mean imputation have previously been compared for binary treatments, they have not been compared for continuous exposures or with single imputation and GBM. We compared these approaches in estimating the generalized propensity score (GPS) for a continuous exposure in both a simulation study and in empirical data. Using GBM with the incomplete data to estimate the GPS did not perform well in the simulation. Missing values should be imputed before estimating propensity scores using GBM or any other approach for estimating the GPS.  相似文献   

8.
Multiple imputation is commonly used to impute missing data, and is typically more efficient than complete cases analysis in regression analysis when covariates have missing values. Imputation may be performed using a regression model for the incomplete covariates on other covariates and, importantly, on the outcome. With a survival outcome, it is a common practice to use the event indicator D and the log of the observed event or censoring time T in the imputation model, but the rationale is not clear. We assume that the survival outcome follows a proportional hazards model given covariates X and Z. We show that a suitable model for imputing binary or Normal X is a logistic or linear regression on the event indicator D, the cumulative baseline hazard H0(T), and the other covariates Z. This result is exact in the case of a single binary covariate; in other cases, it is approximately valid for small covariate effects and/or small cumulative incidence. If we do not know H0(T), we approximate it by the Nelson–Aalen estimator of H(T) or estimate it by Cox regression. We compare the methods using simulation studies. We find that using logT biases covariate‐outcome associations towards the null, while the new methods have lower bias. Overall, we recommend including the event indicator and the Nelson–Aalen estimator of H(T) in the imputation model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Missing data are common in longitudinal studies due to drop‐out, loss to follow‐up, and death. Likelihood‐based mixed effects models for longitudinal data give valid estimates when the data are missing at random (MAR). These assumptions, however, are not testable without further information. In some studies, there is additional information available in the form of an auxiliary variable known to be correlated with the missing outcome of interest. Availability of such auxiliary information provides us with an opportunity to test the MAR assumption. If the MAR assumption is violated, such information can be utilized to reduce or eliminate bias when the missing data process depends on the unobserved outcome through the auxiliary information. We compare two methods of utilizing the auxiliary information: joint modeling of the outcome of interest and the auxiliary variable, and multiple imputation (MI). Simulation studies are performed to examine the two methods. The likelihood‐based joint modeling approach is consistent and most efficient when correctly specified. However, mis‐specification of the joint distribution can lead to biased results. MI is slightly less efficient than a correct joint modeling approach and can also be biased when the imputation model is mis‐specified, though it is more robust to mis‐specification of the imputation distribution when all the variables affecting the missing data mechanism and the missing outcome are included in the imputation model. An example is presented from a dementia screening study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This research is motivated by studying the progression of age‐related macular degeneration where both a covariate and the response variable are subject to censoring. We develop a general framework to handle regression with censored covariate where the response can be different types and the censoring can be random or subject to (constant) detection limits. Multiple imputation is a popular technique to handle missing data that requires compatibility between the imputation model and the substantive model to obtain valid estimates. With censored covariate, we propose a novel multiple imputation‐based approach, namely, the semiparametric two‐step importance sampling imputation (STISI) method, to impute the censored covariate. Specifically, STISI imputes the missing covariate from a semiparametric accelerated failure time model conditional on fully observed covariates (Step 1) with the acceptance probability derived from the substantive model (Step 2). The 2‐step procedure automatically ensures compatibility and takes full advantage of the relaxed semiparametric assumption in the imputation. Extensive simulations demonstrate that the STISI method yields valid estimates in all scenarios and outperforms some existing methods that are commonly used in practice. We apply STISI on data from the Age‐related Eye Disease Study, to investigate the association between the progression time of the less severe eye and that of the more severe eye. We also illustrate the method by analyzing the urine arsenic data for patients from National Health and Nutrition Examination Survey (2003‐2004) where the response is binary and 1 covariate is subject to detection limit.  相似文献   

11.
The weighted Kaplan–Meier (WKM) estimator is often used to incorporate prognostic covariates into survival analysis to improve efficiency and correct for potential bias. In this paper, we generalize the WKM estimator to handle a situation with multiple prognostic covariates and potential‐dependent censoring through the use of prognostic covariates. We propose to combine multiple prognostic covariates into two risk scores derived from two working proportional hazards models. One model is for the event times. The other model is for the censoring times. These two risk scores are then categorized to define the risk groups needed for the WKM estimator. A method of defining categories based on principal components is proposed. We show that the WKM estimator is robust to misspecification of either one of the two working models. In simulation studies, we show that the robust WKM approach can reduce bias due to dependent censoring and improve efficiency. We apply the robust WKM approach to a prostate cancer data set. Copyright 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Standard implementations of multiple imputation (MI) approaches provide unbiased inferences based on an assumption of underlying missing at random (MAR) mechanisms. However, in the presence of missing data generated by missing not at random (MNAR) mechanisms, MI is not satisfactory. Originating in an econometric statistical context, Heckman's model, also called the sample selection method, deals with selected samples using two joined linear equations, termed the selection equation and the outcome equation. It has been successfully applied to MNAR outcomes. Nevertheless, such a method only addresses missing outcomes, and this is a strong limitation in clinical epidemiology settings, where covariates are also often missing. We propose to extend the validity of MI to some MNAR mechanisms through the use of the Heckman's model as imputation model and a two‐step estimation process. This approach will provide a solution that can be used in an MI by chained equation framework to impute missing (either outcomes or covariates) data resulting either from a MAR or an MNAR mechanism when the MNAR mechanism is compatible with a Heckman's model. The approach is illustrated on a real dataset from a randomised trial in patients with seasonal influenza. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
When missing data occur in one or more covariates in a regression model, multiple imputation (MI) is widely advocated as an improvement over complete‐case analysis (CC). We use theoretical arguments and simulation studies to compare these methods with MI implemented under a missing at random assumption. When data are missing completely at random, both methods have negligible bias, and MI is more efficient than CC across a wide range of scenarios. For other missing data mechanisms, bias arises in one or both methods. In our simulation setting, CC is biased towards the null when data are missing at random. However, when missingness is independent of the outcome given the covariates, CC has negligible bias and MI is biased away from the null. With more general missing data mechanisms, bias tends to be smaller for MI than for CC. Since MI is not always better than CC for missing covariate problems, the choice of method should take into account what is known about the missing data mechanism in a particular substantive application. Importantly, the choice of method should not be based on comparison of standard errors. We propose new ways to understand empirical differences between MI and CC, which may provide insights into the appropriateness of the assumptions underlying each method, and we propose a new index for assessing the likely gain in precision from MI: the fraction of incomplete cases among the observed values of a covariate (FICO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Ruan PK  Gray RJ 《Statistics in medicine》2008,27(27):5709-5724
We describe a non-parametric multiple imputation method that recovers the missing potential censoring information from competing risks failure times for the analysis of cumulative incidence functions. The method can be applied in the settings of stratified analyses, time-varying covariates, weighted analysis of case-cohort samples and clustered survival data analysis, where no current available methods can be readily implemented. The method uses a Kaplan-Meier imputation method for the censoring times to form an imputed data set, so cumulative incidence can be analyzed using techniques and software developed for ordinary right censored survival data. We discuss the methodology and show from both simulations and real data examples that the method yields valid estimates and performs well. The method can be easily implemented via available software with a minor programming requirement (for the imputation step). It provides a practical, alternative analysis tool for otherwise complicated analyses of cumulative incidence of competing risks data.  相似文献   

15.
Propensity scores have been used widely as a bias reduction method to estimate the treatment effect in nonrandomized studies. Since many covariates are generally included in the model for estimating the propensity scores, the proportion of subjects with at least one missing covariate could be large. While many methods have been proposed for propensity score‐based estimation in the presence of missing covariates, little has been published comparing the performance of these methods. In this article we propose a novel method called multiple imputation missingness pattern (MIMP) and compare it with the naive estimator (ignoring propensity score) and three commonly used methods of handling missing covariates in propensity score‐based estimation (separate estimation of propensity scores within each pattern of missing data, multiple imputation and discarding missing data) under different mechanisms of missing data and degree of correlation among covariates. Simulation shows that all adjusted estimators are much less biased than the naive estimator. Under certain conditions MIMP provides benefits (smaller bias and mean‐squared error) compared with existing alternatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Multiple imputation is a strategy for the analysis of incomplete data such that the impact of the missingness on the power and bias of estimates is mitigated. When data from multiple studies are collated, we can propose both within‐study and multilevel imputation models to impute missing data on covariates. It is not clear how to choose between imputation models or how to combine imputation and inverse‐variance weighted meta‐analysis methods. This is especially important as often different studies measure data on different variables, meaning that we may need to impute data on a variable which is systematically missing in a particular study. In this paper, we consider a simulation analysis of sporadically missing data in a single covariate with a linear analysis model and discuss how the results would be applicable to the case of systematically missing data. We find in this context that ensuring the congeniality of the imputation and analysis models is important to give correct standard errors and confidence intervals. For example, if the analysis model allows between‐study heterogeneity of a parameter, then we should incorporate this heterogeneity into the imputation model to maintain the congeniality of the two models. In an inverse‐variance weighted meta‐analysis, we should impute missing data and apply Rubin's rules at the study level prior to meta‐analysis, rather than meta‐analyzing each of the multiple imputations and then combining the meta‐analysis estimates using Rubin's rules. We illustrate the results using data from the Emerging Risk Factors Collaboration. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.  相似文献   

17.
Missing covariate values are prevalent in regression applications. While an array of methods have been developed for estimating parameters in regression models with missing covariate data for a variety of response types, minimal focus has been given to validation of the response model and influence diagnostics. Previous research has mainly focused on estimating residuals for observations with missing covariates using expected values, after which specialized techniques are needed to conduct proper inference. We suggest a multiple imputation strategy that allows for the use of standard methods for residual analyses on the imputed data sets or a stacked data set. We demonstrate the suggested multiple imputation method by analyzing the Sleep in Mammals data in the context of a linear regression model and the New York Social Indicators Status data with a logistic regression model.  相似文献   

18.
BACKGROUND AND OBJECTIVES: To illustrate the effects of different methods for handling missing data--complete case analysis, missing-indicator method, single imputation of unconditional and conditional mean, and multiple imputation (MI)--in the context of multivariable diagnostic research aiming to identify potential predictors (test results) that independently contribute to the prediction of disease presence or absence. METHODS: We used data from 398 subjects from a prospective study on the diagnosis of pulmonary embolism. Various diagnostic predictors or tests had (varying percentages of) missing values. Per method of handling these missing values, we fitted a diagnostic prediction model using multivariable logistic regression analysis. RESULTS: The receiver operating characteristic curve area for all diagnostic models was above 0.75. The predictors in the final models based on the complete case analysis, and after using the missing-indicator method, were very different compared to the other models. The models based on MI did not differ much from the models derived after using single conditional and unconditional mean imputation. CONCLUSION: In multivariable diagnostic research complete case analysis and the use of the missing-indicator method should be avoided, even when data are missing completely at random. MI methods are known to be superior to single imputation methods. For our example study, the single imputation methods performed equally well, but this was most likely because of the low overall number of missing values.  相似文献   

19.
When the event time of interest depends on the censoring time, conventional two-sample test methods, such as the log-rank and Wilcoxon tests, can produce an invalid test result. We extend our previous work on estimation using auxiliary variables to adjust for dependent censoring via multiple imputation, to the comparison of two survival distributions. To conduct the imputation, we use two working models to define a set of similar observations called the imputing risk set. One model is for the event times and the other for the censoring times. Based on the imputing risk set, a nonparametric multiple imputation method, Kaplan-Meier imputation, is used to impute a future event or censoring time for each censored observation. After imputation, the conventional nonparametric two-sample tests can be easily implemented on the augmented data sets. Simulation studies show that the sizes of the log-rank and Wilcoxon tests constructed on the imputed data sets are comparable to the nominal level and the powers are much higher compared with the tests based on the unimputed data in the presence of dependent censoring if either one of the two working models is correctly specified. The method is illustrated using AIDS clinical trial data comparing ZDV and placebo, in which CD4 count is the time-dependent auxiliary variable.  相似文献   

20.
Multiple imputation (MI) is one of the most popular methods to deal with missing data, and its use has been rapidly increasing in medical studies. Although MI is rather appealing in practice since it is possible to use ordinary statistical methods for a complete data set once the missing values are fully imputed, the method of imputation is still problematic. If the missing values are imputed from some parametric model, the validity of imputation is not necessarily ensured, and the final estimate for a parameter of interest can be biased unless the parametric model is correctly specified. Nonparametric methods have been also proposed for MI, but it is not so straightforward as to produce imputation values from nonparametrically estimated distributions. In this paper, we propose a new method for MI to obtain a consistent (or asymptotically unbiased) final estimate even if the imputation model is misspecified. The key idea is to use an imputation model from which the imputation values are easily produced and to make a proper correction in the likelihood function after the imputation by using the density ratio between the imputation model and the true conditional density function for the missing variable as a weight. Although the conditional density must be nonparametrically estimated, it is not used for the imputation. The performance of our method is evaluated by both theory and simulation studies. A real data analysis is also conducted to illustrate our method by using the Duke Cardiac Catheterization Coronary Artery Disease Diagnostic Dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号